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Abstract.
Background: Early differential diagnosis of Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) is important
for treatment and disease management, but it remains challenging. Although computer-based drawing analysis may help
differentiate AD and DLB, it has not been studied.
Objective: We aimed to identify the differences in features characterizing the drawing process between AD, DLB, and
cognitively normal (CN) individuals, and to evaluate the validity of using these features to identify and differentiate AD and
DLB.
Methods: We collected drawing data with a digitizing tablet and pen from 123 community-dwelling older adults in three
clinical diagnostic groups of mild cognitive impairment or dementia due to AD (n = 47) or Lewy body disease (LBD; n = 27),
and CN (n = 49), matched for their age, sex, and years of education. We then investigated drawing features in terms of the
drawing speed, pressure, and pauses.
Results: Reduced speed and reduced smoothness in speed and pressure were observed particularly in the LBD group, while
increased pauses and total durations were observed in both the AD and LBD groups. Machine-learning models using these
features achieved an area under the receiver operating characteristic curve (AUC) of 0.80 for AD versus CN, 0.88 for LBD
versus CN, and 0.77 for AD versus LBD.
Conclusion: Our results indicate how different types of drawing features were particularly discriminative between the
diagnostic groups, and how the combination of these features can facilitate the identification and differentiation of AD and
DLB.
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INTRODUCTION

Alzheimer’s disease (AD) and dementia with Lewy
bodies (DLB) are the two most common types of
late-onset neurodegenerative dementias [1, 2]. Early
and accurate differentiation of AD and DLB is
important to ensure appropriate management and
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treatment of the disease [3, 4], but similarities in clin-
ical manifestations often result in difficulties with
clinical diagnosis [2, 3]. Although biomarkers in
cerebrospinal fluid and neuroimaging are the most
well-validated diagnostic biomarkers [3, 5, 6], they
can be invasive, time-consuming, and expensive.
Therefore, the development of easy-to-use tools for
identifying and differentiating AD and DLB could
help screen candidates who should be examined with
the biomarkers and comprehensive neuropsycholog-
ical testing for diagnostic decision-making.
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Drawing behaviors may be a promising data source
for the development of screening tools for AD and
DLB, as drawing is a complex activity involving mul-
tiple cognitive and motor functions related to AD
and DLB [7, 8]. Drawing tests, such as pentagon-
copying and clock-drawing tests, have been widely
used for screening cognitive impairment and demen-
tia [9]. For differentiation of AD and DLB, although
a meta-analysis showed mixed results for the sta-
tistical significance of individual tests between AD
and DLB [10], studies have reported more severe
deficits in DLB than in AD in terms of the visuospa-
tial/constructional abilities assessed by drawing tests
[11–13]. This tendency has been confirmed in dif-
ferent populations with varying levels of education
[14]. Also, for DLB, drawing test scores have been
associated with the severity of its motor symptoms
[15].

In addition to conventional scoring methods based
on the drawing outcome, digital technologies such as
a digitizing tablet and pen enable detailed analysis of
the drawing process by recording a multitude of draw-
ing behaviors such as the pen trajectory, pressure,
and pauses between strokes [16, 17]. For example,
reduced drawing speed as well as increased pauses
have been reported as statistically significant fea-
tures for detecting AD and mild cognitive impairment
(MCI) [18–21]. However, no such investigation has
taken place for the identification of DLB nor the
differentiation between AD and DLB. Of note, an
analysis of the drawing process has been reported to
be useful in differentiating Parkinson’s disease (PD),
another form of Lewy body spectrum disorders, from
other diseases with overlapping clinical manifesta-
tions [16, 22]. Together, such detailed analysis of the
drawing process may help explore sensitive markers
for identifying and differentiating AD and DLB.

In this study, we aimed to examine the feasibility
of computer-based analysis of features characteriz-
ing the drawing process to identify and differentiate
AD and DLB. On the basis of previous studies,
we hypothesized that both AD and DLB patients
would demonstrate significant differences in draw-
ing features, and that these differences would be
larger in DLB patients. We also hypothesized that
these drawing features would be useful for reliably
identifying patients as distinguished from cognitively
normal (CN) individuals, as well as for differenti-
ating AD and DLB patients. We collected drawing
data with a digitizing tablet and pen from partici-
pants in clinical diagnostic groups of MCI/dementia
due to AD or Lewy body disease (LBD), and CN.

We then extracted drawing features that character-
ized the drawing process in terms of the drawing
speed, pressure, and pauses. Finally, we tested the
first hypothesis by statistically comparing the draw-
ing features between the diagnostic groups, and we
tested the second hypothesis by assessing the per-
formance of machine-learning models using these
features to identify and differentiate AD and DLB.
In addition, we aimed to explore what kinds of draw-
ing features and tasks would be useful for identifying
and differentiating AD and DLB in both statistical
and machine-learning analyses.

MATERIALS AND METHODS

Participants

We recruited outpatients from the Department
of Psychiatry, University of Tsukuba Hospital, the
spouses of the patients, and other participants
either through local recruiting agencies or commu-
nity advertisements in Ibaraki, Japan. The patients
met the standard research diagnostic criteria for
MCI/dementia due to AD or LBD. Specifically, the
patients in the AD group fulfilled the National Insti-
tute on Aging and Alzheimer’s Association core
clinical criteria for probable AD dementia [5] or MCI
[23], as well as the AD Neuroimaging Initiative crite-
ria for AD or MCI [24]. The patients in the LBD group
fulfilled McKeith et al.’s clinical diagnosis criteria
for probable/possible DLB [3] or MCI with Lewy
bodies (MCI-LB) [25]. Participants were excluded
if they had diagnoses of other types of dementia or
MCI (e.g., vascular dementia [26]), or other serious
diseases or disabilities that would interfere with the
collection of drawing data. The CN participants were
age-matched to the patients and did not meet any of
the above criteria. Three psychiatrists (authors T.A.,
K.N., and M.O.), who are experts in dementia and
were blind to the results of the drawing data analysis,
examined each case in terms of the clinical record, as
well as the cognitive and clinical measures, and they
confirmed the diagnoses.

The participants were administered cognitive and
clinical examinations, which comprised 12 variables.
The cognitive measures comprised the Mini-Mental
State Examination (MMSE), the Frontal Assessment
Battery, immediate and delayed recall of Logical
Memory Story A from the Wechsler Memory Scale-
Revised, the Trail Making Test parts A and B (TMT-A
and TMT-B), and the Clock Drawing Test (CDT).
All cognitive measures were assessed by trained neu-
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ropsychologists. For the TMT-A and TMT-B scores,
we used a standard limit of 300 seconds [27]. For
the CDT score, we used Solomon et al.’s 7-point
scale [28]. As for the clinical measures, we used the
Clinical Dementia Rating, the Geriatric Depression
Scale, the Barthel Index of Activities of Daily Living,
the Lawton Instrumental Activities of Daily Living,
and the severity of medial temporal lobe atrophy
according to structural magnetic resonance imag-
ing (see Supplementary Method 1 for the imaging
details).

The study was conducted under the approval of
the Ethics Committee, University of Tsukuba Hos-
pital (H29-065), and it followed the ethical code for
research with humans as stated in the Declaration of
Helsinki. All participants provided written informed
consent to participate in the study. All examinations
were conducted in Japanese.

Drawing data collection and feature extraction

During the cognitive assessments, the participants
performed five tasks by using a digitizing tablet and
pen (Wacom Cintiq Pro 16; sampling rate: 180 Hz;
pen pressure levels: 8,192; pen inclination resolution:
1 degree; screen size: 345 × 194 mm (2560 × 1440
pixels)). Specifically, the following tasks were admin-
istered: the sentence-writing and pentagon-copying
items of the MMSE [29], the TMT-A and TMT-B
[27], and the CDT [28]. Regarding the specifics of
the tasks, the sentence-writing task required writ-
ing a spontaneous sentence. The pentagon-copying
task required copying a figure of intersecting pen-
tagons. The TMT-A task required drawing lines to
connect circles that represent consecutive numbers
distributed in space (i.e., 1-2-3 . . . ). The TMT-B task
required drawing lines to connect numbers and letters
alternately in their respective sequences (i.e., 1-A-2-
B-3-C . . . ). Finally, the CDT task required following
a verbal instruction to draw an analog clock face
(outer circle, numbers, and hands) to show 10 minutes
after 10 o’clock.

We extracted eight types of drawing features from
each task (8 types × 5 tasks = 40 features in total),
following previous studies on the use of drawing
analysis with AD and PD [16, 21, 30, 31]. Specif-
ically, the drawing features comprised three types of
speed-related features, including the drawing speed
and its variability and non-smoothness; two types
of pressure-related features, including the pressure
variability and non-smoothness; and three types of
pause-related features, including the mean pause

duration between drawing motions (i.e., between
strokes and within a stroke), the pause/drawing dura-
tion ratio (i.e., the ratio of the pause and drawing
durations), and adjusted total duration (i.e., the sum
of the pause and drawing durations, per unit stroke
length). The drawing speed represented the speed of
the pen tip on the surface during drawing motions.
The variabilities were evaluated using the coefficient
of variation to remove the effect of the absolute
value. The features for non-smoothness were cal-
culated using the number of local extrema per unit
length. Pauses within a stroke were detected when
the pen tip’s movement was within a circle of radius
0.5 mm (approximately 4 pixels) on the drawing sur-
face for more than 100 ms. These parameters were
empirically determined. Note that to obtain a com-
mon set of drawing features for all five tasks, we
did not include task-specific features such as linguis-
tic features for the sentence-writing task [32] or the
number of errors for the TMT tasks [33].

Statistical analysis

Group differences between AD, LBD, and CN
in terms of the demographics and cognitive/clinical
measures were examined by using the chi-square
test for categorical data and one-way analysis of
variance (ANOVA) tests for continuous data. To
test the hypothesis that both AD and DLB patients
would demonstrate differences in drawing features,
between-group comparisons of the drawing features
were conducted with one-way analysis of covari-
ance (ANCOVA) tests, with the age, sex, and years
of education as covariates. For multiple testing of
the 40 drawing features, Benjamini-Hochberg cor-
rection was applied. Post-hoc pairwise comparisons
between the diagnostic groups were performed by
using Tukey-Kramer tests for continuous data and
chi-square tests for categorical data. To assess the
effect size of each feature, we calculated the general-
ized eta-squared (η2), for which the values 0.01, 0.06,
and 0.14 are considered to indicate small, medium,
and large effects, respectively [34]. All the statistical
analyses were performed using R (version 4.0.5) with
an alpha value of 0.05 (p < 0.05, two-sided).

Machine-learning analysis

To evaluate the validity of using drawing features
to identify and differentiate AD and DLB, we used
supervised machine-learning models to classify the
diagnostic groups via the drawing features. The input
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variables for the models were the 40 drawing fea-
tures extracted from the five different tasks, and the
three types of demographic information, i.e., age, sex,
and years of education (43 features in total). In our
previous study, the drawing features extracted from
these five tasks could capture different, complemen-
tary aspects of cognitive impairments and improve
the classification accuracy for CN, MCI, and AD, as
compared with a model based on a single task [35].
Therefore, we focused here on the classification per-
formance by combining the five tasks rather than by
using individual tasks.

The model performance was evaluated with a
10 × 10 nested cross-validation procedure. We used
this procedure to tune the hyperparameters and train
the models independently on the test data to reduce
overfitting [36, 37] (see Supplementary Figure 1 for
a schematic overview of the nested cross-validation
procedure). In the outer loop, the dataset was split into
training (9/10) and test (1/10) partitions, and each test
partition was later used as an independent testing set.
In the inner loop, each training partition was further
split into inner training and testing folds by using
another ten-fold cross-validation procedure to tune
the hyperparameters. To reduce overfitting, we first
applied feature selection by using elastic net regular-
ization with regularization parameters ranging from
0.1 (i.e., closer to the L2 norm) to 1.0 (i.e., the L1
norm) throughout the same nested cross-validation
procedure. After feature selection, the classification
model’s hyperparameters were chosen in the inner
loop on the basis of the training partitions through
a grid-search method. The procedure was repeated
10 times with different training and test partitions,
and the model performance was evaluated with the
area under the receiver operating characteristic curve
(AUC) as well as the accuracy. A three-class AUC
was computed as defined by Hand and Till [38].
Because our dataset was imbalanced in terms of the
clinical diagnostic groups, we used stratified sam-
pling in the cross-validation procedure such that each
fold contained approximately the same proportion of
the different diagnostic groups.

For the classification algorithm, we used a ran-
dom forest implemented with the Python package
scikit-learn (version 0.23.2) to capture nonlinear rela-
tionships, given that nonlinear interactions between
drawing features and cognitive impairments were
observed in previous studies [21, 31, 35] (see Supple-
mentary Method 2 for the details of the model hyper-
parameters). For missing values, we applied multi-
variate imputation by chained equations [39].

The significance of the classification performance
derived from the nested cross-validation was deter-
mined through permutation tests. Specifically, we
randomly permuted the participants’ diagnosis labels
and performed the same nested cross-validation
procedure described above. We performed 1,000
permutations to build a null distribution for the clas-
sification performance. When the performance value
achieved with the true data was greater than 95%
(p < 0.05) of that achieved during the permutations,
we considered the classification performance to be
significantly greater than chance.

To identify the features that most contributed to
the classification in terms of both robustness across
different training sets and impact on the final model,
we carried out the following investigation into the
classification models. First, we ranked the features in
accordance with the selection frequency and chose
features with repeat occurrences over 50%, aiming to
exclude non-robust features across different training
sets. We then evaluated the importance of each fea-
ture by calculating SHapley Additive exPlanations
(SHAP) values on the basis of their impact on the
model output [40]. Specifically, we compared the
mean absolute SHAP values of each feature. The
following Python packages were used: scikit-learn
(version 0.23.2) and SHAP (version 0.40.0).

RESULTS

Sample characteristics

A total of 123 participants met the inclusion
criteria. They comprised three diagnostic groups
of 47 AD, 27 LBD, and 49 CN participants (see
Table 1 for the demographic and cognitive/clinical
information on all three groups, and Supplemen-
tary Table 1 for additional clinical information on
the LBD group). The sample size met the require-
ment for a power analysis (>21 for each group)
to detect an effect size of Cohen’s f = 0.4 with a
power of 0.8 at � = 0.05. The AD and LBD groups
included 25 and 19 MCI patients, respectively, and
their proportions were not statistically significantly
different (p = 0.229). Regarding the demographics,
neither the age, proportion of female participants,
nor years of education showed any statistically sig-
nificant differences among the groups (p > 0.05). The
proportion of participants on antipsychotic medica-
tion was higher for the LBD group than for the CN
group (p = 0.002 among the three groups; p = 0.003
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Table 1
Participant demographics and cognitive/clinical measures

AD (n = 47) LBD (n = 27) CN (n = 49) p

Age, y, mean ± SD 73.2 ± 6.6 75.1 ± 5.0 72.3 ± 3.8 0.103
Sex, female, n (%) 21 (44.7%) 12 (44.4%) 31 (63.3%) 0.128
Education, y, mean ± SD 13.1 ± 2.8 12.7 ± 2.8 13.1 ± 2.0 0.748
MCI, n (%) 25 (53.2%) 19 (70.4%) NA 0.229
Antipsychotic medication, n (%) 3 (6.5%)1 6 (23.1%)C,1 0 (0.0%)L 0.002
MMSE, mean ± SD 23.2 ± 4.6L,C 26.5 ± 3.6A 28.0 ± 1.6A <0.001
MMSE sentence-writing, score = 1, n (%) 46 (97.9%) 26 (96.3%) 48 (98.0%) 0.890
MMSE pentagon-copying, score = 1, n (%) 39 (83.0%)C 22 (81.5%)C 48 (98.0%)A,L 0.029
Frontal Assessment Battery, mean ± SD 10.9 ± 3.7C 11.1 ± 4.1C 13.6 ± 2.5A,L <0.001
Logical Memory-immediate, mean ± SD 4.3 ± 3.5L,C 7.9 ± 3.9A,C 11.1 ± 3.3A,L <0.001
Logical Memory-delayed, mean ± SD 2.1 ± 2.6L,C 5.9 ± 4.1A,C 9.2 ± 3.0A,L <0.001
TMT-A, mean ± SD 54.4 ± 46.6 68.5 ± 54.0C 36.0 ± 11.7L 0.002
TMT-B, mean ± SD 166.3 ± 86.2C 183.7 ± 86.8C 91.6 ± 39.9A,L <0.001
CDT, mean ± SD 6.0 ± 2.0C 6.6 ± 1.1 6.7 ± 0.8A 0.033
Clinical Dementia Rating, mean ± SD 0.7 ± 0.4C 0.6 ± 0.4C 0.0 ± 0.0A,L <0.001
Geriatric Depression Scale, mean ± SD 3.7 ± 3.1 4.1 ± 3.9 3.2 ± 3.0 0.464
Activities of Daily Living, mean ± SD 98.3 ± 4.9 97.2 ± 5.9C 99.7 ± 1.2L 0.042
Instrumental Activities of Daily Living, mean ± SD 6.6 ± 1.7C 6.1 ± 2.1C 7.8 ± 0.6A,L <0.001
Medial temporal lobe atrophy, mean ± SD 1.6 ± 1.0L,C 1.1 ± 0.6A 0.8 ± 0.5A <0.001

Bold values highlight statistically significant differences (chi-square test, p < 0.05, for categorical data; one-way ANOVA, p < 0.05, for
continuous data). Significant differences between individual diagnostic groups (chi-square test, p < 0.05, for categorical data; Tukey-Kramer
test, p < 0.05, for continuous data) are marked with A, L, or C (A: different from AD; L: different from LBD; C: different from CN). The
total score ranges are as follows: MMSE, 0 to 30; Frontal Assessment Battery, 0 to 18; Logical Memory-immediate and -delayed, 0 to 25;
TMT-A and B, 0 to 300; CDT, 0 to 7; Geriatric Depression Scale, 0 to 15; Activities of Daily Living, 0 to 100; Instrumental Activities of
Daily Living, 0 to 8. Logical Memory-immediate and Logical Memory-delayed respectively refer to immediate and delayed recall of Logical
Memory Story A from the Wechsler Memory Scale-Revised. AD, Alzheimer’s disease; LBD, Lewy body disease; CN, cognitively normal;
MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; TMT-A, Trail Making Test part A; TMT-B, Trail Making Test
part B; CDT, Clock Drawing Test; ANOVA, analysis of variance. 1Data missing for one patient.

for LBD versus CN). All 12 cognitive and clin-
ical measures except for the Geriatric Depression
Scale were different among the diagnostic groups (all
p < 0.05; Table 1). As for the MMSE sub-items, the
pentagon-copying score was not statistically signif-
icantly different between the AD and LBD groups,
while it was lower for the AD and LBD groups
than for the CN group (p = 0.029). The sentence-
writing score did not show any statistically significant
differences among the groups (p = 0.890). Detailed
information about missing values in the drawing data
is reported in Supplementary Result 1.

Differences in drawing features between AD,
LBD, and CN groups

To test our first hypothesis, we investigated
whether the drawing features had statistically dis-
cernable differences between the clinical diagnostic
groups of AD, LBD, and CN. The ANCOVAs with
age, sex, and years of education as covariates revealed
that 34 of the 40 drawing features showed statistically
significant differences between the diagnostic groups
(Benjamini-Hochberg adjusted p < 0.05; Fig. 1A and

Supplementary Table 2). Regarding the feature types,
the following five types consistently showed signif-
icant differences in all five tasks: the drawing speed
and its non-smoothness, pressure non-smoothness,
mean pause duration, and adjusted total duration
(Fig. 1A). In terms of the drawing tasks, all eight
features derived from the CDT task showed signifi-
cant differences across the clinical diagnostic groups
(Fig. 1A). These 34 features all showed at least a
medium effect size (η2 >0.06), with 15 features show-
ing a large effect size (η2 >0.14). Regarding the
overall trends, 31 of these 34 features showed larger
differences from CN in the LBD group as compared
with those in the AD group (Supplementary Table 2).
The remaining three features were all pause-related,
and the AD group showed a longer mean pause in
the sentence-writing task and a greater pause/drawing
duration ratio in the TMT-A and TMT-B tasks, as
compared with the CN and LBD groups.

As an exploratory analysis, post-hoc pairwise
comparisons revealed the following patterns of
statistically significant differences (Tukey-Kramer
adjusted p < 0.05; see Fig. 2 for the CDT features as
representative examples and Supplementary Table 2
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Fig. 1. Differences in drawing features between the clinical diagnostic groups of AD, LBD, and CN. A) Each square’s color represents
the generalized eta-squared for one-way analyses of covariance (ANCOVAs) with the age, sex, and years of education as covariates. Red
outlines represent drawing features with no statistically significant differences between the diagnostic groups (Benjamini-Hochberg adjusted
p > 0.05). The rows indicate the feature types, and the columns indicate the drawing tasks. Sentence, sentence-writing item of the Mini-Mental
State Examination (MMSE); Pentagon, pentagon-copying item of the MMSE; TMT-A, Trail Making Test part A; TMT-B, Trail Making
Test part B; CDT, Clock Drawing Test. B) Mean Z-scores of the drawing features for each clinical diagnostic group, obtained by averaging
across the five drawing tasks. The Z-score of each drawing feature was calculated by using the means and standard deviations for the CN
group. AD, Alzheimer’s disease; LBD, Lewy body disease; CN, cognitively normal.

Fig. 2. Group differences in each drawing feature extracted from the CDT task. Horizontal bars indicate significant differences (Tukey-
Kramer test: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). Boxes indicate the 25th (Q1) and 75th (Q3) percentiles; whiskers indicate the upper and
lower adjacent values that are most extreme within Q3+1.5(Q3-Q1) and Q1-1.5(Q3-Q1), respectively; the line and diamond in each box
represent the median and mean, respectively; and dots denote outliers. AD, Alzheimer’s disease; LBD, Lewy body disease; CN, cognitively
normal; CDT, Clock Drawing Test.

for the full results). Regarding the feature types, the
overall trend was that the LBD and AD groups both
showed comparable differences from CN in pause-

related features, while the LBD group also showed
significant differences in both speed- and pressure-
related features (Fig. 1B). Specifically, 10 of the 12
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features with significant differences between the AD
and CN groups were pause-related (Supplementary
Table 3). In particular, a longer mean pause was
consistently observed for the AD group in all tasks
except the pentagon-copying task. In contrast, fea-
tures with statistical differences for differentiating
LBD from CN occurred in all three categories of
speed-, pressure-, and pause-related features (Sup-
plementary Table 3). In particular, the smoothness
in speed and pressure, as well as the drawing speed,
was consistently lower in the LBD group as com-
pared with CN for all five tasks. In terms of the
drawing tasks, statistically significant features for dis-
criminating LBD from CN were derived from all
five tasks, while those for discriminating AD from
CN were particularly derived from the CDT, TMT-
A, and TMT-B tasks (Supplementary Table 4). On
the other hand, features with statistically significant
differences between the AD and LBD groups were
particularly derived from the pentagon-copying and
sentence-writing tasks (Supplementary Table 4).

To investigate whether these differences in drawing
features could be observed even in the MCI stage, we
also compared them between MCI-AD, MCI-LB, and
CN by using ANCOVAs with the age, sex, and years
of education as covariates. Consequently, compared
to patients with MCI-AD, patients with MCI-LB
showed larger differences from CN and had more
features with significant differences from CN. Specif-
ically, among 25 features with significant differences
among MCI-AD, MCI-LB, and CN, 24 features
showed larger differences from CN in MCI-LB
as compared with those in MCI-AD (Benjamini-
Hochberg adjusted p < 0.05; Supplementary Table 5).
Moreover, in MCI-LB and MCI-AD, 23 and three
drawing features respectively showed significant dif-

ferences from CN (Tukey-Kramer adjusted p < 0.05;
Supplementary Table 5). Furthermore, the overall
trend regarding the feature types remained the same
as that for the clinical diagnostic groups of AD,
LBD, and CN: MCI-LB showed significant differ-
ences from CN in speed-, pressure-, and pause-related
features, while MCI-AD showed statistical differ-
ences only in pause-related features (Supplementary
Table 6).

Model for classifying diagnosis groups by using
drawing features

To test our second hypothesis, we evaluated the
model by using drawing features for classifying the
diagnostic groups with a nested cross-validation pro-
cedure. The classification models achieved an AUC
of 0.80 (95% confidence interval (CI), 0.79 to 0.81;
p < 0.001; 79.1% accuracy) for AD versus CN; an
AUC of 0.88 (95% CI, 0.87 to 0.89; p < 0.001; 85.3%
accuracy) for LBD versus CN; and an AUC of 0.77
(95% CI, 0.75 to 0.78; p = 0.009; 73.8% accuracy) for
AD versus LBD. The three-class classification model
for the AD, LBD, and CN groups achieved an AUC of
0.81 (95% CI, 0.81 to 0.82; p < 0.001; 68.6% accu-
racy). We also evaluated the models with different
settings (i.e., number of outer folds = 10, 20; num-
ber of inner folds = 5, 10) and confirmed that their
accuracies did not statistically change (p > 0.05).

For an exploratory analysis, we next investigated
the drawing tasks and feature types that contributed to
identification and differentiation of AD and LBD in
the classification models. From the results of feature
selection (Fig. 3), each classification model mainly
used nine drawing features for AD versus CN; eight
drawing features for LBD versus CN; and nine draw-

Fig. 3. Comparison of the features’ importance in the classification models by drawing task and feature categories. Each plot presents
the mean absolute SHAP value with a 95% confidence interval. AD, Alzheimer’s disease; LBD, Lewy body disease; CN, cognitively
normal; SHAP, SHapley Additive exPlanations; Sentence, sentence-writing item of the Mini-Mental State Examination (MMSE); Pentagon,
pentagon-copying item of the MMSE; TMT-A, Trail Making Test part A; TMT-B, Trail Making Test part B; CDT, Clock Drawing Test.
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ing features for AD versus LBD. The demographic
variables for age, sex, and years of education were
not included. We then investigated the importance
of each drawing feature by estimating SHAP val-
ues for each model (Fig. 3). Regarding the feature
types, pause-related features dominantly contributed
to differentiating AD from CN, while speed-related
features in addition to pause-related features con-
tributed to differentiating LBD from AD or CN. In
addition to slower drawing speed in the LBD group,
greater speed variability contributed to differentiating
LBD from CN, and lower speed smoothness con-
tributed to differentiating LBD from AD. In terms
of drawing tasks, the classification models for differ-
entiating AD or LBD from CN were mainly driven
by features extracted from the TMT-B and CDT
tasks. In contrast, the model for differentiating AD
and LBD was driven by features extracted from the
pentagon-copying task, followed by the CDT and
sentence-writing tasks. Of note, the top three features
in terms of the SHAP values were 100% selected for
each model, which confirmed that the feature selec-
tion based on elastic net regularization and SHAP
analysis produced consistent results.

DISCUSSION

We investigated features characterizing the draw-
ing process in terms of speed, pressure, and pauses by
using data collected from 123 participants in the AD,
LBD, and CN groups; as a result, we obtained three
main findings. First, statistical analysis showed that
the LBD group demonstrated larger differences in
the drawing features than the AD group consistently
across the five different tasks. As an overall trend,
speed- and pressure-related features showed reduced
speed and smoothness particularly in the LBD group,
while pause-related features showed increased pauses
and total durations in both the AD and LBD groups.
This trend was still evident even in patients with
MCI-AD and MCI-LB. Second, the combination
of drawing features could identify and differentiate
AD and LBD. Specifically, nested cross-validation
showed that machine-learning models using these
features achieved an AUC of 0.80 for AD versus CN,
0.88 for LBD versus CN, and 0.77 for AD versus
LBD. Third, drawing features derived from different
tasks played different roles in identifying and differ-
entiating AD and LBD. Specifically, drawing features
extracted from the TMT and CDT tasks showed sta-
tistically significant differences, particularly for AD

or LBD versus CN, and they strongly contributed
to the models for discriminating AD or LBD from
CN. In contrast, drawing features extracted from the
sentence-writing and pentagon-copying tasks showed
statistical differences, particularly between the AD
and LBD groups, and they strongly contributed to
the models for differentiating AD and LBD. To the
best of our knowledge, this is the first study to show
the validity of using features characterizing the draw-
ing process to identify and differentiate AD and
DLB.

The LBD group showed larger differences in fea-
tures characterizing the drawing process as compared
with the AD group, thus matching our hypothesis
on the basis of previous studies that reported greater
visuospatial/constructional deficits in DLB patients
than in equally demented AD patients [11–13].
Aligning with these previous studies on conven-
tional cognitive measures for drawing tests, our study
supports the feasibility of using drawing tests for dif-
ferentiating AD and DLB, by showing discriminative
patterns in drawing-process impairments that were
consistent across different drawing tasks. Note that
the LBD group showed a larger deviation from CN
in terms of the drawing features, even though the
AD group in our dataset had higher disease sever-
ity in terms of the MMSE score. This might indicate
that the drawing features could be still discriminative
between the two groups even if they were matched
for severity.

A few early studies suggested that visuospatial
deficits can be present in the prodromal stage of DLB
[41, 42], and that this deficit in DLB is predictive of
a more malignant disease course [43]. Of note, in
our dataset, patients with MCI-LB showed greater
deficits in terms of the drawing features than those
with MCI-AD. Our results may suggest that the use
of computer-based analysis of the drawing process
in combination with conventional clinical scores for
drawing tests could help differential diagnosis of AD
and DLB at earlier stages. To confirm this hypothesis,
we will need a further study focusing on the pro-
dromal stages of AD and DLB, along with detailed
clinical examinations on visuospatial/constructional
abilities [44] to better associate drawing features
with patients’ cognitive profiles. In addition, previ-
ous studies suggested that visuospatial deficits in AD
and DLB were associated with distinct pathologi-
cal substrates [45]. Further studies with pathological
biomarkers may reveal unique signatures of drawing
impairments that are reflective of underlying patholo-
gies in AD and DLB.
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Our results suggest that the combination of mul-
tiple drawing tasks varying in their sensitivity to
AD and DLB could achieve both identification and
differentiation of AD and DLB. Specifically, the iden-
tification of AD or DLB in contrast to CN was mainly
driven by the features from the TMT and CDT tasks,
while the differentiation of AD and DLB was particu-
larly driven by the features from the sentence-writing
and pentagon-drawing tasks, as well as the CDT. In
addition to confirming the usefulness of the CDT and
TMT tasks for identifying AD, which aligns with pre-
vious studies on the detection of AD and MCI [21,
35], our results highlight the usefulness of combin-
ing multiple drawing tasks for differentiating AD and
DLB.

As for specific differences in the LBD group, our
results demonstrated that this group had a slower
drawing speed and reduced smoothness in speed and
pressure consistently across all five tasks. Lower
speed and smoothness have also been reported in PD
[22], which indicates that these differences in drawing
characteristics may capture common manifestations
in the spectrum of Lewy body disorders. In the lit-
erature, although visuospatial and motor deficits are
common symptoms in Lewy body disorders [46, 47],
comparisons of visuospatial abilities in patients with
these diseases have yielded mixed results, with some
studies showing a similar level of impairments [43,
48, 49] and others showing differential deficits [12,
13, 45, 50]. Furthermore, motor performance in terms
of gait, balance, and hand dexterity showed different
patterns of deficits in DLB, PD, and PD dementia
[51–53]. Detailed comparisons of drawing features
among different Lewy body disorders may provide
useful insights to deepen our understanding of the
heterogeneous nature of this disease spectrum.

Computer-based, automated analysis of drawing
data has been evaluated for its capability to help
clinical diagnosis of dementias and related neuro-
logical diseases. Previous studies have shown its
usefulness in the contexts of detecting MCI and
AD [16, 31, 35], or PD [16, 22]; differentiating
between AD and vascular dementia [54], or between
amnestic and mixed/dysexecutive MCI [55]; esti-
mating standard cognitive measures [56–59]; and
investigating associations with amyloid and tau bur-
den [60]. However, to the best of our knowledge,
there has been no such investigation for identifi-
cation of DLB or differentiation between AD and
DLB, which we addressed in this study. In addi-
tion, several recent studies have investigated local
temporal/spatial pattens within a drawing task, by

using either hand-crafted, task-specific features (e.g.,
pauses before drawing numbers or hands in the CDT)
[54, 55, 57], or machine-learned features extracted
automatically through neural networks [61]. Those
approaches differ from ours that used global fea-
tures to capture the overall profile of the drawing
process for each task. The adaptation of local fea-
tures is a promising area of future research to
improve the accuracy and interpretability of iden-
tification/differentiation of AD and DLB by better
capturing different cognitive profiles in the two types
of dementias.

Our findings can be incorporated into clinical prac-
tice, although further research is needed to investigate
the real-world operability and acceptability of the
proposed approach. To obtain drawing data, a range
of commercial-grade digital devices is available, such
as a mobile tablet with a stylus [17, 56, 62], a smart
pad [63], and a digital pen [58]. As previous stud-
ies showed strong agreement between the results of
digital and standard paper-based versions of drawing
tests [56], clinicians may benefit from our findings
without significantly altering their current routines.

The strengths of this study include a unique dataset
of multi-task drawing data from individuals in three
diagnostic groups, which led to unique insights into
identifying and differentiating AD and DLB. How-
ever, there are several limitations. First, this study
was limited by the small dataset with different sizes
of diagnostic groups, which might affect the general-
izability of our findings. Second, the patients were not
explicitly matched for disease severity, and selection
bias and residual confounding could exist because
of the nature of convenience sampling. Although we
adjusted for several covariates, we did not adjust our
statistical analyses for co-morbidities and medica-
tions. Additionally, the detailed profile of visuospatial
function was not assessed, even though it could have
impacted the characteristics of the drawing process.
To confirm our findings, further studies are required
with stratified sampling to capture the representa-
tive variation in disease symptoms and cognitive
dysfunction in AD and DLB [64]. Third, the diag-
nosis in our dataset was based on clinical features,
and thus, DLB mixed with AD pathology could not
be excluded [65]. Further research with validated
neuropathological biomarkers is required. Fourth,
our analysis only used global drawing features that
captured the overall profile for each task. Further
insights may be obtained by using in-depth features
to capture local changes in drawing profiles within a
task.
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In conclusion, our results provide initial evidence
of (i) discriminative differences in features char-
acterizing the drawing process that would reflect
cognitive and motor impairments in AD and DLB,
and (ii) the feasibility of machine-learning models
using these features to identify and differentiate AD
and DLB. Specifically, we identified particular fea-
tures and drawing tasks that could facilitate either
the identification or differentiation of AD and DLB,
and effective combination of those features and tasks
could enable both identification and differentiation. A
future study is needed to better understand the appli-
cability of our findings to clinical practice and to other
forms of Lewy body disorders and related diseases.
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