Erratum

Age-Related Tau Burden and Cognitive Deficits Are Attenuated in KLOTHO KL-VS Heterozygotes

Ira Driscolla,b,c, Yue Mab, Catherine L. Gallagherd,e, Sterling C. Johnson Sterlinga,b,d, Sanjay Asthanaa,b,d, Bruce P. Hermannaa,b,e, Mark A. Sagera,b, Kaj Blennowf,g, Henrik Zetterbergf,g,h,i, Cynthia M. Carlssona,b,d, Corinne D. Engelmanab,j, Dena B. Dubalk and Ozioma C. Okonkwoa,b,d

aWisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
bWisconsin Alzheimer’s Institute, Madison, WI, USA
cDepartment of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
dGeriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
eDepartment of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
fDepartment of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
gClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
hDepartment of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
iUK Dementia Research Institute at UCL, London, UK
jDepartments of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
kDepartment of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA

Pre-press 5 July 2021

https://content.iospress.com/articles/journal-of-alzheimers-disease/jad200944

On p. 1299, in the Results section, where it says:

We have also assessed how many of the participants in this sample would be considered abnormal or negative based on our center’s derived cutpoint for CSF AD biomarkers [32], namely Aβ\textsubscript{42} (≤471.54), pTau (≥59.5), and tTau (≥461.26). Majority of the participants in our sample were negative for both Aβ and tau biomarkers. Based on \(\chi^2\)-tests, the percentage of those who were Aβ\textsubscript{42} negative did not significantly differ between KL-VS heterozygotes (7%) versus non-carriers (12%) (\(p = 0.18\)). Similarly, the percentage of those who were negative based on pTau did not significantly differ between KL-VS heterozygotes (18%) and non-carriers (13%) (\(p = 0.27\)). Finally, based on the tTau measure, the percentage of those who were negative did not significantly differ between KL-VS heterozygotes (16%) and noncarriers (14%) (\(p = 0.42\)).
It should be:

We have also assessed how many of the participants in this sample would be considered positive (i.e., abnormal) based on our center’s derived cutpoint for CSF AD biomarkers [32], namely A^β_{42} (≤ 471.54), pTau (≥ 59.5), and tTau (≥ 461.26). Majority of the participants in our sample were negative for both A^β_{42} and tau biomarkers. Based on χ^2-tests, the percentage of those who were A^β_{42} positive did not significantly differ between KL-VS heterozygotes (7%) versus non-carriers (12%) ($p = 0.18$). Similarly, the percentage of those who were positive based on pTau did not significantly differ between KL-VS heterozygotes (18%) and non-carriers (13%) ($p = 0.27$). Finally, based on the tTau measure, the percentage of those who were positive did not significantly differ between KL-VS heterozygotes (16%) and non-carriers (14%) ($p = 0.42$).