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Abstract.

Background: The differential diagnosis of frontotemporal dementia (FTD) is still a challenging task due to its symptomatic
overlap with other neurological diseases and the lack of biofluid-based biomarkers.

Objective: To investigate the diagnostic potential of a combination of novel biomarkers in cerebrospinal fluid (CSF) and
blood.

Methods: We included 135 patients from the Center for Memory Disturbances, University of Perugia, with the diagnoses
FTD (n=37), mild cognitive impairment due to Alzheimer’s disease (MCI-AD, n=47), Lewy body dementia (PDD/DLB,
n=22), and cognitively unimpaired patients as controls (OND, n=29). Biomarker levels of neuronal pentraxin-2 (NPTX2),
neuronal pentraxin receptor, neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were measured in CSF,
as well as NfL and GFAP in serum. We assessed biomarker differences by analysis of covariance and generalized linear
models (GLM). We performed receiver operating characteristics analyses and Spearman correlation to determine biomarker
associations.
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Results: CSF NPTX2 and serum GFAP levels varied most between diagnostic groups. The combination of CSF NPTX2,
serum NfL and serum GFAP differentiated FTD from the other groups with good accuracy (FTD versus MCI-AD: area
under the curve (AUC) [95% CI]=0.89 [0.81-0.96]; FTD versus PDD/DLB: AUC =0.82 [0.71-0.93]; FTD versus OND:
AUC=0.80[0.70-0.91]). CSF NPTX2 and serum GFAP correlated positively only in PDD/DLB (p =0.56, p <0.05). NPTX2
and serum NfL did not correlate in any of the diagnostic groups. Serum GFAP and serum NfL correlated positively in all

groups (p=0.47-0.74, p <0.05).

Conclusion: We show the combined potential of CSF NPTX2, serum NfL, and serum GFAP to differentiate FTD from other

neurodegenerative disorders.

Keywords: Biomarker, differential diagnosis, frontotemporal dementia, glial fibrillary acidic protein, neurofilament light,

NPTX2, NPTXR

INTRODUCTION

Frontotemporal dementia (FTD) describes a het-
erogeneous group of diseases with involvement of
the frontal and temporal lobes of the brain, lead-
ing to dysfunction in executive functioning, behavior,
and language [1-3]. It is the second most com-
mon form of early-onset dementia and presents a
steadily progressive disease course [1, 4-6]. Due
to its clinical and pathological heterogeneity and
symptomatic overlap with other neurodegenerative
diseases, such as Alzheimer’s disease (AD), and other
non-neurodegenerative psychiatric disorders, the dif-
ferential diagnosis of FTD remains challenging [2,
7-9]. To date, no FTD-specific diagnostic tests or
disease-modifying treatments are available and mis-
diagnosis often leads to an unsuitable care approach
or wrong medication that can worsen the symptoms
[10].

Hence, the need for an accurate way to diagnose
FTDin anearly stage is high, which could be achieved
by the implementation of novel biofluid biomark-
ers, reflecting the underlying pathological changes
in FTD. Cerebrospinal fluid (CSF) biomarkers are
already implemented to support the diagnosis of AD
[11, 12], and there has been great progress concern-
ing their measurement in blood [13]. At present,
the classical AD CSF biomarkers, namely amyloid-
B 1-42 (AB42), tau phosphorylated at threonine 181
(p-tau), total tau (t-tau), and related ratios, are being
used to exclude AD as a differential diagnosis of
FTD [14]. Due to the heterogeneity of the underly-
ing FTD pathologies, a panel of several biomarkers
for different pathologies might be advantageous for
the differentiation of FTD from other neurologi-
cal diseases. Multiple proteomics studies identified
potential FTD-specific biomarker candidates [15,
16], of which some have been further studied in CSF
and blood [17-19]. Some of the promising biomarker
candidates identified for FTD are neurofilament light

(NfL) [20, 21], glial fibrillary acidic protein (GFAP)
[16, 21], and neuronal pentraxins [22].

NfL has been largely investigated as a biomarker
for axonal damage in several neurodegenerative and
inflammatory diseases. In FTD patients it has been
shown to be increased in CSF and serum, com-
pared to cognitively healthy controls [23-26], and
in CSF, compared to AD patients [24, 26, 27]. In
previous studies, NfL. showed good discriminatory
power, in CSF and serum, for the differentiation of
FTD from controls (area under the curve (AUC)
up to 0.88) [25, 28]. Blood NfL has already been
implemented in the novel guidelines for differentiat-
ing FTD from non-degenerative primary psychiatric
disorders [9, 25]. The highly brain-specific protein
GFAP has been studied as a potential marker for
astrocytic activation and gliosis, upon which its pro-
duction is being upregulated [29, 30]. Already atearly
stages of FTD, apoptosis and dystrophy of astrocytes
have been found in the brain [31] and high levels of
GFAP have been detected in CSF and blood [32, 33].
Serum GFAP showed high discriminative power for
the differentiation of FTD from AD and dementias
with Lewy bodies, as well as for the differentiation
of AD from controls [33]. A new group of potential
biomarkers for neurodegenerative diseases are neu-
ronal pentraxins [34-36]. Neuronal pentraxins have
been found to be involved in synapse formation and
plasticity [37, 38], and have been proposed to have
a protective function against neurodegeneration [34,
39, 40]. Several proteomics studies have identified
neuronal pentraxins to be deregulated in the CSF of
patients with neurodegenerative diseases [22, 41, 42].
In FTD, neuronal pentraxin-2 (NPTX?2) and neuronal
pentraxin receptor (NPTXR) have been found to be
decreased in symptomatic genetic mutation carriers
compared to non-carriers and pre-symptomatic car-
riers [43, 44]. NPTX2 previously showed moderate
discriminatory power for the differentiation of AD
from controls [45]. However, a combination of these
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markers for the differential diagnosis of FTD has not
yet been explored.

In the present study, we aimed to investigate the
potential role of NfL, GFAP, NPTX?2, and NPTXR in
CSF and/or serum, as biomarkers for the differenti-
ation of FTD from other dementias. We compared
biomarker levels across the diagnostic groups and
tested which biomarkers could best differentiate FTD
from controls, patients with mild cognitive impair-
ment due to AD and patients with Lewy body
dementias.

MATERIALS AND METHODS

Study population

We retrospectively included 37 patients with FTD,
47 patients with AD at the pre-dementia stage,
namely patients with mild cognitive impairment due
to AD (MCI-AD), 22 patients with Parkinson’s dis-
ease dementia (PDD), or dementia with Lewy bodies
(DLB) that visited the Center for Memory Distur-
bances, University of Perugia, between 2007 and
2018, with available CSF samples collected during
the diagnostic work-up. The FTD group was com-
posed of different FTD variants: behavioral variant
(n=19), language variant (n=7), semantic variant
(n=35), progressive nonfluent aphasia (n=4), and
FTD with motor neuron disease (n=2). Due to their
biological similarities in alpha-synuclein aggregation
and deposition in Lewy bodies, and the differentia-
tion of PDD and DLB only based on the 1-year rule
between onset of symptoms [46], PDD and DLB were
analyzed in a joined group as Lewy body demen-
tias (PDD/DLB). All selected subjects underwent a
thorough standardized work-up, including medical
history, physical and neurological examination. A
comprehensive neuropsychological assessment with
screening tests, i.e., Mini Mental State Examina-
tion (MMSE) [47], further tests for each cognitive
domain, and the Clinical Dementia Rating Scale
(CDR) were carried out [48]. A CDR score of
0.5 was chosen as inclusion criterion for MCI-AD,
while a CDR of 1 was chosen for PDD, DLB,
and FTD. Structural brain imaging by either brain
magnetic resonance imaging or computed tomo-
graphic imaging were performed to exclude other
causes of cognitive impairment. Final diagnoses were
based on internationally established criteria [12, 46,
49-52]. As controls we included 29 cognitively unim-
paired patients that were referred to the Section of
Neurology, University of Perugia for other minor

neurological diseases. Individuals were categorized
as other neurological disease (OND) when no cog-
nitive impairment could be determined (diagnoses:
n=24 subjective cognitive decline, n=2 psychi-
atric disorder, n=1 peripheral polyneuropathy, n =1
epilepsy, n = 1 transient global amnesia), and AD CSF
biomarker levels were in the normal range (consider-
ing values deviating within 10% of the cut-off value
used). Conversely, the diagnosis of AD was made in
the presence of both pathological CSF levels of AB42
(or AB42/AB4p ratios) and p-tau. For subjects with
a suspected diagnosis of FTD, FDG-PET was per-
formed to support the final diagnosis and discriminate
subjects with FTD from those with FTD-mimics. The
study was approved by the local medical ethical com-
mittee and each subject provided written informed
consent to use medical data and biomaterials for sci-
entific research.

CSF and serum sample preparation

Sample collection was performed according to
international guidelines [53]. Lumbar puncture was
performed between 8 am and 10 am, after an
overnight fasting period. CSF (~12mL) was col-
lected into sterile polypropylene tubes (Sarstedt®
tubes, reference: 62.610.210), aliquots of 0.5 mL
were prepared and stored at —80°C upon further anal-
yses in polypropylene tubes (Sarstedt® tubes, code:
72.730.007), avoiding freeze-thaw cycles. Blood con-
taminated samples (>50 platelets per microliter) were
excluded from following analyses. Whole blood was
drawn by peripheral venipuncture into clot activator
tubes and gently mixed to prevent gradient effects.
Samples were left at room temperature for 30 min to
allow blood clotting, and subsequently centrifuged
for 10 min at 2000x g, at room temperature. Serum
was divided into aliquots (0.5 mL) in polypropylene
tubes (Sarstedt® tubes, code: 72.730.007) and stored
at —80°C upon further analysis.

Biomarker analyses

Biomarker measurements in CSF and serum were
performed as described below. The operating staff
was blinded to clinical diagnoses.

AD CSF biomarkers

AD CSF biomarkers were evaluated at the time
of lumbar puncture for each subject included in the
study to assess/exclude the presence of AD. For CSF
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samples collected before 2016, INNOTEST man-
ual enzyme-linked immunosorbent assays (ELISAs)
(Fujirebio Europe, Gent, Belgium) were used to
determine CSF levels of A4, p-tau, and t-tau.
Between 2016 and 2018, AB4o and AR 42 levels were
measured by using the EUROIMMUN ELISA kit
(EUROIMMUN AG, Liubeck, Germany). For the
CSF samples collected since 2018, the assays were
performed using Lumipulse G600-II (Lumipulse)
B-Amyloid 1-40, Lumipulse B-Amyloid 1-42,
Lumipulse Total Tau, and Lumipulse p-Tau 181
assays (Fujirebio Europe, Gent, Belgium). Different
production lot numbers were used to generate data
from both EUROIMMUN and INNOTEST manual
ELISAs and for all Lumipulse assays. Standard qual-
ity controls and internal quality controls were assayed
in each run. The amyloid/tau/(neurodegeneration)
(A/T/(N)) profile was defined for each patient [12].
A/T/(N)-related biomarkers’ values were classified
as pathological (+) or not pathological (-) by using
different cut-off values depending on the date of mea-
surement, the assay used for the analysis and on
internal reference cohorts (Supplementary Table 1).

ELISA NPTX2

CSF NPTX2 concentrations were measured using
a newly developed ELISA from ADx Neurosciences
(ADx Neurosciences NV, Belgium) that was vali-
dated according to international consensus criteria
[54] at the Neurochemistry Laboratory of the Ams-
terdam University Medical Center in the Netherlands
(validation results are reported in the Supplementary
Material). In short, 96-well plates were pre-coated
with capture antibody (mAb33F9) and incubated
with 75pnL of biotinylated detection antibody
(mAb22H10bio) and 25 L of calibrator or undiluted
sample for three hours at room temperature. Five
washing steps were followed by a 30-min incubation
with 100 pL of 50 ng/mL streptavidin-horseradish
peroxidase complex (SV-poly-PO). After a next
wash, 100 pL of 3,3’,5,5'-Tetramethylbenzidine sub-
strate were added and incubated for 30 min at room
temperature. Subsequently, 100 nL of 1 M H,SOq4
were added to stop the colorimetric reaction and
the absorbance was read with a multi-detection
microplate reader (Synergy™ HT, Bio-Tek®, USA)
at a reference wavelength of 450-630nm. A five-
parameter logistic (SPL) curve model was fit to the
measured calibrator absorbances and used as a cal-
ibration curve to determine sample concentrations.
The assay had a lower limit of quantification of 15.2

pg/mL. The mean percent coefficient of variation
(CV%) of duplicate sample concentrations was 3.6%
(range: 0.0%—-17.8%), and the inter-assay CV% of
three independent CSF quality controls (QCs) mea-
sured over four plates were: QC low=6.9%, QC
medium =4.6%, QC high="7.8%.

ELISA NPTXR

NPTXR was measured in CSF with a com-
mercially available ELISA kit from RayBiotech
(RayBio® Human NPTXR ELSIA Kit; RayBiotech,
USA), which was validated at the Neurochemistry
Laboratory of the Amsterdam University Medical
Center for the use in CSF (validation results are
reported in the Supplementary Material). The mean
CV% of duplicate sample concentrations was 2.4%
(range: 0.0%—-12.4%), and the inter-assay CV% of
three independent CSF QCs measured over four
plates were: QC low=10.9%, QC medium=3.1%,
QC high=5.5%.

ELISA NfL

NfL was measured in CSF with a commercially
available ELISA kit from Uman Diagnostics (NF-
light® ELISA CE; Uman Diagnostics, Sweden). The
mean CV% of duplicate sample concentrations was
1.4% (range: 0.0%-21.3%), and the inter-assay CV%
of two independent CSF QCs measured over four
plates were: QC low =3.8%, QC high=2.5%.

Simoa NfL and GFAP

NfL in serum, and GFAP in CSF and serum
were measured with commercially available Simoa
kits from Quanterix (Simoa™ NF-light® Kit and
Simoa™ GFAP Discovery Kit; Quanterix, USA) on
the Simoa™ HD-1 Analyzer (Quanterix, USA). All
biomarker measurements were performed according
to the manufacturer’s instructions and samples were
measured in duplicate.

The mean CV% of duplicate sample concen-
trations was 2.8% (range: 0.0%—15.0%), and the
inter-assay CV% of three independent serum QCs
measured over two plates were: QC low =3.5%, QC
medium =3.1%, QC high =5.7% for serum NfL. For
GFAP in CSF the mean CV% of duplicate sample
concentrations was 2.6% (range: 0.0% — 10.8%), and
the inter-assay CV % of three independent CSF QCs
measured over two plates were: QC low =19.9%, QC
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medium =6.4%, QC high=8.7%, while for GFAP
in serum the mean CV% of duplicate sample con-
centrations was 2.4% (range: 0.0%—14.1%), and the
inter-assay CV% of three independent serum QCs
measured over two plates were: QC low =8.9%, QC
medium =9.6%, QC high=7.9%.

Statistical analyses

All statistical analyses were performed using R
Studio version 4.0 [55]. We tested the distribu-
tion of each biomarker for normality by using the
Shapiro-Wilks test (pastecs R package [56]). Upon
a non-normal distribution of values, either log-
transformation or square-root transformation was
performed, depending on the degree of skewness.
For demographics, Pearson’s x2-test was performed
to compare categorical variables and univariate anal-
yses of variance (ANOVA) were performed to test
for differences of continuous variables across diag-
nostic groups. Prevalences of pathological values of
classical AD CSF biomarkers in diagnostic groups
were compared by means of Fisher’s Exact test for
count data. The comparisons of biomarker levels
between the diagnostic groups were evaluated with
one-way analysis of covariance (ANCOVA, car R
package [57]), adjusted for the effect of age and sex,
with subsequent Tukey’s post-hoc test for pairwise
comparisons (multcomp R package [58]). Associa-
tions of study biomarkers with MMSE, age, sex, and
in-between study biomarkers were analyzed using
Spearman’s rank-order correlation and p-values were
adjusted for multiple comparisons by Bonferroni cor-
rection. To select the most promising combination of
biomarkers, with the highest potential to differenti-
ate FTD from one of the other diagnostic groups at
a time, generalized linear models were applied. In
these models, diagnosis (FTD versus OND, FTD ver-
sus MCI-AD, or FTD versus PDD/DLB) was used as
the outcome variable. We took a step-wise approach,
starting by analyzing the basic model with age and
sex as predictors for the comparison of FTD versus
the other diagnostic groups. Based on the ANCOVA
results, the most significant study biomarkers for FTD
were subsequently added to the basic model to form
a combined biomarker model. Finally, receiver oper-
ating characteristics (ROC) curves were constructed
(pROC R package [59]), again containing the respec-
tive diagnosis as outcome and age, sex, and respective
biomarkers as predictors. The best predicting model
was selected based on having the highest AUC value.
All statistical tests were two-tailed, and the signifi-

cance level was set to oo =0.05. All p-values are listed
after adjustment for multiple testing.

RESULTS
Demographics

Cohort characteristics and study biomarker con-
centrations of the different diagnostic groups are
shown in Table 1. No differences in age and years
of education were observed across the diagnostic
groups. Sex distribution varied significantly between
MCI-AD and PDD/DLB, with more male patients in
the PDD/DLB group. All dementia diagnostic groups
had lower MMSE scores compared to OND, with
PDD/DLB patients having the lowest scores (median
(interquartile range (IQR)) MMSE OND 28 (27-29);
FTD 26 (24-27); MCI-AD: 22 (20-26); PDD/DLB:
20 (16-21). According to neuropsychological test-
ing, all AD patients were in a pre-dementia stage
and clinically affected by mild cognitive impairment.
As expected, A/T/(N) profiles significantly differed
across groups. The prevalence of amyloidosis (A+),
tauopathy (7+), neurodegeneration (N+), and amyloi-
dosis with concomitant tauopathy (A+/T+) in each
diagnostic category are summarized in Supplemen-
tary Figure 3. Almost all A/T/(N) positive subjects
and A/T/(N) negative subjects were found in MCI-
AD and OND, respectively, with discordant profiles
being referred to biomarker values within 10% of the
cut-off values.

Correlations of study biomarkers with age and
sex

No biomarker was associated with sex. NfLL. and
GFAP showed a minor correlation with age in the
whole cohort in both CSF and serum (o =0.30-0.40,
p<0.01). While this correlation was significant for
NfL in CSF and serum only in the OND (both:
p=0.54, p<0.01) and PDD/DLB (CSF: p=0.64,
p<0.01; serum: p=0.54, p<0.05) groups, for CSF
GFAP it was only significant in the MCI-AD group
(p=0.46, p<0.01), and for serum GFAP only in the
OND group (p=0.53, p<0.01).

Biomarker candidates show differential
expression across diagnostic groups

Protein concentrations of the novel biomarker can-
didates are summarized in Table 1 and visualized
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Table 1
Demographics, clinical characteristics, and study biomarker concentrations of the total cohort and stratified for diagnosis
Characteristics Total Group OND FTD MCI-AD PDD/DLB
n=135 n=29 n=37 n=47 n=22
Demographics
Male sex 73 15 21 18 19
(54.07%) (51.72%) (56.76%) (38.30%) (86.36%)3
Age 71 68 70 73 74
(65-75) (65-71) (63-74) (68-76) (66-76)
Education, y 8 8 8 11 8
(5-13) (8-13) (8-13) (5-13) (5-13)
MMSE 25 28 26 22 20
(21-28) (27-29) 24-27) ! (20-26)"-2 (16212
A/T/(N) Profile
A+ 73 2 11 45 15
(58.40%) (6.90%) (29.73%)! (95.74%)"-2 (68.18%)1:23
T+ 53 0 8 41 4
(42.40%) (0%) (21.62%)! (87.23%)"2 (18.18%)3
N+ 72 2 16 45 9
(57.60%) (6.90%) (43.24%)! (95.74%)'-2 (40.91%)'3
A+/T+ 44 0 3 39 2
(35.20%) (0%) (8.11%) (82.98%)!2 (9.09%)3
Biomarker candidates
CSF
NPTX2, pg/mL 273 355 269 276 183
(199-354) (292-457) (182-340)! (217-321)! (145-235)123
NPTXR, ng/mL2 17447 19437 17454 18+4.0 144413
NfL, pg/mLP 1021 652 1162 1144 980
(684-1448) (507-871) (736-2312)! (940-1536)! (664—1224)
GFAP, pg/mL 27061 + 9623 23399 + 8224 24691 + 8366 32239 + 934012 25602 + 99073
Serum
NfL, pg/mL? 19 11 20 21 21
(13-25) (9-15) (13-33)! (17-23)! (14-26)
GFAP, pg/mL? 298 182 228 443 302
(188-445) (114-236) (154-331)! (338-551)12 (199—422)1-3

Data is represented as n (%) for categorical variables, as mean &= SD for normally distributed continuous variables, and as median (IQR)
for non-normally distributed continuous variables. *OND: n=28; FTD: n=37; MCI-AD: n=47; PDD/DLB: n=22; YOND: n= 29; FTD:
n=35; MCI-AD: n=47, PDD/DLB: n=22;; If not stated differently, the full cohort was used. 1 p<0.05 or lower versus OND; 2p<0.05
or lower versus FTD; 3p<0.05 or lower versus MCI-AD. OND, Other neurological diseases; FTD, Frontotemporal dementia; MCI-AD,
Mild cognitive impairment due to Alzheimer’s disease; PDD/DLB, Lewy body dementias, MMSE, Mini mental state examination; CSF,
Cerebrospinal fluid; NPTX2, Neuronal pentraxin-2; NPTXR, Neuronal pentraxin receptor; NfL, Neurofilament light; GFAP, Glial fibrillary
acidic protein; A+, Amyloidosis; T+, Tauopathy; N+, Neurodegeneration.

in Fig. 1. Levels of NPTX2 (Fig. 1A) were sig-
nificantly lower in all diagnostic groups compared
to OND (versus PDD/DLB: p<0.001; versus FTD,
MCI-AD: all p<0.01), and significantly lower in
PDD/DLB compared to FTD and MCI-AD (p < 0.05).
NPTXR concentrations in CSF (Fig. 1B) were signif-
icantly lower in PDD/DLB than in OND (p <0.001)
and MCI-AD (p <0.05). No significant difference in
NPTXR levels could be detected between FTD and
the other diagnostic groups, nor OND. NfL concen-
trations in CSF (Fig. 1C) and serum (Fig. 1D) were
higher in MCI-AD (p<0.05) and FTD (p<0.001)
compared to OND. CSF GFAP levels (Fig. 1E) were
higher in MCI-AD compared to OND (p < 0.01), FTD
(p<0.01), and PDD/DLB (p<0.05), while serum

GFAP levels (Fig. 1F) were higher in MCI-AD com-
pared to OND (p<0.001), FTD (p<0.001), and
PDD/DLB (p <0.01), and higher in FTD (p <0.05),
and PDD/DLB (p <0.01) compared to in OND.

Correlations of study biomarkers with MMSE
scores

Correlations between study biomarker levels and
MMSE scores are shown in Fig. 2. While the CSF
NPTX2 and CSF NPTXR showed a positive corre-
lation with MMSE scores (Fig. 2A: CSF NPTX2:
p=0.41, p<0.001; Fig. 2B: CSF NPTXR: p=0.33,
p <0.001), NfL and GFAP correlated negatively with
MMSE scores in serum (Fig. 2D: NfL: p=-0.35,
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p <0.001; Fig. 2F: GFAP: p=-0.49, p <0.001). This Differential potential of combined biomarkers

correlation was less pronounced in CSF (Fig. 2C:
NfL: p=-0.21, p=0.018; Fig. 1E: GFAP: p=-0.19, Resulting from the ANCOVA, CSF NPTX2, serum

p=0.032). NfL and serum GFAP were selected as the most
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Fig. 2. Association between MMSE score and biomarker levels. Associations between MMSE scores and biomarker levels were assessed
using Spearman’s correlation. A, B) MMSE scores correlated positively with NPTX2 in CSF and NPTXR in CSF. C-F) MMSE scores
correlated negatively with NfL and GFAP in serum but did not reach significance in CSF. Lines represent linear regression and grey
areas represent 95% confidence intervals. MMSE, Mini-mental state examination; CSF, Cerebrospinal fluid; NPTX2, Neuronal pentraxin-2;
NPTXR, Neuronal pentraxin receptor; NfL, Neurofilament light; GFAP, Glial fibrillary acidic protein.

promising biomarker candidates for the differentia-
tion of FTD from OND and MCI-AD. The final model
included age, sex, CSF NPTX2, serum NfL, and
serum GFAP as predictors to differentiate FTD from
the other diagnostic groups. NPTX2 was the only

significant predictor for distinguishing FTD from
OND (B=-1.79, SE=0.91, p<0.05), while serum
NfL and serum GFAP were the significant predictors
for distinguishing FTD from MCI-AD (serum NfL:
B=2.17,SE=0.70,p <0.01; serum GFAP: 3 =-0.53,
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Fig. 3. ROC analysis of combined biomarkers for FTD. Diagnostic performance of the combined biomarkers to differentiate FTD from the
other diagnostic groups were assessed with ROC analyses and the corresponding AUC. The combination included CSF NPTX2, serum NfLL
and serum GFAP, while the basic model only included age and sex as predictor variables. A) FTD versus OND. B) FTD versus MCI-AD.
C) FTD versus PDD/DLB. ROC, Receiver operating characteristics; AUC, Area under the curve; FTD, Frontotemporal dementia; OND,
Other neurological diseases; MCI-AD, Mild cognitive impairment due to Alzheimer’s disease; PDD/DLB, Lewy body dementias; NPTX2,
Neuronal pentraxin-2; NfL, Neurofilament light; GFAP, Glial fibrillary acidic protein.

Table 2
ROC analysis of the combined biomarkers for the differentiation of FTD from other diagnostic groups
Group comparison AUC (95% CI) Sensitivity [%] (95% CI) Specificity [%] (95% CI)
FTD versus OND 0.798 (0.700-0.910) 70 (51-92) 83 (62-100)
FTD versus MCI-AD 0.889 (0.818-0.960) 84 (65-95) 85 (77-100)
FTD versus PDD/DLB 0.823 (0.714-0.932) 78 (60-89) 86 (77-100)

Table lists the accuracy parameters of the ROC analysis for combined biomarkers CSF NPTX?2, serum NfL and serum GFAP, corrected for
age and sex. OND, Other neurological diseases; MCI-AD, Mild cognitive impairment due to Alzheimer’s disease; FTD, Frontotemporal
dementia; PDD/DLB, Lewy body dementias; ROC, Receiver operating characteristics; AUC, Area under the curve; CI, Confidence interval;
CSEF, Cerebrospinal fluid; NPTX2, Neuronal pentraxin-2; NfL, Neurofilament light; GFAP, Glial fibrillary acidic protein.
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Fig. 4. Association between combined biomarkers. Associations between the combined biomarkers were assessed using Spearman’s cor-
relation. A) NfL in serum and NPTX2 in CSF showed a weak negative correlation in the whole cohort. B) When stratified for diagnoses,
serum and CSF NfL did not correlate in any of the diagnostic groups. C) GFAP in serum and NPTX2 in CSF showed a weak negative
correlation in the whole cohort. D) When stratified for diagnoses, GFAP in serum and NPTX2 in CSF correlated positively in PDD/DLB,
while no significant correlation was found in OND, FTD, and MCI-AD. E) A significant positive correlation was found for serum GFAP
and serum NfL. F) When stratified for diagnoses, a significant positive correlation was found for serum GFAP and serum NfL in OND,
FTD, MCI-AD, PDD/DLB. Lines represent linear regression and grey areas represent 95% confidence intervals. CSF, Cerebrospinal fluid;
GFAP, Glial fibrillary acidic protein; NPTX2, Neuronal pentraxin-2; NfL, Neurofilament light; OND, Other neurological diseases; FTD,
Frontotemporal dementia, MCI-AD, Mild cognitive impairment due to Alzheimer’s disease; PDD/DLB, Lewy body dementias.

SE=0.12, p<0.001). Since these two group compar- ther investigated and ROC analyses were performed
isons are clinically the most relevant in our study, (Fig. 3 and Table 2). The combined biomarkers distin-
the combination of these three biomarkers was fur- guished FTD from the other diagnostic groups with
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good performance (AUCs ~ 0.80) and higher AUC
than the biomarkers individually, or a basic model,
including only age and sex as predictors.

Correlations of combined biomarkers

To further analyze the associations of the combined
biomarkers, Spearman’s rank correlations were cal-
culated (Fig. 4). CSF NPTX2 and serum NfL showed
a weak negative correlation in the whole cohort
(p=-0.21, p<0.05; Fig. 4A), but no significant cor-
relations were seen in any of the groups separately
(Fig. 4B). NPTX2 in CSF and GFAP in serum
showed a weak negative correlation in the whole
cohort (p=-0.20, p <0.05; Fig. 4C). When stratified
for diagnostic groups, a moderate positive correla-
tion was observed in PDD/DLB (p=0.56, p <0.05),
while no significant correlation was observed in
OND (p=-0.10, p =2.448), and a negative trend was
observed in FTD (p =-0.40, p=0.060) and MCI-AD
(p=-0.31, p=0.128) without reaching significance
(Fig. 4D). NfL in serum and GFAP in serum cor-
related moderately in the whole cohort (p=0.57,
p<0.001; Fig. 4E). In PDD/DLB a strong correlation
was observed (p=0.74, p<0.001), while a moderate
correlation was observed in OND (p=0.60, p <0.01)
and MCI-AD (p=0.58, p<0.001), and a weak cor-
relation was observed in FTD (p=0.47, p<0.05)
(Fig. 4F).

Correlations of serum and CSF biomarkers

CSF and serum NfL strongly correlated in the
total study population (p=0.77, p <0.001) (Fig. 5A),
while GFAP levels showed a moderate correlation
between CSF and serum in the total group (p =0.50,
p<0.001) (Fig. 5B). Correlations between CSF and
serum NfL, stratified for diagnostic groups, were sig-
nificant in all diagnostic groups (p=0.66 — 0.83,
p<0.001) (Fig. 5C). Serum and CSF GFAP corre-
lated moderately in OND (p=0.58, p<0.01) and
PDD/DLB (p=0.57, p<0.05), but not in FTD (not
significant (n.s.)). In MCI-AD, a positive trend could
be observed, without reaching significance (p =0.30,
p=0.156) (Fig. 5D).

DISCUSSION

This exploratory study investigated whether NfL,
GFAP, NPTX?2, and NPTXR in CSF and/or serum
could have an added value for the differential diag-
nosis of FTD in a cohort of 137 patients diagnosed

with FTD, MCI-AD, PDD/DLB, and OND. We
found altered protein levels of the studied biomark-
ers between the different dementia diagnostic groups.
In FTD, we found lower levels of CSF NPTX2, and
higher levels of serum and CSF NfL, compared to
OND. Serum and CSF GFAP were lower in FTD than
in MCI-AD, while only serum, but not CSF, GFAP
levels were higher in FTD than in OND. We showed
that a cross-matrix biomarker combination, consist-
ing of CSF NPTX2, serum NfL, and serum GFAP,
could distinguish FTD from other diagnostic groups
with a maximum sensitivity of 84% (FTD versus
MCI-AD), and a maximum specificity of 86% (FTD
versus PDD/DLB). The combination of NPTX2
(representing synaptic plasticity [35]), NfL (marker
for overall neurodegeneration [60, 61]), and GFAP
(depicting astrogliosis [62]) reflects the complexity
of pathological mechanisms involved in neurode-
generative disorders and FTD in particular [63-66]
Interestingly, these combined biomarkers showed dif-
ferent correlations with each other, depending on the
different diagnostic groups, possibly reflecting the
different specific underlying mechanisms of each dis-
ease.

CSF levels of the neuronal pentraxins investigated
in this study showed the highest concentrations in our
control group, while in patients with neurodegener-
ative diseases both proteins showed decreased levels
with the lowest levels in PDD/DLB. The decrease
of neuronal pentraxins in the Lewy body dementias
groups corroborates our previous findings [41] and
could be due to the accumulation of these proteins
in Lewy bodies, as it has been found for NPTX2 in
Parkinson’s disease [67]. Also in cortical brain tis-
sue, a similar trend for decreased NPTX2 levels in
AD was observed [68]. Both NPTX2 and NPTXR
correlated positively with MMSE scores, as has been
previously shown by other groups [69, 70], indicating
a possible association with cognitive decline. We and
others recently showed that decreased NPTX2 levels
in DLB correlate with a-synuclein, confirming the
possible interaction of a-synuclein aggregates that
disturb pre-synaptic functioning when NPTX2 levels
are decreased [71, 72].

Increased levels of NfL in CSF and serum,
indicating axonal loss, correlated with increased cog-
nitive impairment, as has been shown previously
[73, 74], with a stronger correlation in serum than
in CSF.

For GFAP we observed more pronounced group
differences in blood than in CSF, as has also been
observed by other groups [33, 75]. In CSF we



374

100 p=0.77, p< 2.20e-16

NfL in Serum [pg/mL]
w
o

o

300 1000

NfL in CSF [pg/mL]

3000

p =0.50, p=9.4%-10

750

(4]
o
o

GFAP in Serum [pg/mL]
N
(o
o

0 20000 40000
GFAP in CSF [pg/mL]

B

NfL in Serum [pg/mL]

GFAP in Serum [pg/mL]

K. Bolsewig et al. / Combination of NfL, GFAP and NPTX2 in FTD

1001 OND:p=0.83,p=7.80e-08

FTD:p=0.77, p =2.61e-07

PDD/DLB:p =077, p = 1.34e-04

w
o

-
o

300 1000

NfL in CSF [pg/mL]

3000

OND :p=0.58,p=3.21e-03
FTD:p=0.17,p =1.296

750
PDD/DLB: p =0.57, p = 0.024 *

o
o
o

N
a
o

0 20000 40000
GFAP in CSF [pg/mL]
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body dementias.

observed elevated GFAP levels in MCI-AD compared
to FTD, PDD/DLB, and controls, while in serum,
GFAP levels were elevated in MCI-AD, and low-
est in OND compared to all other groups. The more
pronounced group differences in blood could sug-
gest an association of GFAP levels with amyloidosis
[76-79]. Astrocytic end-feet are in close contact with
the blood vessels in the central nervous system (CNS)
[80]. These connections could possibly act as a direct
route for GFAP release into the blood stream. We
hypothesize that this leakage could differ across neu-
rodegenerative diseases due to pathology related loss
of blood vessel integrity. Furthermore, a breakdown
of the blood brain barrier has been shown in neu-

rodegenerative diseases [81, 82]. A dysfunction of the
blood brain barrier that might differ between neurode-
generative diseases, could be another possible route
for GFAP leakage into the blood stream. Similarly
to NfL, higher levels of GFAP correlated with more
severe cognitive impairment, with a stronger effect
in serum than CSF. This observation strengthens the
notion that serum NfLL and GFAP can be used as accu-
rate, but less invasive biomarkers than CSF NfL and
GFAP [19].

The combined biomarkers allow for studying the
interactions of the different pathologies reflected by
NPTX2, NfL and GFAP across the different neurode-
generative disorders. CSF NPTX2 values showed a
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(n.s.) positive trend in the Lewy body dementias and
a (n.s.) negative trend with serum NfL levels in OND,
MCI-AD, and FTD. This is in line with previous
findings in FTD mutation carriers for which a neg-
ative association between NPTX?2 and NfL in CSF
was also observed [43]. A medium to strong pos-
itive correlation between serum GFAP and serum
NfL was observed in all diagnostic groups, and has
been previously described in controls, FTD and AD
[83, 84]. This correlation reflects the interaction of
neurodegeneration and astrogliosis in the CNS: glial
cells are activated in response to degeneration, but
also infection or injury, exerting neuroprotective and
neurotoxic effects to maintain homeostasis [85]. A
chronic activation of these cells may directly lead to
a deterioration of the underlying disease pathology
by the accumulation of cytotoxic factors [29, 85].
Interestingly, CSF NPTX2 and serum GFAP showed
a negative correlation trend in MCI-AD and FTD
but showed a positive correlation in the PDD/DLB
group. This difference might result from PDD and
DLB being Lewy body diseases characterized by a-
synuclein accumulations, as indicated above [71, 72],
while AD and FTD are caused by the accumulation
of different proteins leading to distinct pathological
mechanisms. Astroglia are interacting with synapses
and forming part of the synapse structure [86, 87],
which could be an explanation for the positive asso-
ciation between serum GFAP and CSF NPTX2.

We observed strong correlations between CSF
and serum levels for NfL, as it has been previ-
ously reported [31, 88, 89]. For GFAP the correlation
between CSF and serum levels was weaker, a finding
that our group observed before (unpublished data)
and could be explained by the more pronounced
group differences in serum compared to CSF.

Three of the included FTD patients presented with
co-occurring AD pathology (A+/T+), which is a fre-
quent clinical FTD manifestation [90]. As has been
shown by Toledo et al., FTD biomarker studies can
be confounded by AD co-pathology [91]. However,
these subjects did not show deviating study biomarker
levels from the remaining FTD group, and upon
exclusion of these subjects the main findings of our
study were retained.

The combination of blood GFAP and NfL has
already shown promising diagnostic potential for the
differentiation of FTD, AD, and controls [92], and
a combined 2-plex assay has been developed and
brought to market by Quanterix (NEUROLOGY 2-
PLEX B (Nf-L, GFAP*) Quanterix, USA). Due to the
cross-matrix character of the biomarker combination

presented in this study (serum and CSF), a clinical
application of this combination would not be suitable.
However, the development of a blood NPTX2 assay
would enable the extension of the 2-plex assay to a
3-plex assay and could possibly improve the potential
for differential dementia diagnosis, as suggested by
our results.

Strengths

The main strengths of this study are that we
explored multiple biomarkers within the same cohort
of FTD patients and relevant differential diag-
noses, partially in paired CSF and serum samples.
All groups were clinically well-defined and well-
validated assays were used to measure biomarker
levels. We combined established and well-studied
biomarkers, i.e., NfLL and GFAP, as well as the rather
novel synaptic marker NPTX2, which allowed us to
study different processes involved in FTD pathol-
ogy that could possibly be interesting also for the
differentiation of FTD subtypes.

Limitations

This study faced some limitations. The small sizes
of diagnostic groups included in this study lead to
low statistical power. Furthermore, we included AD
patients in the clinical stage of MCI rather than
dementia that, however, converted into dementia in
the following 12—-18 months from LP. NPTXR in CSF
was measured by ELISA from RayBiotech (RayBio®
Human NPTXR ELISA Kit; RayBiotech, USA),
which, albeit being used by other groups [93, 94],
did not meet the optimal criteria for measurements in
CSF when validated by our group. The granularity of
NPTXR results might thus be suboptimal. Another
limitation is that our proposed biomarker combina-
tion uses both CSF and serum, while a combination
requiring only blood sampling would be preferred
for practical reasons, but NPTX2 levels in serum
were not available at the time of study. One study
by Shao et al. (2020) suggests detection of NPTX?2
in serum showing differential levels between vas-
cular dementia patients and controls [95], however,
the brain-specificity of NPTX2 in serum should be
explored by correlating NPTX2 levels between serum
and CSF. Rather than for diagnostic application, our
panel is intended as a comprehensive insight in the
behavior of these biomarkers across the spectrum of
dementia.
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Conclusion

We present a biomarker combination consisting
of CSF NPTX2, serum NfL, and serum GFAP, that
discriminated FTD from controls and other neu-
rodegenerative diseases with good accuracy. The
included proteins represent the complexity of pro-
cesses involved in FTD pathology, including axonal
damage, synaptic dysfunction and astrogliosis and
suggests that a combined evaluation of these pro-
cesses enables differential diagnosis of FTD. Further
development of this biomarker combination, espe-
cially the development of the NPTX2 assay in blood,
and replication are the next steps to assess the diag-
nostic potential of this biomarker combination.
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