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Abstract. Inflammatory biomarkers in plasma are associated with dementia. Thus, we examined the association of 18
types of peripheral immune cells, measured as proportions of their immune cell type, with cross-sectional measures of
cognitive function, change in cognitive function over seven years, prevalent dementia, and time to death from dementia in
1,928 participants of the Cardiovascular Health Study, with mean age 80 years and 62% female. We did not identify any
associations after accounting for multiple comparisons, though we identified marginal associations of peripheral regulatory
T cells with cognitive decline and dementia.

Keywords: Alzheimer’s disease, B cells, benton visual retention test, cognitive impairment, immune, natural killer cells,
neuroinflammation, T cells

INTRODUCTION

Neuroinflammation is implicated in rapid progres-
sion of Alzheimer’s disease (AD) and in altered
learning and memory [1, 2]. Large scale genomic
studies support the role of the immune system in
dementia [3–10]. Immune cells have been iden-
tified in brain tissue and cerebrospinal fluid of
people with AD, and the levels of immune cells in
blood may be associated with dementias, perhaps
reflecting premature immunosenescence and chronic
inflammation [11–18]. For example, higher circu-
lating proportions of natural killer (NK) cells were
apparent before AD onset and the depletion of NK
cells improved cognitive function in mice [19]. In
humans, high NK cell activity was associated with
worse cognitive performance of AD patients [14, 20,
21]. Increased numbers of CD8 + T effector mem-
ory CD45RA+(CD8 TEMRA) cells and of CD4 + T
effector memory CD45RA+(CD4 TEMRA) cells were
identified in the blood of patients with AD [12, 22,
23]. Prior studies report both decreased and increased
proportions of regulatory T cells (Treg) in blood of
patients with AD [22–27]. Immunosenescence of T
cells may promote AD by decreasing anti-amyloid
antibodies, which could result in less clearance of
amyloid plaques [28], or by producing high levels
of pro-inflammatory cytokines and oxidative stress,
which could damage neurons [29, 30]. However,
many of the associations between peripheral immune
cells and cognitive outcomes are based on small,
cross-sectional studies. Clarifying the association of
the peripheral adaptive and innate immune system
with risk for cognitive decline and dementia in a large,
population-based setting may illuminate underlying
biological processes and lead to the development of
better therapeutics.

The Cardiovascular Health Study (CHS) is a
population-based, prospective cohort study that
included serial cognitive evaluations, dementia adju-
dication, and assessment of 18 types of peripheral

innate and adaptive immune cell subsets. Impor-
tantly, CHS allows evaluation of the association of
circulating immune cells with both cross-sectional
and longitudinal cognitive and dementia outcomes.
We hypothesized a priori that high proportions of
NK, and both CD4 + and CD8 + TEMRA cells would
be associated with worse prospective cross-sectional
global cognition, worse cognitive decline, prevalent
dementia, and shorter time to death from dementia.
We hypothesized that higher proportions of Treg pro-
tect against these adverse cognitive outcomes. We
investigated all other available immune cell subsets
as exploratory hypotheses to broadly characterize the
relationship of the peripheral immune system with
cognitive decline and dementia.

METHODS AND MATERIALS

Study design and approval

The CHS is a population-based, longitudinal
cohort of 5,888 men and women aged 65 years or
older at enrollment in 1989–93 [31]. Analytic base-
line for this analysis was defined as the 1998–1999
CHS exam because this study leverages immune cell
phenotype data obtained [32] from the 1998–1999
exams. Institutional review boards at the University of
Washington and at each study site approved the study.
All CHS participants provided written informed
consent.

Immune cell measurement

Detailed methods for immune cell phenotyping
and flow cytometry gating strategies have been pub-
lished [32, 33]. Briefly, as part of the 1998–1999
exam, peripheral blood mononuclear cells (PBMCs)
were cryopreserved. Flow cytometry was used to
differentiate cell types based on surface marker
expression. Cell phenotypes were expressed as pro-
portions of larger “parent” populations, as indicated
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in Table 2. Poor sample quality and technical
assay errors resulted in missing data, which appear
to be missing at random. IgG antibodies to cytomeg-
alovirus (CMV) were measured in serum by enzyme
immunoassay (Diamedix Corp., Miami Lakes, FL);
the inter-assay coefficients of variation of CMV titer
were 5.1%–6.8%.

Cognition and dementia adjudication

Global cognitive performance was assessed with
the 100-point Modified Mini Mental State Exam
(3MSE) for participants in 1998–1999 and was
repeated among participants remaining in the study
in 2005–2006. Participants who did not attend an
in-person exam were contacted via telephone to com-
plete a Telephone Interview for Cognitive Status
(TICS) exam. The TICS score explains 67% of vari-
ability in 3MSE in CHS and can be used to estimate
3MSE score with a correlation of 0.82 between actual
and TICS-estimated 3MSE [34, 35]. We used TICS
score to estimate the 3MSE score when 3MSE was
missing. TICS was used to estimate one score at the
1998–1999 exam and 194 scores at the 2005–2006
exam.

A committee of neurologists and psychiatrists used
Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-IV) criteria to adjudicate dementia prior
to 1998–1999 [36–38]. Death from dementia was
ascertained on all participants through 2015 with evi-
dence of advanced dementia prior to death without
evidence of another cause [39].

Statistical analysis

For main analyses we used multiple imputation
with chained equations (40 imputations) to impute
all missing data, including any missing covariates,
cell phenotypes, and cognitive outcomes. We imputed
20 cross-sectional cognitive scores, 996 changes in
cognitive score, 402 statuses of prevalent demen-
tia, and 19 times to death with dementia. Data were
imputed in blocks of immune cells, covariates, and
cognitive outcomes. Additional covariates associated
with aging-related outcomes in CHS were included in
the imputation process to improve estimates [40–44].
In the main imputed analyses, all participants were
included in all analyses.

Due to co-linearity, we analyzed each cell pheno-
type separately, per standard deviation (SD) higher
value. Associations between immune cell proportion
per 1-SD and both cross-sectional 3MSE score and

change in 3MSE between 1998–1999 and 2005–2006
were assessed using linear regression. We used Pois-
son regression to determine relative risk of prevalent
dementia per 1-SD higher immune cell propor-
tion. We used Cox proportional hazards regression
to determine hazard ratio of death from dementia
per 1-SD higher immune cell proportion. Censoring
occurred at death without noted dementia or in 2015.
All analyses were adjusted for age, sex, Black race,
systolic blood pressure, smoking status, statin use,
education, prevalent diabetes, APOE4 allele carrier
status, body mass index (BMI), CMV antibody titer,
assay batch, and study site.

In exploratory analyses, we repeated all analyses
stratified by sex. In sensitivity analyses, we excluded
135 participants who had experienced a stroke prior to
the 1998–1999 exam. To identify potential influence
of imputed missing data, we performed complete case
analysis for associations between immune cell pro-
portion and three outcomes: cross-sectional cognitive
function, prevalent dementia, and time-to-death from
dementia. We weighted individuals with 2005–2006
data by the inverse probability of the likelihood of
having cognitive scores in 2005–2006 to perform a
sensitivity analysis of the association of immune cell
proportions and seven-year change in cognitive func-
tion [45].

For main endpoints, a p-value less than 0.0125 was
considered significant to account for the four pri-
mary cell types assessed. All other analyses were
exploratory and a p-value of 0.05 was considered
significant. We conducted all analyses in RStudio
(R version 3.6.3). The data that support the find-
ings of this study are available upon reasonable
request through the CHS Coordinating Center (CHS-
NHLBI.org).

RESULTS

Our analysis included 1928 CHS participants with
at least one peripheral immune subset measured.
Table 1 presents their characteristics at analytic base-
line. Cognitive evaluations were performed seven
years later in a subset of 932 (48%) participants and
scores declined a mean of 6.5 points (standard devia-
tion = 9.7). Over 16 years of follow up, 272 (14%)
participants died from dementia. Table 2 presents
immune cells as proportions of their parent popula-
tion.

Table 3 presents associations between each
immune cell proportion and both cross-sectional
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Table 1
Characteristics of CHS subjects with immune cell data (n = 1928) at analytic baseline

Variable Mean or number Standard deviation
(SD) or %

Age, y (mean, SD) 79.7 4.4
Male (n, %) 732 38.0%
Black (n, %) 339 17.6%
Study site (n, %)

North Carolina 536 27.8%
California 521 27.0%
Maryland 410 21.3%
Pittsburgh 461 23.9%

Education past grade 12 (n, %) 940 48.8%
Systolic blood pressure, mmHg (mean, SD) 135.2 20.5
Smoking status (n, %)

Current 151 6.6%
Never 938 44.1%
Former 839 49.3%

At least one APOE4 allele (n, %) 534 29.0%
BMI, kg/m2 (mean, SD) 26.6 4.4
Prior Stroke (n, %) 135 7.0%
Diabetes (n, %) 372 19.4%
Statin user (n, %) 307 15.9%
CMV antibody titer, EU/mL (mean, SD) 190.3 183.6
Prevalent dementia (n, %) 563 36.9%
3MSE (mean, SD) 90.4 11.6
∗ percentages based on number of participants with data for that variable. No data were missing for
age, sex, race, study site, presence of prior stroke, or statin use. The number of missing observations
for the other variables are as follows: 3 for level of education, 1 for blood pressure, 25 for smoking
status, 84 for APOE4 genotype, 143 for BMI, 10 for prevalent diabetes, 189 for CMV antibody titer,
402 for prevalent dementia, and 1 for 3MSE cognitive score.

Table 2
Cellular phenotypes with their molecular description, parent population, number of samples with data (N), means and standard deviations

(SD)

Cellular phenotype Molecular description Parent population N Mean SD

Primary hypotheses

Natural killer CD3-CD56 + CD16+ % Lymphocytes 1,556 5.1 4.8
Treg CD4 + CD25 + CD127– CD4+ 1,545 6.6 4.6
CD4 + TEMRA CD4 + CD45RA + CD28-CD57+ CD4+ 1,670 6.9 5.9
CD8 + TEMRA CD8 + CD45RA + CD28-CD57+ CD8+ 1,675 23.6 14.1

Exploratory hypotheses

�δ T cells CD3+�δ+ CD3+ 1,539 5.5 4.9
B cells CD19+ % Lymphocytes 1,556 19.7 15.9
T helper cells CD4+ % Lymphocytes 1,673 50.1 14.5
Cytotoxic T cells CD8+ % Lymphocytes 1,691 17.3 9.7
Th1 CD4 + CD194-CXCR3 + CD196– CD4+ 1,326 20.2 8.0
Th2 CD4 + CD194 + CXCR3-CD196– CD4+ 1,326 4.7 3.8
Th17 CD4 + CD194 + CXCR3-CD196+ CD4+ 1,326 3.2 2.6
Naı̈ve CD4 + cells CD4 + CD45RA+ CD4+ 1,690 25.8 12.6
Memory CD4 + cells CD4 + CD45RO+ CD4+ 1,690 49.7 15.5
Activated/mature CD4 + cells CD4 + CD38+ CD4+ 1,688 33.4 15.8
Naı̈ve CD8 + cells CD8 + CD45RA+ CD8+ 1,709 42.6 16.6
Memory CD8 + cells CD8 + CD45RO+ CD8+ 1,702 30.2 14.4
Activated/mature CD8 + cells CD8 + CD38+ CD8+ 1,707 34.3 18.5
Memory B cells CD19 + CD27+ CD19+ 1,557 26.4 19.8

cognitive function and longitudinal change in cog-
nitive function after seven years using imputed
data where missing. No immune cell proportions

were associated with any cognitive outcomes after
accounting for multiple comparisons of the primary
cell types. However, higher proportions of Treg were
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Table 3
Associations of lymphocyte subsets (per 1 SD) with cognitive outcomes. Analyses for cross-sectional 3MSE score and change in 3MSE score over seven years are based on multiple linear
regression. Analysis of prevalent dementia is based on Poisson regression. Analysis of time to death from dementia is based on Cox proportional hazards regression. All analyses adjust for age,
sex, Black race, systolic blood pressure, smoking, statin use, education, prevalent diabetes, APOE4 carrier status, BMI, CMV antibody titer, assay batch, and study site. Participants were censored
at death without dementia or in 2015. All 1928 individuals are included in each analysis. Missing data were imputed, including covariates (see Table 1), immune cells (see Table 2), and outcomes.
We imputed 20 cross-sectional cognitive scores, 996 changes in cognitive score, 402 statuses of prevalent dementia, and 19 times to death with dementia. Beta values that are negative indicate

lower cognitive score and a greater decline in cognition over 7 years

Cross-sectional 3 MSE score Change over seven years Cross-sectional dementia Time to dementia death

Cellular phenotype Beta 95% CI p Beta 95% CI p Relative 95% CI p Hazard 95% CI p
Risk Ratio

Natural killer 0.06 –1.71, 1.84 0.94 –0.09 –3.90, 3.73 0.96 1.15 0.77, 1.70 0.50 1.16 0.80, 1.69 0.44
Treg –0.52 –1.08, 0.03 0.065 –1.30 –2.36, –0.24 0.018 1.10 0.99, 1.22 0.086 1.13 0.78, 1.64 0.52
CD4 + TEMRA –0.12 –0.80, 0.55 0.72 0.47 –0.80, 1.73 0.47 0.98 0.83, 1.16 0.82 1.07 0.76, 1.52 0.68
CD8 + TEMRA 0.05 –0.55, 0.65 0.86 0.24 –0.91, 1.39 0.68 1.03 0.91, 1.18 0.63 1.05 0.74, 1.49 0.79
�δ T cells 0.41 –1.81, 2.62 0.72 –0.93 –4.85, 2.99 0.64 1.00 0.66, 1.50 0.98 1.06 0.75, 1.50 0.76
B cells 0.26 –0.22, 0.73 0.29 0.08 –0.85, 1.01 0.86 0.97 0.87, 1.08 0.54 1.10 0.77, 1.57 0.60
T helper cells –0.15 –0.33, 0.02 0.09 –0.03 –0.37, 0.31 0.86 1.01 0.97, 1.05 0.74 1.08 0.76, 1.53 0.67
Cytotoxic T cells 0.11 –0.02, 0.25 0.09 –0.07 –0.31, 0.17 0.56 1.01 0.98, 1.04 0.70 1.08 0.76, 1.54 0.67
Th1 0.14 –0.17, 0.46 0.38 –0.25 –0.87, 0.37 0.44 0.99 0.92, 1.06 0.79 1.08 0.76, 1.53 0.67
Th2 –0.12 –2.51, 2.28 0.92 1.59 –4.50, 7.68 0.61 0.99 0.57, 1.71 0.97 1.08 0.75, 1.55 0.68
Th17 0.34 –2.88, 3.56 0.84 1.51 –2.14, 5.16 0.42 0.99 0.53, 1.84 0.97 1.08 0.76, 1.53 0.68
Naı̈ve CD4 + cells 0.12 –0.42, 0.66 0.67 0.14 –0.86, 1.15 0.78 0.90 0.79, 1.03 0.14 1.00 0.70, 1.43 0.99
Memory CD4 + cells –0.04 –0.39, 0.30 0.81 –0.13 –0.83, 0.56 0.71 1.06 0.97, 1.15 0.19 1.01 0.71, 1.44 0.97
Activated/mature CD4 + cells 0.10 –0.45, 0.64 0.73 0.24 –0.73, 1.20 0.63 0.95 0.84, 1.08 0.45 1.09 0.77, 1.55 0.62
Naı̈ve CD8 + cells 0.06 –0.06, 0.17 0.33 –0.13 –0.36, 0.09 0.24 0.99 0.96, 1.02 0.47 1.08 0.76, 1.53 0.66
Memory CD8 + cells –0.25 –0.59, 0.10 0.16 0.21 –0.41, 0.82 0.51 1.04 0.96, 1.13 0.29 1.09 0.77, 1.54 0.64
Activated/mature CD8 + cells 0.10 –0.45, 0.64 0.73 0.34 –0.80, 1.48 0.56 0.97 0.85, 1.10 0.60 1.06 0.71, 1.57 0.79
Memory B cells –0.15 –0.74, 0.45 0.63 –1.00 –2.29, 0.30 0.13 1.09 0.96, 1.23 0.21 1.16 0.81, 1.67 0.42

p-value threshold for the primary endpoints is 0.0125. Bolded cells are primary hypotheses. CI, Confidence Interval.
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associated with greater decline in cognitive func-
tion over seven years if not accounting for multiple
comparisons. This association was supported by sug-
gestive associations of higher proportions of Treg
with both worse cross-sectional cognitive function
and higher risk of prevalent dementia. Supplementary
Table 1 presents sensitivity analyses using complete
case analysis for cross-sectional cognitive function
(no missing data were imputed) and inverse probabil-
ity weighting for change in cognitive function. These
analyses were similarly null.

Additionally, no immune cell proportions were
associated with prevalent dementia or time to death
from dementia (Table 3). Supplementary Table 1
presents sensitivity analyses, using complete case
analysis for both prevalent dementia and time to death
from dementia.

We did not observe associations between immune
cell subsets and any of the outcomes in analyses strat-
ified by sex, when excluding participants with stroke
prior to blood collection, or when evaluating preva-
lent AD specifically rather than all-cause dementia.

Exploratory analysis using principal components
of the immune cell distributions did not identify sig-
nificant associations.

DISCUSSION

In a large, population-based, longitudinal cohort
of older adults with well-defined outcomes, we did
not identify associations of peripheral immune cells
with either cross-sectional or longitudinal cognitive
outcomes after accounting for multiple comparisons.
However, there were marginally significant associ-
ations of Treg with worse cognitive decline in both
imputed and weighted probability models when not
accounting for multiple comparisons, and this asso-
ciation was supported by suggestive associations of
Treg with both worse cross-sectional cognitive func-
tion and prevalent dementia. Higher proportions of
Treg may reflect ongoing mobilization in response to
inflammation.

The immune cell subsets that we measured at a
single timepoint in blood may not reflect features
of the immune system most important for cognitive
decline, or dynamic temporal intrapersonal variabil-
ity in cell levels. Overall numbers, activity, or location
of immune cells may better reflect pathology than
immune cell proportions in peripheral blood. For
example, all B and CD4 + T cell count may be
diminished in dementia, which may not be captured

when evaluating proportions [13, 18]. Treg and NK
cells from patients with AD are reported to have
altered function [14, 20, 21, 46]. Neurodegenera-
tion may be driven by proinflammatory cytokines
and chemokines produced by the immune cells [47].
For example, IL-1�, IL-6, and TNF� are thought to
induce neuronal death [47]. Additionally, we may not
have evaluated all relevant immune cell subpheno-
types. For example, specific Treg subtypes might be
more associated with pathologies than proportions of
Treg overall [26]. Furthermore, cells may act in con-
cert to affect cognitive decline and AD [48–50], and
we have evaluated each cell type independently.

Peripheral immune cells may not reflect immune
cells in the brain and cerebrospinal fluid, which may
be more important for cognitive decline and demen-
tia. The role of the immune system may vary by type
of dementia [13]. NK cells may be diminished in vas-
cular dementia, but not in AD, and the distribution
of naı̈ve and memory T cells may be altered only
in AD [13]. The majority of dementia in CHS was
AD, but ∼25% had vascular dementia and ∼10%
had mixed dementia based on adjudicated diagnoses.
Our dementia endpoint included all dementia sub-
types and limiting our analysis to adjudicated AD
did not affect our findings.

Other limitations of the study include large
amounts of missing data and that participants with
cognitive data are known to be healthier than those
without cognitive data or who did not survive to
the 1998–1999 exam. Survival and participation bias
is especially likely to affect longitudinal analysis
of cognitive decline, where participants experienc-
ing greater cognitive decline were less likely to be
re-examined in follow-up. We attempted to account
for missing data through multiple imputation with
chained equations and with probability weighting
based on likelihood of participation in the follow up
exam, but selection bias remains a concern. Nonethe-
less, sensitivity analyses were also null. Other sources
of bias include that death from dementia is spe-
cific, but not sensitive, and we likely underestimated
the number of participants who died with dementia.
Immune cells were measured at only one time point,
several years after cohort development. Participants
must have survived and been healthy enough to par-
ticipate in a blood draw during the 1998–1999 exam.
These older participants may already have experi-
enced changes in their immune system that could
affect cognitive function and decline.

The role of the immune system in dementia is
likely complex. While neuroinflammation is well



A.E. Fohner et al. / Immune Cells and Cognitive Decline 13

established with respect to AD, anti-inflammatory
therapy for AD has had poor results [51]. Our findings
that peripheral immune cells, measured as propor-
tions, are not associated with cross-sectional global
cognition, cognitive decline, prevalent dementia, or
time to death with dementia may reflect the com-
plexity of both the immune system and its role in
AD and related dementias. Further studies are needed
to clarify associations between Treg and subsequent
dementia and cognitive decline.
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