# **Supplementary Material**

Targeted Metabolomic Analysis in Alzheimer's Disease Plasma and Brain Tissue in Non-Hispanic Whites

## **Supplementary Methods**

# Sample filtration

The counts of samples presented in the main text are the final counts following a sample filtering procedure. The filtering was performed (1) to attain relative sample homogeneity without cases of rare features, which could not be reliably controlled for in the statistical analysis due to their low occurrence, nor cases with major central nervous system co-morbidities, and (2) to improve reliability of the diagnosis group assignment.

We received 77 controls and 100 Alzheimer's disease (AD) plasma samples with matched distributions of sex, age, and *apolipoprotein E (APOE)*  $\epsilon$ 4 carriers. Following the selection criteria, we removed 9 participants with inconsistent diagnosis during follow-up visits, 3 participants with a low number of follow-up visits (required to guarantee short-time diagnosis consistency) and 3 participants of minority race or ethnicity. There was one site that collected only 4 samples, and these were excluded, bringing the final number of plasma samples to 94 AD and 64 controls.

For the second cohort, we received brain samples of 40 AD and 40 controls. We applied the selection criteria and excluded 1 AD with multiple sclerosis, 1 AD with hippocampal sclerosis, 1 AD marked "abnormal", and 2 controls with mild cognitive impairment. After excluding 4 cases of racial and ethnical minorities, the final number of used samples is 35 AD and 36 controls. 1 AD case and 4 controls had missing indicator of Hispanic ethnicity and were not removed from the analysis.

## *Plate configuration*

Each plate contained 3 blanks (phosphate buffered saline for plasma, 85% ethanol in phosphate buffered saline for cortex) and 4-6 repeats of a quality control sample. Samples were randomized across the plates. Plasma samples were run on 4 plates together with samples from another source (another project) and different characteristics and these samples were not included in plate normalization or analysis. Cortex samples were run on 2 plates together with two other equally-sized diagnostic groups (33 and 32 subjects) from a related project, obtained from the same source

and with a similar sociodemographic profile. Therefore, these samples were formally included in plate normalization and the statistical analysis as separate diagnostic groups to improve statistical power for estimation of the effect of regression covariates, and thus, indirectly improving statistical power for estimation of the AD effect. This allowed us to include more covariates and resulted in detection of significantly more altered lipid species in the cortex cohort (indeed, owing to shorter confidence intervals), whereas the number of detected altered small molecules remained virtually unchanged.

## Data preprocessing

# Plate normalization

To account for batch effects, plates were normalized (per metabolite) by scaling through median normalization (as recommended by Biocrates, the kit manufacturer): For a given metabolite, values of reference samples in each plate are scaled by such a factor so that their median is equivalent to the median of values of all reference samples before normalization. As the reference samples, we used the analyzed human samples rather than quality control samples, because this approach is expected to cause a smaller normalization error owing to the large sample count per plate despite the biological variability. To achieve unbiased normalization in this case, the reference samples need to have identical diagnosis group distribution across the plates, which was possible due to stratified sample randomization across the plates. This rule was strictly enforced even in cases where some values were treated as missing by appropriately matching the number of reference samples in each diagnosis group across the plates, reducing them as needed, starting from those with extreme values to maintain the overall median for the group as if estimated from the original number of samples without reducing its accuracy.

# Limits of detection (LODs)

LODs were calculated as mean + 2 standard deviations of signal in blanks. Metabolites with more than 50% values below LOD in both AD and controls were filtered out. Values below LOD were not adjusted, since they represent the best estimate of the true values. However, strictly zero values were adjusted: Based on our experience with the kit, zero values obtained in the flow-injection mode are likely to represent mismeasurements and were regarded as missing values, whereas zero values obtained in the chromatography mode represent minimal values and were

interpolated as half of the minimal non-zero value for the given metabolite to avoid strict zeros, since strict zeros are biologically unlikely. The rationale behind the special treatment of flowinjection values is that in certain cases of low-abundant metabolites the flow-injection signal is so weak and noisy that it temporarily submerges under the baseline and the signal integration software discards the whole transition, resulting in 0. The evidence comes from the behavior of quality control samples where there can be a jump to 0, even though the other values are above the level of detection and quantified in other samples even for lower concentrations. Therefore, the flow-injection 0 values can be a result of misintegration and are treated as missing rather than 0. This affected 0.57% flow-injection values in the cortex cohort (0.57% controls, equally 0.57% AD) and 2.6% flow-injection values in the plasma cohort (3.9% controls, 1.6% AD). The non-randomness in the missingness between the groups in the latter case suggests that some of the values are results of truly low-abundant signal. However, we followed a conservative approach and preferred to possibly decrease the statistical power by considering these values missing/unknown (pulling groups together if the assumption is wrong) than to risk creating false group differences by setting them to minimal values (pushing groups apart if the assumption is wrong).

## Calculated analytes

Metabolic indicators were calculated according to Biocrates Metabo*INDICATOR*<sup>™</sup> formulas [1]. Ratios with zeros were treated as missing values.

#### Data transformation

In *R* environment [2], we applied Box-Cox transformation with *R* package *car* [3] to better approximate Gaussian distributions. Outliers were detected and adjusted with conventional Tukey's fencing (k=1.5) [4] to protect against skewing the means by extreme values while not reducing the variance greatly compared to outlier removal. Finally, the values were standardized with respect to control samples to facilitate comparison of regression coefficients in the statistical analysis.

### Missing values

The statistical analysis requires all regressors to be non-missing. Therefore, several missing sociodemographic values were imputed: In the plasma dataset, missing body mass index (BMI)

values of 9 participants were interpolated through manual review of BMI data from their other visits (linear interpolation if possible or next available value in case of the first visit), and missing indicator of thyroid disorder of 1 participant was imputed as disorder negative. In the cortex dataset, missing BMI values of 4 participants and length of education of 6 participants were imputed as a mean value conditional on the diagnosis group and sex. The values of analytes (metabolites and metabolic indicators) are modelled as dependent variables and samples with missing values (not to be confused with values below LOD) are not imputed as they do not contribute to the model.

## Statistical methods

## **Differential analysis**

For the primary study objective, exploring which analytes are differentially present in AD, both tissue cohorts were modeled separately as a multivariable multiple regression, where the dependent values are individual analytes and the independent values are AD diagnosis, demographics and other clinical data potentially reflected in the metabolism (see section Covariates below). The regression was realized as a series of bootstrapped de-sparsified lasso linear regression models with *R* package *hdi* (high-dimensional inference) [5] with 1 model per each analyte and cohort: Lasso regularization, with the underlying lasso coefficient internally identified by 10-fold cross-validation, was chosen to prevent overfitting in presence of a relatively large number of regressors with respect to the number of samples (especially in the cortex dataset). De-sparsification is needed to identify reliable confidence intervals and p-values which would otherwise be biased in lasso settings due to regularization, and no special regressor selection is necessary. Bootstrapping (N = 1000) was also used, as it has been shown to successfully recover reliable estimator distributions even in the presence of non-Gaussian-distributed residuals [6]. Values of dependent variables were standardized, so the unit of the regression coefficients is 1 standard deviation on the distribution of values (of the respective analyte) of control samples.

## Heteroscedasticity control

Robust estimation of variance ("sandwich" method) and robust bootstrapping ("wild" method) are recommended to prevent bias and inconsistency in the presence of heteroscedasticity [6]. This approach was applied when the Breusch-Pagan test [7] (*R* package *lmtest* [8]) for

heteroscedasticity achieves evidence with p-value  $\leq 0.2$ . This less stringent value is used instead of the conventional 0.05 since it is preferred to err on the side of falsely detected heteroscedasticity rather than falsely undetected heteroscedasticity.

#### False discovery rate (FDR) control

For each regressor of interest (primarily AD diagnosis, but we also report on sex-specific changes), its 2-tailed p-values across all models were controlled for FDR via the q-value approach with the R package q-value [9], for which metabolites and metabolic indicators were processed separately. FDR 0.05 was used as the threshold for statistical significance.

# Covariates and collinearity

The complete list of covariates for both cohorts includes: age, sex, education, count of APOE ε4 alleles, BMI, diabetes mellitus, hypertension, thyroid disorder, and depression; for the plasma cohort also: hypercholesterolemia, cardiovascular disorder, smoking (100 life-time cigarettes), vitamin E supplementation, collection site, freezer storage duration, and hours of fasting before blood draw; and for the cortex cohort: hyperlipidemia, argyrophilic grains, cerebral white matter rarefaction, cerebral amyloid angiopathy, coronary artery disease, gastro-esophageal reflux disease, osteoporosis, peripheral neuropathy, urinary incontinence, benign prostatic hypertrophy, hearing impairment, cancer, tremor, renal disease, statins, prazoles, multivitamin, calcium, vitamin D, beta blockers, freezer storage duration, and postmortem interval. All time covariates were logtransformed to model exponential effects (as for decay). All regressors which indicate presence or absence (diagnosis, medication, etc.) were included because they were present in at least 20 cases, less frequent disorders or medications were not analyzed. This condition was relaxed for diabetes mellitus in plasma dataset and renal disorder in cortex dataset for their notoriously large impact on metabolism. Assessment of collinearity among all regressors was based on the magnitude of Pearson's correlation coefficients and adjusted generalized variable inflation factor (GVIF) calculated with R package car [8]. Besides mini-mental state examination score [10] and antidementia medication, which were not included among regressors, there was no significant collinearity (all Pearson's r < 0.6 and adjusted GVIF < 2.5).

## Pathway analysis

We downloaded definitions of human metabolic pathways from KEGG [11] and SMPDB [12] as publicly available on December 7, 2021 and matched them with the measured metabolites. Since certain measurements in the performed assay may represent multiple isoforms undistinguishable by the mass spectra and each isoform can have its own annotations and pathway memberships, we accounted for this by assigning the measured metabolites into all pathways with any of the possible isoforms of the metabolite. Multiple metabolites remained unassigned to any pathway, especially the ones related to microbial activity. Therefore, we created a custom metabolite set with only microbial metabolites (indoles, 5-aminovaleric acid, trimethylamine N-oxide, para-cresol sulfate, and secondary bile acids). Only metabolic pathways with 4 or more assigned metabolites were analyzed. We followed the statistical approach of ChemRICH enrichment analysis [13] which relies on application of one-sided Kolmogorov-Smirnov test over the distribution of p-values of metabolites assigned to the same pathway using the uniform distribution as a reference. The advantage of this approach is that the test is done over p-values, which can be obtained from any comparative model, in our case the main regression model, so the covariates are considered. This is in contrast with currently available pathway tools, which, besides having problems with pairing multiple isoforms to a single measurement, cannot include covariates in the analysis, resulting in less effective analysis and potentially even false positive results. We also performed FDR control via q-values [9].

## **Diagnosis prediction**

As the secondary objective, we searched for possible biomarkers, for which we applied the extreme gradient boosting (XGBoost) machine learning method with R package xgboost [14] using a linear base model and logistic objective, to build a model to predict the diagnosis (AD versus control), evaluated via 10x10-fold nested cross-validation. We used standardized, randomly partitioned data with stratification by the diagnosis group. We adjusted for covariates related to sample collection and handling (freezer storage duration, postmortem intervals, and blood draw fasting times) by regressing out their effects identified in the regression models. This modification is a necessary precaution to avoid bias caused by uneven freezer storage durations between the diagnostic groups in the cortex cohort and at the same time to increase the power by factoring out these confounders. The only hyperparameter used for tuning was the number of algorithm

iterations, which was optimized via the inner 10-fold cross-validation with stratification by the diagnosis group, never seeing the external test fold for evaluation. The performance of predictions on test folds was evaluated with the area under receiver operating characteristic (ROC) curve (AUC) score computed with R package pROC [15] and DeLong's test was used for comparison of differences between two ROC curves. The average performance of cross-validation results of 20 repeats with different randomization of folds is reported and compared with two reference models—a model with basic sociodemographic information (sex, age, education, BMI, APOE  $\varepsilon$ 4) and a model with randomly generated data (with 5 features as in the basic model, also 20x repeated). Additionally, we used feature selection through step-wise reduction of the leastimportant feature in each step and cross-validated its performance in the similar manner as before. The importance in the XGBoost model is represented by the absolute value of regression coefficients. Once the cross-validated performance was calculated, we used all data to train the final model (the best possible model in terms of bias [16]) and applied the stepwise feature reduction. More precisely, we averaged 100 different randomizations of the final model (i.e., each time with different randomizations of cross-validation folds for hyperparameter tuning) for robustness in the reported importance weights and feature selection. Then, we plotted the average feature importance against the average feature rank (order during the feature reduction process) to identify the top 30 features. In our opinion, both of these scores provide meaningful information about the feature performance, so we combined these scores by fitting a logarithmic trend and applying cut-offs perpendicular (using piecewise linear approximation) to the trend line for selecting the top features.

# Demographic comparison, associations, odds ratio, and relative risk

We compared key covariates between AD cases and controls with Welch's t-test (continuous variables) and Fisher's exact test (binomial variables). Further, we explored associations between the AD diagnosis and un-matched covariates in terms of odds ratio with a series of univariable logistic regression models with profile likelihood confidence intervals, FDR-controlled with Benjamini-Hochberg procedure [17]. Estimated risk ratio for a purpose of comparison was computed with a log-binomial regression model with profile likelihood confidence interval, averaged over 100 randomizations of bootstrapping of controls to approximate 10% prevalence of AD among elderly population [18].

# REFERENCES

- [1] Limonciel A, Ustaszewski B, Dearth S, Adam G, Buratti M, Koal T (2020)
  MetaboINDICATOR<sup>TM</sup>: Translate metabolomics & lipidomics into knowledge.
  *MetaboNews* 10, 3-5. http://www.metabonews.ca/Feb2020/MetaboNews\_Feb2020.pdf
- [2] Ripley BD (2001) The R project in statistical computing. *MSOR Xonnect* 1, 23–25.
- [3] Fox J, Weisberg S (2018) An R Companion to Applied Regression 3rd ed, SAGE Publications, Thousand Oaks, CA.
- [4] Tukey JW (1977) Exploratory Data Analysis, Addison-Wesley, Reading, MA.
- [5] Dezeure R, Bühlmann P, Meier L, Meinshausen N (2015) High-dimensional inference: confidence intervals, p-values and R-software hdi. *Stat Sci* **30**, 533-558.
- [6] Dezeure R, Bühlmann P, Zhang C-H (2017) High-dimensional simultaneous inference with the bootstrap. *Test (Madr)* **26**, 685-719.
- [7] Breusch TS, Pagan AR (1979) A simple test for heteroscedasticity and random coefficient variation. *Econometrica* **47**, 1287.
- [8] Zeileis A, Hothorn T (2002) Diagnostic checking in regression relationships. *R News* 2, 7–10.
- [9] Storey JD, Bass AJ, Dabney A, Robinson D (2019) Qvalue: Q-value estimation for false discovery rate control [R package qvalue version 2.18.0]. *GitHub*, http://github.com/jdstorey/qvalue, Last updated Jan 10, 2019, Accessed on October 5, 2021.
- [10] Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12, 189–198.
- [11] Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Res* 45, D353–D361.
- Jewison T, Su Y, Disfany FM, Liang Y, Knox C, Maciejewski A, Poelzer J, Huynh J,
  Zhou Y, Arndt D, Djoumbou Y, Liu Y, Deng L, Guo AC, Han B, Pon A, Wilson M,
  Rafatnia S, Liu P, Wishart DS (2014) SMPDB 2.0: big improvements to the Small
  Molecule Pathway Database. *Nucleic Acids Res* 42, D478-D484.
- [13] Barupal DK, Fiehn O (2017) Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. *Sci Rep* **7**, 14567.

- [14] Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, Mitchell R, Cano I,
  Zhou T, Li M, Xie J, Lin M, Geng Y, Li Y (2021) Xgboost: Extreme Gradient Boosting
  [R package version 1.4.1.1]. *The Comprehensive R Archive Network*, https://CRAN.R project.org/package=xgboost, Last updated 2021-04-22, Accessed on October 5, 2021.
- [15] Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M (2011)
  pROC: an open-source package for R and S+ to analyze and compare ROC curves. *BMC Bioinformatics* 12, 77.
- [16] Abu-Mostafa YS, Magdon-Ismail M (2012) *Learning from Data*. AMLBook.
- [17] Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. *J R Stat Soc* **57**, 289-300.
- [18] Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, Burke JR, Hurd MD, Potter GG, Rodgers WL, Steffens DC, Willis RJ, Wallace RB (2007) Prevalence of dementia in the United States: the aging, demographics, and memory study. *Neuroepidemiology* 29, 125–132.

|                     |                     | Plasma          |                         |                     | Frontal cortex  |                         |
|---------------------|---------------------|-----------------|-------------------------|---------------------|-----------------|-------------------------|
| Metabolite          | Effect <sup>a</sup> | CI95            | <b>FDR</b> <sup>b</sup> | Effect <sup>a</sup> | CI95            | <b>FDR</b> <sup>b</sup> |
| Acylcarnitines      |                     |                 |                         |                     |                 |                         |
| C2                  | -5%                 | (-38% - 27%)    | 0.20                    | 61%                 | (17% – 107%)    | 0.031                   |
| C3                  | 35%                 | (2% - 65%)      | 0.017                   | 85%                 | (36% – 109%)    | 0.007                   |
| C3-DC (C4-OH)       | NA <sup>c</sup>     | NA <sup>c</sup> | NA <sup>c</sup>         | 82%                 | (36% – 128%)    | 0.007                   |
| C4                  | 7%                  | (-28% – 40%)    | 0.19                    | 67%                 | (26% – 112%)    | 0.027                   |
| <u>C5</u>           | -21%                | (-60% – 18%)    | 0.08                    | 75%                 | (33% – 123%)    | 0.015                   |
| C5-DC (C6-OH)       | NA <sup>c</sup>     | NA <sup>c</sup> | NA <sup>c</sup>         | 47%                 | (4% - 88%)      | 0.049                   |
| <u>C8</u>           | 53%                 | (12%-95%)       | 0.008                   | NA <sup>c</sup>     | NA <sup>c</sup> | NA <sup>c</sup>         |
| C10                 | 44%                 | (-1% - 89%)     | 0.023                   | NA <sup>c</sup>     | NA <sup>c</sup> | NA <sup>c</sup>         |
| C12                 | NA <sup>c</sup>     | NA <sup>c</sup> | NA <sup>c</sup>         | 68%                 | (33% – 106%)    | 0.007                   |
| C12:1               | 19%                 | (-17% – 52%)    | 0.09                    | 50%                 | (9%-91%)        | 0.046                   |
| <u>C14</u>          | NA <sup>c</sup>     | NA <sup>c</sup> | NA <sup>c</sup>         | 58%                 | (21% – 98%)     | 0.015                   |
| C14:1               | 18%                 | (-15% – 50%)    | 0.08                    | 61%                 | (23% – 100%)    | 0.015                   |
| С14:1-ОН            | NA <sup>c</sup>     | NA <sup>c</sup> | NA <sup>c</sup>         | 72%                 | (27% – 114%)    | 0.015                   |
| <u>C16</u>          | 28%                 | (-9% - 67%)     | 0.05                    | 55%                 | (5% – 104%)     | 0.048                   |
| C16:1               | -27%                | (-68% – 13%)    | 0.06                    | 53%                 | (10% – 97%)     | 0.034                   |
| С16:1-ОН            | NA <sup>c</sup>     | NA <sup>c</sup> | NA <sup>c</sup>         | 61%                 | (13% – 106%)    | 0.039                   |
| C16:2               | NA <sup>c</sup>     | NA <sup>c</sup> | NA <sup>c</sup>         | 65%                 | (15% – 116%)    | 0.015                   |
| C18                 | 37%                 | (-2% – 76%)     | 0.023                   | 50%                 | (2%-97%)        | 0.07                    |
| Sphingomyelins      |                     |                 |                         |                     |                 |                         |
| SM C16:0            | 22%                 | (-9% – 52%)     | 0.05                    | 61%                 | (18% – 105%)    | 0.027                   |
| SM C16:1            | 16%                 | (-11% - 46%)    | 0.07                    | 63%                 | (23% – 104%)    | 0.015                   |
| SM C24:1            | 8%                  | (-23% - 39%)    | 0.17                    | 43%                 | (7% – 77%)      | 0.049                   |
| SM C26:1            | 24%                 | (-6% – 56%)     | 0.047                   | 38%                 | (5%-71%)        | 0.042                   |
| SM (OH) C14:1       | 6%                  | (-24% – 37%)    | 0.17                    | 55%                 | (12% – 100%)    | 0.031                   |
| SM (OH) C22:1       | 16%                 | (-10% – 46%)    | 0.07                    | 46%                 | (8%-79%)        | 0.042                   |
| SM (OH) C22:2       | 4%                  | (-22% – 32%)    | 0.17                    | 46%                 | (11% – 84%)     | 0.048                   |
| Ceramides           |                     |                 |                         |                     |                 |                         |
| Cer(d16:1/18:0)     | 30%                 | (-4%-62%)       | 0.034                   | 19%                 | (-26% - 60%)    | 0.34                    |
| Cer(d16:1/20:0)     | 35%                 | (4% - 68%)      | 0.014                   | -9%                 | (-51% - 29%)    | 0.44                    |
| Cer(d16:1/22:0)     | 26%                 | (-8%-61%)       | 0.047                   | 36%                 | (-16% - 87%)    | 0.18                    |
| Cer(d16:1/23:0)     | 25%                 | (-8% – 57%)     | 0.048                   | -4%                 | (-48% – 42%)    | 0.53                    |
| Cer(d18:1/14:0)     | 30%                 | (-3%-69%)       | 0.028                   | 63%                 | (19% – 102%)    | 0.007                   |
| Cer(d18:1/16:0)     | 38%                 | (5%-75%)        | 0.012                   | 95%                 | (40% – 151%)    | 0.007                   |
| Cer(d18:1/18:0)     | 63%                 | (23% – 102%)    | 0.003                   | 44%                 | (4% - 82%)      | 0.06                    |
| Cer(d18:1/18:1)     | 31%                 | (-6% - 69%)     | 0.037                   | 23%                 | (-14% – 60%)    | 0.20                    |
| Cer(d18:1/20:0(OH)) | 50%                 | (18% - 85%)     | 0.003                   | 36%                 | (2%-71%)        | 0.07                    |
| Cer(d18:1/20:0)     | 76%                 | (42% – 112%)    | 0.001                   | 22%                 | (-20% – 61%)    | 0.23                    |
| Cer(d18:1/22:0)     | 61%                 | (23% – 97%)     | 0.001                   | 37%                 | (3%-74%)        | 0.06                    |
| Cer(d18:1/23:0)     | 63%                 | (29% – 99%)     | 0.003                   | 34%                 | (0%-67%)        | 0.07                    |
| Cer(d18:1/24:0)     | 49%                 | (15% – 81%)     | 0.004                   | 35%                 | (2%-68%)        | 0.07                    |
| Cer(d18:1/24:1)     | 59%                 | (21%-94%)       | 0.003                   | 36%                 | (1%-72%)        | 0.07                    |
| Cer(d18:1/25:0)     | 53%                 | (14% - 91%)     | 0.004                   | 29%                 | (-7% - 63%)     | 0.13                    |
| Cer(d18:1/26:0)     | 43%                 | (5%-80%)        | 0.014                   | 26%                 | (-9% – 61%)     | 0.16                    |
| Cer(d18:1/26:1)     | 73%                 | (29% – 115%)    | 0.001                   | 36%                 | (3% - 73%)      | 0.06                    |

**Supplementary Table 1.** Regression Coefficients of Individual Lipid Species Altered in AD Plasma or Frontal Cortex

|                           | Plasma              |                  |                         | Frontal cortex      |                  |                         |  |
|---------------------------|---------------------|------------------|-------------------------|---------------------|------------------|-------------------------|--|
| Metabolite                | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> |  |
| Cer(d18:2/16:0)           | 45%                 | (6% - 83%)       | 0.009                   | 18%                 | (-28% - 65%)     | 0.36                    |  |
| Cer(d18:2/18:0)           | 68%                 | (31%-103%)       | 0.001                   | 11%                 | (-31% - 57%)     | 0.42                    |  |
| Cer(d18:2/20:0)           | 47%                 | (10% - 82%)      | 0.009                   | -4%                 | (-48% - 43%)     | 0.53                    |  |
| Cer(d18:2/22:0)           | 31%                 | (-4% - 66%)      | 0.028                   | 18%                 | (-19% - 53%)     | 0.27                    |  |
| Cer(d18:2/23:0)           | 27%                 | (-6% - 61%)      | 0.035                   | 36%                 | (1% - 72%)       | 0.07                    |  |
| Cer(d18:2/24:0)           | 32%                 | (-6% - 70%)      | 0.034                   | 38%                 | (6% – 74%)       | 0.049                   |  |
| Cer(d18:2/24:1)           | 37%                 | (4%-69%)         | 0.014                   | 40%                 | (3%-75%)         | 0.06                    |  |
| Cer(d18:0/24:0)           | 66%                 | (32% - 100%)     | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| Cer(d18:0/24:1)           | 76%                 | (40% - 114%)     | 0.001                   | 33%                 | (-7% – 72%)      | 0.13                    |  |
| Glycosylceramides         |                     |                  |                         |                     |                  |                         |  |
| HexosylCer(d18:1/23:0)    | 12%                 | (-18% - 43%)     | 0.11                    | 39%                 | (5%-74%)         | 0.049                   |  |
| HexosylCer(d18:1/26:1)    | 51%                 | (18% - 87%)      | 0.004                   | 37%                 | (3%-72%)         | 0.07                    |  |
| HexosylCer(d18:2/20:0)    | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         | 44%                 | (9% - 82%)       | 0.039                   |  |
| HexosylCer(d18:2/22:0)    | 17%                 | (-18% - 52%)     | 0.10                    | 47%                 | (14% - 80%)      | 0.027                   |  |
| HexosylCer(d18:2/23:0)    | 25%                 | (-7% - 57%)      | 0.039                   | 43%                 | (7% - 76%)       | 0.031                   |  |
| HexosylCer(d18:2/24:0)    | 9%                  | (-22% - 38%)     | 0.14                    | 45%                 | (12% - 77%)      | 0.007                   |  |
| DihexosylCer(d18:1/16:0)  | 10%                 | (-24% - 44%)     | 0.16                    | 45%                 | (5% - 81%)       | 0.046                   |  |
| DihexosylCer(d18:1/18:0)  | 36%                 | (3%-68%)         | 0.013                   | 37%                 | (0% - 70%)       | 0.07                    |  |
| DihexosylCer(d18:1/20:0)  | 53%                 | (15% – 90%)      | 0.001                   | 37%                 | (4% – 72%)       | 0.048                   |  |
| DihexosylCer(d18:1/22:0)  | 44%                 | (20% – 73%)      | 0.003                   | 39%                 | (1% - 78%)       | 0.07                    |  |
| DihexosylCer(d18:1/24:0)  | 41%                 | (13%-67%)        | 0.003                   | 53%                 | (19% - 87%)      | 0.022                   |  |
| DihexosylCer(d18:1/24:1)  | 15%                 | (-17% - 47%)     | 0.11                    | 47%                 | (14% - 82%)      | 0.015                   |  |
| TrihexosylCer(d18:1/16:0) | 23%                 | (-5% - 56%)      | 0.037                   | 65%                 | (21% - 107%)     | 0.007                   |  |
| TrihexosylCer(d18:1/18:0) | 19%                 | (-14% - 49%)     | 0.08                    | 84%                 | (31% - 140%)     | 0.022                   |  |
| Phosphatidylcholines      |                     |                  |                         |                     | <i>,</i>         |                         |  |
| PC aa C24:0               | 29%                 | (-1%-61%)        | 0.024                   | -12%                | (-50% – 31%)     | 0.39                    |  |
| PC aa C26:0               | 36%                 | (3% - 68%)       | 0.017                   | -37%                | (-81% - 10%)     | 0.13                    |  |
| PC aa C28:1               | 15%                 | (-14% - 43%)     | 0.09                    | 54%                 | (12% - 95%)      | 0.034                   |  |
| PC aa C30:0               | 27%                 | (-6% - 61%)      | 0.044                   | -18%                | (-60% - 25%)     | 0.32                    |  |
| PC aa C32:0               | 40%                 | (5% - 74%)       | 0.009                   | -23%                | (-66% – 21%)     | 0.26                    |  |
| PC aa C32:1               | 31%                 | (-2% - 62%)      | 0.023                   | 17%                 | (-23% - 55%)     | 0.34                    |  |
| PC aa C32:2               | 37%                 | (2%-69%)         | 0.014                   | -2%                 | (-43% – 37%)     | 0.53                    |  |
| PC aa C32:3               | 36%                 | (10% – 70%)      | 0.007                   | 9%                  | (-31% – 51%)     | 0.44                    |  |
| PC aa C34:1               | 36%                 | (4%-65%)         | 0.011                   | 11%                 | (-47% – 70%)     | 0.48                    |  |
| PC aa C34:2               | 61%                 | (27% – 97%)      | 0.001                   | 14%                 | (-30% – 58%)     | 0.38                    |  |
| PC aa C34:3               | 53%                 | (23% - 86%)      | 0.001                   | -3%                 | (-42% – 34%)     | 0.49                    |  |
| PC aa C34:4               | 46%                 | (18% – 79%)      | 0.001                   | 5%                  | (-39% – 46%)     | 0.48                    |  |
| PC aa C36:1               | 36%                 | (6%-65%)         | 0.011                   | 13%                 | (-27% – 51%)     | 0.38                    |  |
| PC aa C36:2               | 54%                 | (27% – 90%)      | 0.001                   | 24%                 | (-16% – 59%)     | 0.19                    |  |
| PC aa C36:3               | 51%                 | (18% – 84%)      | 0.004                   | 7%                  | (-38% – 51%)     | 0.48                    |  |
| PC aa C36:4               | 64%                 | (27% - 99%)      | 0.001                   | -9%                 | (-52% - 34%)     | 0.45                    |  |
| PC aa C38:3               | 28%                 | (-5% - 61%)      | 0.032                   | 22%                 | (-25% - 68%)     | 0.32                    |  |
| PC aa C38:4               | 51%                 | (14% – 83%)      | 0.005                   | -23%                | (-63% – 20%)     | 0.28                    |  |
| PC aa C38:5               | 51%                 | (21% - 85%)      | 0.001                   | -8%                 | (-54% – 40%)     | 0.49                    |  |
| PC aa C40:3               | 9%                  | (-19% - 39%)     | 0.13                    | 45%                 | (7% - 86%)       | 0.048                   |  |
| PC aa C40:4               | 72%                 | (37% – 108%)     | 0.001                   | -29%                | (-75% – 15%)     | 0.23                    |  |
| PC aa C40:5               | 66%                 | (34% – 102%)     | 0.001                   | -5%                 | (-54% - 49%)     | 0.49                    |  |

|                          |                     | Plasma           |                         |                     | Frontal cortex   |                         |
|--------------------------|---------------------|------------------|-------------------------|---------------------|------------------|-------------------------|
| Metabolite               | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> |
| PC aa C42:1              | -8%                 | (-38% – 21%)     | 0.17                    | 48%                 | (14% – 85%)      | 0.027                   |
| PC aa C42:4              | 26%                 | (-5% – 58%)      | 0.032                   | 56%                 | (14%-98%)        | 0.015                   |
| PC aa C42:5              | 29%                 | (-1%-61%)        | 0.024                   | 37%                 | (-8% – 81%)      | 0.13                    |
| PC aa C42:6              | 30%                 | (-3% - 62%)      | 0.026                   | 30%                 | (-13% – 75%)     | 0.18                    |
| PC ae C30:0              | 10%                 | (-20% – 43%)     | 0.13                    | 58%                 | (15% – 101%)     | 0.034                   |
| PC ae C32:1              | 15%                 | (-13% – 44%)     | 0.10                    | 54%                 | (19% – 93%)      | 0.034                   |
| PC ae C32:2              | 10%                 | (-18% - 43%)     | 0.12                    | 48%                 | (11%-85%)        | 0.031                   |
| PC ae C34:0              | 30%                 | (0%-61%)         | 0.022                   | -35%                | (-77% – 12%)     | 0.18                    |
| PC ae C34:2              | 41%                 | (10% – 76%)      | 0.007                   | 46%                 | (5% - 84%)       | 0.06                    |
| PC ae C34:3              | 31%                 | (-1%-66%)        | 0.023                   | 50%                 | (9%-89%)         | 0.042                   |
| PC ae C36:0              | 28%                 | (-2% – 59%)      | 0.032                   | -38%                | (-85% – 8%)      | 0.13                    |
| PC ae C36:2              | 32%                 | (-1%-64%)        | 0.023                   | 38%                 | (0% - 72%)       | 0.07                    |
| PC ae C36:3              | 40%                 | (6% – 73%)       | 0.008                   | 43%                 | (2%-81%)         | 0.06                    |
| PC ae C36:4              | 56%                 | (23% - 89%)      | 0.003                   | 66%                 | (29% – 106%)     | 0.007                   |
| PC ae C36:5              | 36%                 | (4%-66%)         | 0.014                   | 93%                 | (44% – 144%)     | 0.015                   |
| PC ae C38:3              | 24%                 | (-6% – 53%)      | 0.035                   | 40%                 | (1%-80%)         | 0.06                    |
| PC ae C38:4              | 48%                 | (14% – 79%)      | 0.004                   | 41%                 | (-8% – 92%)      | 0.12                    |
| PC ae C38:5              | 44%                 | (8% - 80%)       | 0.004                   | 64%                 | (26% – 101%)     | 0.007                   |
| PC ae C38:6              | 16%                 | (-16% - 47%)     | 0.11                    | 58%                 | (18% – 97%)      | 0.027                   |
| PC ae C40:1              | 31%                 | (-1%-63%)        | 0.022                   | -21%                | (-50% – 14%)     | 0.21                    |
| PC ae C40:4              | 34%                 | (1%-65%)         | 0.019                   | 45%                 | (5%-85%)         | 0.049                   |
| PC ae C40:5              | 26%                 | (-7% - 57%)      | 0.043                   | 45%                 | (2%-84%)         | 0.07                    |
| PC ae C42:1              | 33%                 | (2%-64%)         | 0.017                   | -11%                | (-48% – 25%)     | 0.42                    |
| PC ae C42:5              | 10%                 | (-21% – 39%)     | 0.13                    | 46%                 | (7% - 84%)       | 0.042                   |
| Lysophosphatidylcholines |                     |                  |                         |                     |                  |                         |
| LysoPC a C14:0           | 30%                 | (-4% – 63%)      | 0.029                   | -28%                | (-65% - 6%)      | 0.13                    |
| LysoPC a C16:0           | 56%                 | (23% – 91%)      | 0.001                   | -28%                | (-69% – 8%)      | 0.15                    |
| LysoPC a C16:1           | 51%                 | (12% – 89%)      | 0.006                   | -43%                | (-85%3%)         | 0.06                    |
| LysoPC a C18:0           | 49%                 | (14% - 81%)      | 0.006                   | -26%                | (-65% – 12%)     | 0.19                    |
| LysoPC a C18:1           | 56%                 | (23% – 87%)      | 0.001                   | -39%                | (-88% – 9%)      | 0.15                    |
| LysoPC a C18:2           | 76%                 | (42% – 105%)     | 0.001                   | -14%                | (-51% – 29%)     | 0.38                    |
| LysoPC a C20:3           | 58%                 | (26% – 91%)      | 0.001                   | -18%                | (-56% – 23%)     | 0.29                    |
| LysoPC a C20:4           | 70%                 | (32% – 104%)     | 0.001                   | -37%                | (-73%1%)         | 0.07                    |
| LysoPC a C26:1           | 32%                 | (-1%-62%)        | 0.023                   | 43%                 | (1%-85%)         | 0.07                    |
| LysoPC a C28:0           | 29%                 | (-1%-63%)        | 0.024                   | 44%                 | (-1% – 92%)      | 0.08                    |
| LysoPC a C28:1           | 21%                 | (-4% – 49%)      | 0.042                   | 39%                 | (-3% - 81%)      | 0.10                    |
| Cholesteryl esters       |                     |                  |                         |                     |                  |                         |
| CE(16:1)                 | 29%                 | (-5%-65%)        | 0.031                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |
| <u>CE(17:1)</u>          | 24%                 | (-8% – 55%)      | 0.048                   | -19%                | (-64% – 27%)     | 0.33                    |
| CE(18:2)                 | 27%                 | (-3%-61%)        | 0.029                   | -30%                | (-73% – 14%)     | 0.18                    |
| <u>CE(18:3)</u>          | 32%                 | (5%-62%)         | 0.010                   | 2%                  | (-34% – 39%)     | 0.53                    |
| CE(20:1)                 | 29%                 | (-2% - 61%)      | 0.026                   | 3%                  | (-39% - 44%)     | 0.53                    |
| CE(20:4)                 | 34%                 | (2%-69%)         | 0.019                   | 15%                 | (-20% – 48%)     | 0.30                    |
| CE(22:0)                 | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         | 67%                 | (17% – 119%)     | 0.027                   |
| CE(22:2)                 | 39%                 | (9%-69%)         | 0.004                   | -40%                | (-90% – 10%)     | 0.12                    |
| CE(22:5)                 | 53%                 | (23% - 87%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |

Diglycerides

|                      |                     | Plasma           |                         |                     | <b>Frontal cortex</b> |                         |
|----------------------|---------------------|------------------|-------------------------|---------------------|-----------------------|-------------------------|
| Metabolite           | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> | Effect <sup>a</sup> | CI <sub>95</sub>      | <b>FDR</b> <sup>b</sup> |
| DG(14:0_18:1)        | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         | 56%                 | (18% - 93%)           | 0.015                   |
| DG(16:0_18:1)        | 47%                 | (12% - 82%)      | 0.006                   | 65%                 | (29% – 103%)          | 0.007                   |
| DG(16:0_18:2)        | 55%                 | (23% – 90%)      | 0.003                   | 84%                 | (45% – 125%)          | 0.007                   |
| DG(16:0_20:3)        | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         | 57%                 | (24% – 91%)           | 0.007                   |
| DG(16:1 18:1)        | 43%                 | (3% - 80%)       | 0.014                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| DG(17:0 18:1)        | 32%                 | (-4% - 69%)      | 0.032                   | 44%                 | (8%-86%)              | 0.06                    |
| DG(18:0_20:4)        | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         | 66%                 | (26% – 100%)          | 0.007                   |
| DG(18:1 18:1)        | 40%                 | (7%-73%)         | 0.012                   | 55%                 | (12% – 91%)           | 0.034                   |
| DG(18:1_18:2)        | 42%                 | (8% - 74%)       | 0.009                   | 31%                 | (-12% – 75%)          | 0.18                    |
| DG(18:2_18:2)        | 39%                 | (8%-72%)         | 0.007                   | 24%                 | (-15% – 72%)          | 0.18                    |
| DG(18:2_18:3)        | 33%                 | (-1% – 71%)      | 0.023                   | 20%                 | (-24% – 61%)          | 0.30                    |
| DG(18:2_20:4)        | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         | 52%                 | (12% – 92%)           | 0.039                   |
| Triglycerides        |                     |                  |                         |                     |                       |                         |
| TG(14:0_32:2)        | 31%                 | (-1% - 62%)      | 0.024                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| TG(14:0 34:0)        | 33%                 | (1%-65%)         | 0.021                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| TG(14:0_34:1)        | 39%                 | (4% - 70%)       | 0.013                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| TG(14:0_34:2)        | 42%                 | (10% – 74%)      | 0.006                   | 44%                 | (-1% – 92%)           | 0.08                    |
| TG(14:0_34:3)        | 46%                 | (14% – 82%)      | 0.004                   | -37%                | (-83% - 8%)           | 0.11                    |
| TG(14:0_35:1)        | 39%                 | (8% - 69%)       | 0.007                   | 16%                 | (-27% – 57%)          | 0.33                    |
| TG(14:0_35:2)        | 38%                 | (6% - 70%)       | 0.007                   | 25%                 | (-18% – 70%)          | 0.25                    |
| _TG(14:0_36:1)       | 37%                 | (7% - 69%)       | 0.008                   | 6%                  | (-31% – 46%)          | 0.48                    |
| TG(14:0_36:2)        | 40%                 | (11%-69%)        | 0.004                   | 28%                 | (-15% – 68%)          | 0.18                    |
| _TG(14:0_36:3)       | 48%                 | (16% – 80%)      | 0.005                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| _TG(14:0_36:4)       | 48%                 | (14% - 80%)      | 0.004                   | 59%                 | (15% – 101%)          | 0.031                   |
| _TG(14:0_38:4)       | 50%                 | (19% – 83%)      | 0.004                   | 11%                 | (-30% – 54%)          | 0.41                    |
| TG(14:0_38:5)        | 55%                 | (21%-91%)        | 0.001                   | -26%                | (-75% – 26%)          | 0.26                    |
| TG(16:0_28:1)        | 32%                 | (-1%-65%)        | 0.023                   | -18%                | (-64% – 24%)          | 0.33                    |
| TG(16:0_28:2)        | 30%                 | (-2%-63%)        | 0.028                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| TG(16:0_30:2)        | 40%                 | (7% – 70%)       | 0.008                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| TG(16:0_32:0)        | 42%                 | (8% - 78%)       | 0.009                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| TG(16:0_32:1)        | 39%                 | (6% – 73%)       | 0.012                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| TG(16:0_32:2)        | 44%                 | (11% – 75%)      | 0.005                   | 9%                  | (-45% – 57%)          | 0.47                    |
| TG(16:0_32:3)        | 45%                 | (11% – 78%)      | 0.009                   | 29%                 | (-13% - 69%)          | 0.18                    |
| TG(16:0_33:1)        | 37%                 | (4% - 69%)       | 0.012                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| TG(16:0_33:2)        | 45%                 | (12% – 77%)      | 0.007                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| <u>TG(16:0_34:0)</u> | 45%                 | (15% - 81%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| TG(16:0_34:1)        | 47%                 | (16% – 82%)      | 0.005                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| <u>TG(16:0_34:2)</u> | 56%                 | (23% – 91%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| <u>TG(16:0_34:3)</u> | 58%                 | (24%-93%)        | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| TG(16:0_34:4)        | 51%                 | (15% – 86%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| <u>TG(16:0_35:1)</u> | 48%                 | (17% - 81%)      | 0.003                   | 19%                 | (-33% – 74%)          | 0.34                    |
| <u>TG(16:0_35:2)</u> | 46%                 | (14% – 79%)      | 0.005                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| _TG(16:0_35:3)       | 53%                 | (24% - 87%)      | 0.001                   | -12%                | (-52% - 31%)          | 0.38                    |
| TG(16:0_36:2)        | 45%                 | (13% - 77%)      | 0.005                   | NA <sup>c</sup>     | NA <sup>c</sup>       | NA <sup>c</sup>         |
| TG(16:0_36:3)        | 49%                 | (21% - 80%)      | 0.001                   | -3%                 | (-45% - 38%)          | 0.52                    |
| TG(16:0_36:4)        | 54%                 | (24% - 84%)      | 0.004                   | -18%                | (-59% - 27%)          | 0.34                    |
| TG(16:0_36:5)        | 61%                 | (32% – 97%)      | 0.001                   | -17%                | (-54% - 21%)          | 0.31                    |

|                      | Plasma              |                  |                         | Frontal cortex      |                  |                         |  |
|----------------------|---------------------|------------------|-------------------------|---------------------|------------------|-------------------------|--|
| Metabolite           | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> |  |
| TG(16:0 36:6)        | 53%                 | (21% – 84%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:0 37:3)        | 40%                 | (7% – 72%)       | 0.009                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:0 38:1)        | 45%                 | (11% - 82%)      | 0.005                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:0 38:2)        | 47%                 | (13% - 81%)      | 0.005                   | 29%                 | (-17% - 83%)     | 0.23                    |  |
| TG(16:0 38:3)        | 52%                 | (21% - 83%)      | 0.003                   | -5%                 | (-40% - 30%)     | 0.48                    |  |
| TG(16:0 38:4)        | 58%                 | (30% – 90%)      | 0.001                   | 23%                 | (-22% - 68%)     | 0.24                    |  |
| TG(16:0 38:5)        | 58%                 | (24% – 96%)      | 0.001                   | 0%                  | (-37% - 38%)     | 0.55                    |  |
| TG(16:0 38:6)        | 54%                 | (18% - 92%)      | 0.004                   | 31%                 | (-7% - 69%)      | 0.13                    |  |
| TG(16:0 38:7)        | 43%                 | (6% - 82%)       | 0.010                   | 40%                 | (-8% - 89%)      | 0.14                    |  |
| TG(16:0 40:6)        | 55%                 | (21% – 90%)      | 0.001                   | 14%                 | (-23% – 51%)     | 0.38                    |  |
| TG(16:0 40:7)        | 38%                 | (1%-74%)         | 0.017                   | -6%                 | (-53% - 44%)     | 0.50                    |  |
| TG(16:1 28:0)        | 33%                 | (-1%-64%)        | 0.023                   | 24%                 | (-23% - 72%)     | 0.29                    |  |
| TG(16:1 30:1)        | 41%                 | (5% – 74%)       | 0.009                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:1 32:0)        | 41%                 | (6% – 76%)       | 0.014                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:1 32:1)        | 37%                 | (1% - 71%)       | 0.019                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:1 32:2)        | 44%                 | (10% – 79%)      | 0.006                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:1 33:1)        | 44%                 | (10% - 81%)      | 0.007                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:1 34:0)        | 44%                 | (8% - 78%)       | 0.005                   | 4%                  | (-33% - 40%)     | 0.49                    |  |
| TG(16:1 34:1)        | 46%                 | (11% - 83%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:1 34:2)        | 54%                 | (22% – 91%)      | 0.003                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:1 34:3)        | 56%                 | (21% – 90%)      | 0.003                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:1 36:1)        | 44%                 | (9% - 78%)       | 0.007                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:1 36:2)        | 36%                 | (5%-72%)         | 0.012                   | -14%                | (-58% - 30%)     | 0.38                    |  |
| TG(16:1_36:3)        | 42%                 | (15% - 76%)      | 0.001                   | 44%                 | (1%-89%)         | 0.07                    |  |
| _TG(16:1_36:4)       | 46%                 | (13% – 80%)      | 0.005                   | 26%                 | (-16% – 66%)     | 0.21                    |  |
| _TG(16:1_36:5)       | 56%                 | (22% – 91%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| _TG(16:1_38:3)       | 54%                 | (21% – 88%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| _TG(16:1_38:4)       | 56%                 | (24% – 88%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(16:1_38:5)        | 63%                 | (30% – 102%)     | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(17:0_32:1)        | 41%                 | (8%-76%)         | 0.007                   | 39%                 | (-12% – 92%)     | 0.12                    |  |
| TG(17:0_34:1)        | 42%                 | (8%-73%)         | 0.006                   | 54%                 | (1%-112%)        | 0.07                    |  |
| TG(17:0_34:2)        | 52%                 | (15% – 84%)      | 0.003                   | 48%                 | (-10% – 98%)     | 0.14                    |  |
| TG(17:0_34:3)        | 54%                 | (22% - 88%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(17:0_36:3)        | 48%                 | (20% – 79%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(17:0_36:4)        | 46%                 | (15% – 76%)      | 0.004                   | 4%                  | (-50% - 58%)     | 0.52                    |  |
| <u>TG(17:1_32:1)</u> | 41%                 | (6% – 73%)       | 0.009                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(17:1_34:1)        | 42%                 | (10% – 75%)      | 0.007                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| <u>TG(17:1_34:2)</u> | 55%                 | (33% – 87%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| <u>TG(17:1_34:3)</u> | 51%                 | (17% – 83%)      | 0.003                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(17:1_36:3)        | 48%                 | (21%-79%)        | 0.001                   | 29%                 | (-12% – 71%)     | 0.17                    |  |
| TG(17:1_36:4)        | 56%                 | (27% – 87%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(17:1_36:5)        | 53%                 | (20% - 87%)      | 0.001                   | 52%                 | (-1% - 99%)      | 0.08                    |  |
| TG(17:1_38:5)        | 57%                 | (23% - 89%)      | 0.001                   | 40%                 | (-15% – 91%)     | 0.15                    |  |
| TG(17:1_38:6)        | 62%                 | (25%-96%)        | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(17:1_38:7)        | 70%                 | (37% – 105%)     | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(17:2_34:2)        | 56%                 | (22% - 86%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(17:2_34:3)        | 36%                 | (0% - 71%)       | 0.022                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |

|                                                     | Plasma              |                  |                         | Frontal cortex      |                          |                         |  |
|-----------------------------------------------------|---------------------|------------------|-------------------------|---------------------|--------------------------|-------------------------|--|
| Metabolite                                          | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> | Effect <sup>a</sup> | CI <sub>95</sub>         | <b>FDR</b> <sup>b</sup> |  |
| TG(17:2 36:2)                                       | 55%                 | (30% – 91%)      | 0.001                   | -3%                 | (-41% – 38%)             | 0.51                    |  |
| TG(17:2 36:3)                                       | 58%                 | (23% – 95%)      | 0.003                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(17:2 36:4)                                       | 50%                 | (17% - 84%)      | 0.004                   | 6%                  | (-46% – 56%)             | 0.50                    |  |
| TG(17:2 38:5)                                       | 50%                 | (17% - 85%)      | 0.004                   | -12%                | (-55% - 31%)             | 0.41                    |  |
| TG(17:2 38:6)                                       | 63%                 | (25% – 99%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(17:2 38:7)                                       | 60%                 | (23% – 96%)      | 0.001                   | 9%                  | (-33% - 52%)             | 0.44                    |  |
| TG(18:0 30:1)                                       | 29%                 | (-5% - 63%)      | 0.032                   | 50%                 | (6% – 92%)               | 0.05                    |  |
| TG(18:0 32:0)                                       | 43%                 | (6% – 79%)       | 0.012                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(18:0 32:1)                                       | 40%                 | (4% – 73%)       | 0.014                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(18:0 32:2)                                       | 45%                 | (13% - 80%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(18:0 34:2)                                       | 53%                 | (21% - 84%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(18:0 34:3)                                       | 56%                 | (21% - 88%)      | 0.003                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(18:0 36:1)                                       | 35%                 | (1%-65%)         | 0.016                   | 15%                 | (-29% - 56%)             | 0.38                    |  |
| TG(18:0 36:2)                                       | 44%                 | (11% - 78%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(18:0 36:3)                                       | 51%                 | (16% - 83%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(18:0 36:4)                                       | 53%                 | (18% - 86%)      | 0.001                   | 20%                 | (-24% - 65%)             | 0.29                    |  |
| TG(18:0_36:5)                                       | 57%                 | (24% - 90%)      | 0.001                   | 13%                 | (-33% – 59%)             | 0.42                    |  |
| TG(18:0_38:6)                                       | 52%                 | (15% – 87%)      | 0.005                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(18:0_38:7)                                       | 56%                 | (20% – 95%)      | 0.005                   | 36%                 | (-1% – 75%)              | 0.08                    |  |
| TG(18:1_26:0)                                       | 27%                 | (-6% – 60%)      | 0.041                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(18:1_28:1)                                       | 37%                 | (5% - 69%)       | 0.015                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| _TG(18:1_30:0)                                      | 38%                 | (6% – 72%)       | 0.013                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| _TG(18:1_30:1)                                      | 38%                 | (4%-73%)         | 0.012                   | -4%                 | (-51% – 42%)             | 0.52                    |  |
| TG(18:1_30:2)                                       | 43%                 | (8% - 78%)       | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(18:1_31:0)                                       | 36%                 | (6%-67%)         | 0.008                   | 86%                 | (39% – 134%)             | 0.007                   |  |
| TG(18:1_32:0)                                       | 47%                 | (12% – 81%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(18:1_32:1)                                       | 45%                 | (14% – 80%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| TG(18:1_32:2)                                       | 48%                 | (16% – 80%)      | 0.003                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| <u>TG(18:1_32:3)</u>                                | 53%                 | (22% – 83%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| <u>TG(18:1_33:0)</u>                                | 43%                 | (11% – 76%)      | 0.005                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| <u>TG(18:1_33:1)</u>                                | 37%                 | (8% - 68%)       | 0.009                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
|                                                     | 43%                 | (13% – 75%)      | 0.004                   | 28%                 | (-12% – 64%)             | 0.21                    |  |
|                                                     | 42%                 | (9% - 71%)       | 0.007                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
|                                                     | 44%                 | (18% - 77%)      | 0.003                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
|                                                     | 49%                 | (20% - 82%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>          | NA <sup>c</sup>         |  |
| _TG(18:1_34:3)                                      | 49%                 | (15% - 80%)      | 0.004                   | 10%                 | (-37% - 56%)             | 0.45                    |  |
| <u>TG(18:1_34:4)</u>                                | 49%                 | (17% - 81%)      | 0.003                   | 5%                  | (-32% - 42%)             | 0.49                    |  |
| <u>TG(18:1_35:2)</u>                                | 45%                 | (15% - 75%)      | 0.004                   | 36%                 | (-5% - 79%)              | 0.12                    |  |
| <u>TG(18:1_35:3)</u>                                | 46%                 | (14% - 76%)      | 0.003                   | 26%                 | (-16% - 67%)             | 0.20                    |  |
| <u>TG(18:1_36:0)</u>                                | 44%                 | (8%-79%)         | 0.005                   | NA                  | NA                       | NA                      |  |
| $TG(18:1_36:1)$                                     | 43%                 | (10% - 78%)      | 0.005                   | 22%                 | (-11% - 56%)             | 0.19                    |  |
| $\frac{\text{TG}(18:1_36:2)}{\text{TG}(18.1_36:2)}$ | 47%                 | (11% - 81%)      | 0.004                   | NA                  | <u>NA</u> <sup>o</sup>   | NA                      |  |
| $\frac{1G(18:1_{36:3})}{TG(10,1_{26:4})}$           | 52%                 | (21% - 86%)      | 0.001                   | -14%                | $(-5^{1})\% - 33^{1}\%)$ | 0.41                    |  |
| $TG(18:1_36:4)$                                     | 53%                 | (21% - 89%)      | 0.001                   | 33%                 | (-7% - 75%)              | 0.14                    |  |
| $\frac{1G(18:1_36:5)}{12G(18:1_36:5)}$              | 54%                 | (18% - 87%)      | 0.004                   | 26%                 | (-18% - 67%)             | 0.24                    |  |
| $\frac{1G(18:1_{36:6})}{TG(18,1_{28:5})}$           | 50%                 | (18% - 82%)      | 0.003                   |                     | NA <sup>v</sup>          | NA <sup>c</sup>         |  |
| <u>TG(18:1_38:5)</u>                                | 53%                 | (18% – 87%)      | 0.004                   | 31%                 | (-11% – 73%)             | 0.15                    |  |

|                      | Plasma              |                  |                         | Frontal cortex      |                  |                         |  |
|----------------------|---------------------|------------------|-------------------------|---------------------|------------------|-------------------------|--|
| Metabolite           | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> |  |
| TG(18:1 38:6)        | 41%                 | (4% - 78%)       | 0.014                   | 24%                 | (-20% - 64%)     | 0.24                    |  |
| TG(18:1_38:7)        | 45%                 | (6% - 82%)       | 0.007                   | 8%                  | (-38% - 56%)     | 0.46                    |  |
| TG(18:2_28:0)        | 36%                 | (2%-69%)         | 0.014                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(18:2_30:0)        | 42%                 | (6% – 73%)       | 0.009                   | -6%                 | (-52% – 41%)     | 0.49                    |  |
| TG(18:2 30:1)        | 48%                 | (17% - 83%)      | 0.004                   | 23%                 | (-26% – 72%)     | 0.28                    |  |
| TG(18:2 31:0)        | 44%                 | (12% – 78%)      | 0.004                   | 28%                 | (-25% - 82%)     | 0.26                    |  |
| TG(18:2_32:0)        | 54%                 | (26% - 85%)      | 0.001                   | 2%                  | (-39% – 43%)     | 0.54                    |  |
| TG(18:2 32:1)        | 54%                 | (25% - 86%)      | 0.004                   | 19%                 | (-27% - 63%)     | 0.31                    |  |
| TG(18:2 32:2)        | 52%                 | (20% - 83%)      | 0.003                   | -27%                | (-67% – 12%)     | 0.16                    |  |
| TG(18:2_33:0)        | 45%                 | (11% - 76%)      | 0.004                   | 13%                 | (-50% - 71%)     | 0.45                    |  |
| TG(18:2 33:1)        | 41%                 | (8%-70%)         | 0.005                   | 22%                 | (-27% – 76%)     | 0.31                    |  |
| TG(18:2_33:2)        | 39%                 | (10% – 70%)      | 0.007                   | 50%                 | (8%-94%)         | 0.046                   |  |
| TG(18:2_34:0)        | 51%                 | (23% - 83%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(18:2_34:1)        | 46%                 | (17% – 76%)      | 0.001                   | 7%                  | (-31% - 46%)     | 0.46                    |  |
| TG(18:2_34:2)        | 46%                 | (15% – 79%)      | 0.004                   | 0%                  | (-34% – 34%)     | 0.54                    |  |
| TG(18:2_34:3)        | 51%                 | (18% - 83%)      | 0.003                   | 0%                  | (-41% – 43%)     | 0.54                    |  |
| TG(18:2_34:4)        | 52%                 | (20% – 87%)      | 0.003                   | 14%                 | (-33% – 58%)     | 0.42                    |  |
| TG(18:2_35:1)        | 45%                 | (17% – 81%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(18:2_35:2)        | 41%                 | (13% – 72%)      | 0.004                   | 18%                 | (-18% – 52%)     | 0.29                    |  |
| _TG(18:2_35:3)       | 46%                 | (13% – 79%)      | 0.003                   | 31%                 | (-10% - 69%)     | 0.15                    |  |
| _TG(18:2_36:0)       | 57%                 | (26% – 89%)      | 0.001                   | 14%                 | (-32% – 64%)     | 0.42                    |  |
| _TG(18:2_36:1)       | 54%                 | (25% – 88%)      | 0.003                   | 17%                 | (-30% – 69%)     | 0.36                    |  |
| _TG(18:2_36:2)       | 52%                 | (18% – 87%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(18:2_36:3)        | 48%                 | (18% – 82%)      | 0.001                   | 27%                 | (-15% - 66%)     | 0.18                    |  |
| TG(18:2_36:4)        | 47%                 | (17% – 80%)      | 0.003                   | 38%                 | (-4% – 78%)      | 0.11                    |  |
| TG(18:2_36:5)        | 49%                 | (18% - 83%)      | 0.003                   | 8%                  | (-38% - 49%)     | 0.44                    |  |
| TG(18:2_38:4)        | 57%                 | (28% - 88%)      | 0.001                   | -5%                 | (-48% – 40%)     | 0.49                    |  |
| TG(18:2_38:5)        | 66%                 | (31% – 101%)     | 0.001                   | 81%                 | (31% – 129%)     | 0.007                   |  |
| TG(18:2_38:6)        | 42%                 | (5%-76%)         | 0.013                   | 9%                  | (-35% – 55%)     | 0.44                    |  |
| _TG(18:3_30:0)       | 43%                 | (10% - 74%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| _TG(18:3_32:0)       | 55%                 | (24% - 88%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(18:3_32:1)        | 58%                 | (27% – 90%)      | 0.003                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(18:3_33:2)        | 42%                 | (9%-73%)         | 0.010                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| _TG(18:3_34:0)       | 60%                 | (26% - 92%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| _TG(18:3_34:1)       | 61%                 | (27% - 93%)      | 0.001                   | 23%                 | (-20% - 66%)     | 0.25                    |  |
| TG(18:3_34:2)        | 59%                 | (27% - 95%)      | 0.001                   | 15%                 | (-27% – 59%)     | 0.36                    |  |
|                      | 52%                 | (19% – 85%)      | 0.003                   | 13%                 | (-28% - 55%)     | 0.39                    |  |
| TG(18:3_35:2)        | 41%                 | (8%-74%)         | 0.008                   | 31%                 | (-9% - 65%)      | 0.16                    |  |
| _TG(18:3_36:1)       | 60%                 | (30% - 92%)      | 0.001                   | 7%                  | (-36% – 49%)     | 0.48                    |  |
|                      | 53%                 | (21% – 89%)      | 0.001                   | 2%                  | (-36% – 41%)     | 0.54                    |  |
| _TG(18:3_36:3)       | 48%                 | (15% - 84%)      | 0.004                   | -18%                | (-62% - 25%)     | 0.32                    |  |
| <u>TG(18:3_36:4)</u> | 47%                 | (13% - 81%)      | 0.004                   | 45%                 | (-11% - 101%)    | 0.13                    |  |
| <u>TG(18:3_38:5)</u> | 60%                 | (21% – 93%)      | 0.001                   | 35%                 | (-13% - 76%)     | 0.15                    |  |
| <u>TG(18:3_38:6)</u> | 52%                 | (19% - 89%)      | 0.001                   | 14%                 | (-39% - 62%)     | 0.42                    |  |
| <u>TG(20:0_32:3)</u> | 54%                 | (25% - 83%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| <u>TG(20:0_32:4)</u> | 50%                 | (23% - 82%)      | 0.001                   | NA <sup>c</sup>     | NA               | NA                      |  |
| TG(20:0_34:1)        | 44%                 | (10% - 76%)      | 0.007                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |

|                | Plasma              |                  |                         | Frontal cortex      |                  |                         |  |
|----------------|---------------------|------------------|-------------------------|---------------------|------------------|-------------------------|--|
| Metabolite     | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> |  |
| TG(20:1 30:1)  | 42%                 | (9% – 73%)       | 0.004                   | 8%                  | (-38% - 58%)     | 0.44                    |  |
| TG(20:1 31:0)  | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         | 69%                 | (12% – 115%)     | 0.031                   |  |
| TG(20:1 32:1)  | 43%                 | (9% – 79%)       | 0.008                   | 3%                  | (-42% - 47%)     | 0.52                    |  |
| TG(20:1 32:2)  | 50%                 | (16% – 78%)      | 0.001                   | 10%                 | (-41% - 61%)     | 0.46                    |  |
| TG(20:1 32:3)  | 47%                 | (14% – 79%)      | 0.004                   | 15%                 | (-31% - 59%)     | 0.38                    |  |
| TG(20:1 34:0)  | 53%                 | (17% – 84%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:1 34:1)  | 39%                 | (9% - 73%)       | 0.007                   | 12%                 | (-25% - 49%)     | 0.36                    |  |
| TG(20:1 34:2)  | 47%                 | (15% - 76%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:1 34:3)  | 49%                 | (19% - 80%)      | 0.003                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:2 32:0)  | 55%                 | (20% – 91%)      | 0.004                   | 63%                 | (21% – 107%)     | 0.015                   |  |
| TG(20:2 32:1)  | 58%                 | (32% – 94%)      | 0.001                   | 1%                  | (-46% - 49%)     | 0.54                    |  |
| TG(20:2 34:1)  | 52%                 | (22% - 83%)      | 0.003                   | 0%                  | (-52% - 48%)     | 0.54                    |  |
| TG(20:2 34:2)  | 56%                 | (32% - 89%)      | 0.001                   | -49%                | (-95%4%)         | 0.07                    |  |
| TG(20:2 34:3)  | 60%                 | (34% – 94%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:2 34:4)  | 45%                 | (9% - 79%)       | 0.009                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:2 36:5)  | 82%                 | (47% - 118%)     | 0.001                   | -1%                 | (-42% – 41%)     | 0.54                    |  |
| TG(20:3 32:0)  | 53%                 | (21% - 86%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:3 32:1)  | 54%                 | (20% - 88%)      | 0.003                   | 41%                 | (-14% – 93%)     | 0.16                    |  |
| TG(20:3 32:2)  | 55%                 | (19% - 89%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:3 34:0)  | 47%                 | (13% - 82%)      | 0.006                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:3 34:1)  | 52%                 | (17% - 83%)      | 0.003                   | 31%                 | (-13% - 78%)     | 0.17                    |  |
| TG(20:3 34:2)  | 60%                 | (27% – 92%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:3 34:3)  | 52%                 | (21% - 86%)      | 0.004                   | 47%                 | (0%-91%)         | 0.08                    |  |
| TG(20:3 36:3)  | 51%                 | (20% - 83%)      | 0.003                   | -5%                 | (-46% - 35%)     | 0.49                    |  |
| TG(20:3_36:4)  | 59%                 | (25% – 93%)      | 0.001                   | 34%                 | (-12% – 78%)     | 0.16                    |  |
| TG(20:3_36:5)  | 64%                 | (30% – 98%)      | 0.001                   | 40%                 | (-15% - 89%)     | 0.18                    |  |
| TG(20:4_30:0)  | 37%                 | (3%-73%)         | 0.017                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| _TG(20:4_32:0) | 56%                 | (18% – 95%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:4_32:1)  | 54%                 | (17% – 90%)      | 0.004                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:4_32:2)  | 54%                 | (18% - 89%)      | 0.003                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:4_33:2)  | 58%                 | (23% – 94%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:4_34:0)  | 60%                 | (21% – 100%)     | 0.001                   | 27%                 | (-13% - 68%)     | 0.20                    |  |
| TG(20:4_34:1)  | 59%                 | (22% – 95%)      | 0.001                   | 55%                 | (8%-99%)         | 0.048                   |  |
| TG(20:4_34:2)  | 69%                 | (44% – 104%)     | 0.001                   | -16%                | (-63% - 27%)     | 0.36                    |  |
| TG(20:4_34:3)  | 69%                 | (34% – 104%)     | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:4_35:3)  | 67%                 | (36% – 105%)     | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(20:4_36:2)  | 61%                 | (31%-93%)        | 0.001                   | 22%                 | (-15% - 62%)     | 0.23                    |  |
| TG(20:4_36:3)  | 64%                 | (34% – 94%)      | 0.001                   | 18%                 | (-23% - 61%)     | 0.34                    |  |
| TG(20:4_36:4)  | 68%                 | (35% – 103%)     | 0.001                   | 21%                 | (-31% - 72%)     | 0.31                    |  |
| TG(20:4_36:5)  | 55%                 | (17%-91%)        | 0.004                   | -28%                | (-76% – 20%)     | 0.21                    |  |
| TG(22:0_32:4)  | 54%                 | (21% - 85%)      | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(22:1_32:5)  | 36%                 | (3%-72%)         | 0.017                   | 0%                  | (-40% – 42%)     | 0.54                    |  |
| TG(22:2_32:4)  | 48%                 | (13% - 79%)      | 0.005                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(22:4_32:0)  | 59%                 | (23% – 93%)      | 0.003                   | 50%                 | (-2% – 102%)     | 0.09                    |  |
| TG(22:4_32:2)  | 61%                 | (26% – 99%)      | 0.003                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(22:4_34:2)  | 73%                 | (45% – 107%)     | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |  |
| TG(22:5_32:0)  | 53%                 | (15% – 89%)      | 0.004                   | 30%                 | (-12% – 72%)     | 0.18                    |  |

|               |                     | Plasma           |                         |                     | Frontal cortex   |                         |
|---------------|---------------------|------------------|-------------------------|---------------------|------------------|-------------------------|
| Metabolite    | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> |
| TG(22:5_32:1) | 60%                 | (23% – 97%)      | 0.003                   | 26%                 | (-15% - 66%)     | 0.22                    |
| TG(22:5_34:1) | 58%                 | (18%-97%)        | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |
| TG(22:5_34:2) | 67%                 | (30% - 105%)     | 0.001                   | NA <sup>c</sup>     | NA <sup>c</sup>  | NA <sup>c</sup>         |
| TG(22:5 34:3) | 64%                 | (29% – 99%)      | 0.001                   | 25%                 | (-10% – 59%)     | 0.17                    |

aa, diacyl; ae, acyl-alkyl; CE, cholesteryl ester; Cer, ceramide; CI<sub>95</sub>, 95% confidence interval; C*n*, acylcarnitine C*n*:0; DG, diglyceride; FDR, false discovery rate; NA, not available; PC, phosphatidylcholine; SM, sphingomyelin; TG, triglyceride.

<sup>a</sup> AD regression coefficient in units of 1 standard deviation of the distribution of controls.

<sup>b</sup> FDR control with q-values following bootstrapped p-values of multivariable de-sparsified L1regularized linear regression models. FDR  $\leq 0.05$  is rounded to 3 decimal places and highlighted in red (upregulated) and blue (downregulated).

<sup>c</sup> Value not available when the metabolite was not sufficiently detected (in at least 50% of samples in either group above the limit of detection).

|                                |                     | Plasma        |                  |
|--------------------------------|---------------------|---------------|------------------|
| Metabolite                     | Effect <sup>a</sup> | CI95          | FDR <sup>b</sup> |
| Microbiome-related metabolites |                     |               |                  |
| 3-Indoleacetic acid            | 36%                 | (2%-69%)      | 0.039            |
| Glycocholic acid               | 47%                 | (11% – 87%)   | 0.026            |
| Methylhistidine metabolism     |                     | · · ·         |                  |
| β-Alanine                      | 50%                 | (21% – 81%)   | 0.009            |
| Carnosine                      | 62%                 | (23% - 97%)   | 0.004            |
| Homocysteine metabolism        |                     | · · ·         |                  |
| Betaine                        | 46%                 | (7% – 86%)    | 0.029            |
| Choline                        | 36%                 | (3%-70%)      | 0.046            |
| Polyamines                     |                     |               |                  |
| Spermidine                     | 61%                 | (27% – 99%)   | 0.004            |
| Steroids                       |                     |               |                  |
| DHEAS                          | 50%                 | (17% – 76%)   | 0.012            |
| Omega-3 fatty acids            |                     |               |                  |
| EPA                            | -37%                | (-70% – -2%)  | 0.046            |
| Amino acids                    |                     |               |                  |
| Aspartate                      | 59%                 | (30% – 94%)   | 0.009            |
| Glutamate                      | 44%                 | (14% - 74%)   | 0.012            |
| Glycine                        | -59%                | (-93% – -30%) | 0.004            |
| Isoleucine                     | 73%                 | (39% – 107%)  | 0.004            |
| Leucine                        | 74%                 | (38% – 107%)  | 0.004            |
| Tryptophan                     | 37%                 | (3%-73%)      | 0.040            |
| Valine                         | 77%                 | (45% – 112%)  | 0.004            |
| Others amino acid related      |                     |               |                  |
| α-Aminoadipic acid             | 86%                 | (53% – 122%)  | 0.004            |
| α-Aminobutyric acid            | 59%                 | (21% – 101%)  | 0.009            |
| Creatinine                     | 97%                 | (65% – 134%)  | 0.004            |
| Homoarginine                   | 54%                 | (19% – 80%)   | 0.004            |
| Tryptophan betaine             | 55%                 | (14%-95%)     | 0.022            |
| Neurotransmitters              |                     |               |                  |
| Serotonin                      | 44%                 | (5%-73%)      | 0.029            |
| Fatty acids                    |                     |               |                  |
| FA(18:1)                       | -29%                | (-61%-0%)     | 0.050            |
| Acylcarnitines                 |                     |               |                  |
| <u>C3</u>                      | 44%                 | (11% – 77%)   | 0.015            |
| Sphingomyelins                 |                     |               |                  |
| SM C16:0                       | -50%                | (-80%17%)     | 0.004            |
| SM C16:1                       | -78%                | (-106%52%)    | 0.004            |
| SM C18:0                       | -55%                | (-89%22%)     | 0.009            |
| SM C18:1                       | -70%                | (-104%41%)    | 0.004            |
| SM C20:2                       | -108%               | (-148%72%)    | 0.004            |
| SM C24:1                       | -40%                | (-69%9%)      | 0.022            |
| SM (OH) C14:1                  | -61%                | (-92%30%)     | 0.004            |
| SM (OH) C16:1                  | -47%                | (-81%17%)     | 0.009            |
| SM (OH) C22:1                  | -62%                | (-92% – -38%) | 0.004            |

**Supplementary Table 2.** Regression Coefficients of Metabolites Altered in Plasma in Males Compared to Females

|                           |                     | Plasma           |                         |
|---------------------------|---------------------|------------------|-------------------------|
| Metabolite                | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> |
| SM (OH) C22:2             | -93%                | (-121%67%)       | 0.004                   |
| Ceramides                 |                     |                  |                         |
| Cer(d16:1/18:0)           | -45%                | (-79%11%)        | 0.020                   |
| Cer(d16:1/23:0)           | -43%                | (-74%12%)        | 0.015                   |
| Cer(d18:1/18:1)           | -49%                | (-85%11%)        | 0.026                   |
| Cer(d18:1/20:0(OH))       | -39%                | (-71%4%)         | 0.043                   |
| Cer(d18:1/23:0)           | -38%                | (-75%2%)         | 0.047                   |
| Cer(d18:1/25:0)           | -53%                | (-91%16%)        | 0.012                   |
| Cer(d18:2/16:0)           | -65%                | (-105%26%)       | 0.004                   |
| Cer(d18:2/23:0)           | -55%                | (-88%18%)        | 0.012                   |
| Cer(d18:2/24:1)           | -38%                | (-70%4%)         | 0.037                   |
| Glycosylceramides         |                     | ·                |                         |
| HexosylCer(d16:1/22:0)    | -53%                | (-87% – -19%)    | 0.004                   |
| HexosylCer(d16:1/24:0)    | -52%                | (-84%21%)        | 0.004                   |
| HexosylCer(d18:1/16:0)    | -36%                | (-69%4%)         | 0.034                   |
| HexosylCer(d18:1/18:0)    | -45%                | (-78%7%)         | 0.037                   |
| HexosylCer(d18:1/18:1)    | -54%                | (-82%22%)        | 0.009                   |
| HexosylCer(d18:1/20:0)    | -45%                | (-77%7%)         | 0.033                   |
| HexosylCer(d18:1/23:0)    | -47%                | (-76%14%)        | 0.017                   |
| HexosylCer(d18:1/26:0)    | -45%                | (-78% – -10%)    | 0.015                   |
| HexosylCer(d18:2/22:0)    | -46%                | (-81% – -11%)    | 0.024                   |
| HexosylCer(d18:2/23:0)    | -65%                | (-100% – -32%)   | 0.004                   |
| HexosylCer(d18:2/24:0)    | -41%                | (-72% – -7%)     | 0.017                   |
| DihexosylCer(d18:1/14:0)  | -35%                | (-66% – -2%)     | 0.046                   |
| DihexosylCer(d18:1/18:0)  | -37%                | (-70% – -4%)     | 0.042                   |
| DihexosylCer(d18:1/20:0)  | -43%                | (-81%6%)         | 0.040                   |
| TrihexosylCer(d18:1/16:0) | -64%                | (-92% – -34%)    | 0.004                   |
| TrihexosylCer(d18:1/18:0) | -66%                | (-99% – -35%)    | 0.004                   |
| TrihexosylCer(d18:1/24:1) | -58%                | (-89% – -26%)    | 0.004                   |
| TrihexosylCer(d18:1_20:0) | -36%                | (-71% – -3%)     | 0.044                   |
| TrihexosylCer(d18:1_22:0) | -37%                | (-71% – -5%)     | 0.033                   |
| Phosphatidylcholines      |                     |                  |                         |
| PC aa C28:1               | -76%                | (-106%48%)       | 0.004                   |
| PC aa C30:0               | -62%                | (-95%30%)        | 0.004                   |
| PC aa C32:0               | -40%                | (-76%7%)         | 0.024                   |
| PC aa C32:1               | -62%                | (-95%27%)        | 0.004                   |
| PC aa C32:2               | -76%                | (-108%41%)       | 0.004                   |
| PC aa C32:3               | -105%               | (-134%74%)       | 0.004                   |
| PC aa C34:1               | -34%                | (-65% – 0%)      | 0.050                   |
| PC aa C34:2               | -42%                | (-74%6%)         | 0.034                   |
| PC aa C34:3               | -94%                | (-126%61%)       | 0.004                   |
| PC aa C34:4               | -86%                | (-119%56%)       | 0.004                   |
| PC aa C36:0               | -37%                | (-68%6%)         | 0.022                   |
| PC aa C36:1               | -44%                | (-74%15%)        | 0.017                   |
| PC aa C36:2               | -60%                | (-93%31%)        | 0.004                   |
| PC aa C36:3               | -50%                | (-83%15%)        | 0.015                   |
| PC aa C36:4               | -39%                | (-73%3%)         | 0.037                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Plasma           |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|-------------------------|
| Metabolite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> |
| PC aa C36:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -52%                | (-83%20%)        | 0.004                   |
| PC aa C36:6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -67%                | (-96%36%)        | 0.004                   |
| PC aa C38:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -47%                | (-79%16%)        | 0.015                   |
| PC aa C38:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -59%                | (-91%27%)        | 0.012                   |
| PC aa C38:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -49%                | (-91%16%)        | 0.009                   |
| PC aa C38:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -84%                | (-120%52%)       | 0.004                   |
| PC aa C38:6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -35%                | (-67%1%)         | 0.046                   |
| PC aa C40:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -36%                | (-64%6%)         | 0.031                   |
| PC aa C40:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -47%                | (-75%19%)        | 0.009                   |
| PC aa C40:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -36%                | (-73% – 0%)      | 0.050                   |
| PC aa C40:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -68%                | (-105%35%)       | 0.004                   |
| PC aa C40:6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -46%                | (-77%16%)        | 0.020                   |
| PC aa C42:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -46%                | (-76%16%)        | 0.004                   |
| PC aa C42:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -35%                | (-63%5%)         | 0.037                   |
| PC aa C42:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -61%                | (-91%31%)        | 0.004                   |
| PC aa C42:6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -72%                | (-104%38%)       | 0.004                   |
| PC ae C30:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -45%                | (-77%15%)        | 0.004                   |
| PC ae C30:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -57%                | (-88%22%)        | 0.004                   |
| PC ae C30:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -76%                | (-106%46%)       | 0.004                   |
| PC ae C32:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -43%                | (-71%10%)        | 0.015                   |
| PC ae C32:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -72%                | (-101%43%)       | 0.004                   |
| PC ae C34:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -29%                | (-59% - 0%)      | 0.050                   |
| PC ae C34:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -55%                | (-85%23%)        | 0.009                   |
| PC ae C34:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -61%                | (-90%25%)        | 0.009                   |
| PC ae C34:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -58%                | (-88%26%)        | 0.004                   |
| PC ae C36:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -45%                | (-74%15%)        | 0.015                   |
| PC ae C36:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -39%                | (-73%5%)         | 0.022                   |
| PC ae C36:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -53%                | (-84%21%)        | 0.004                   |
| PC ae C36:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -40%                | (-72%5%)         | 0.036                   |
| PC ae C36:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -36%                | (-67%3%)         | 0.039                   |
| PC ae C38:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -68%                | (-98%36%)        | 0.004                   |
| PC ae C38:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -37%                | (-69%5%)         | 0.039                   |
| PC ae C38:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -39%                | (-71%9%)         | 0.020                   |
| PC ae C38:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -36%                | (-72%3%)         | 0.043                   |
| PC ae C38:6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -59%                | (-91%27%)        | 0.009                   |
| PC ae C40:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -45%                | (-77%14%)        | 0.017                   |
| PC ae C40:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -47%                | (-77%17%)        | 0.012                   |
| PC ae C40:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -39%                | (-67%8%)         | 0.024                   |
| PC ae C40:6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -40%                | (-73%7%)         | 0.022                   |
| PC ae C42:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -45%                | (-77%13%)        | 0.015                   |
| PC ae C42:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -52%                | (-83%20%)        | 0.012                   |
| $\frac{10 \text{ ac } 0.1211}{\text{PC ac } C42.2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -50%                | (-78%22%)        | 0.004                   |
| PC ac C42:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -40%                | (-66%7%)         | 0.020                   |
| Lysophosphatidylcholines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                  | 0.020                   |
| LysoPC a C14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -38%                | (-71%5%)         | 0.034                   |
| LysoPC a C16:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -65%                | (-103%23%)       | 0.004                   |
| $\frac{1}{2} \frac{1}{2} \frac{1}$ | -36%                | (-64%6%)         | 0.004                   |
| Lyson C a C20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3070               | (-0+70 = -070)   | 0.054                   |

|                      | Plasma              |                  |                         |  |
|----------------------|---------------------|------------------|-------------------------|--|
| Metabolite           | Effect <sup>a</sup> | CI <sub>95</sub> | <b>FDR</b> <sup>b</sup> |  |
| LysoPC a C28:1       | -74%                | (-100%49%)       | 0.004                   |  |
| Cholesteryl esters   |                     |                  |                         |  |
| CE(14:0)             | -49%                | (-81% – -15%)    | 0.012                   |  |
| CE(14:1)             | -52%                | (-86%18%)        | 0.015                   |  |
| CE(15:0)             | -38%                | (-68%8%)         | 0.026                   |  |
| CE(15:1)             | -40%                | (-72%5%)         | 0.043                   |  |
| CE(16:1)             | -71%                | (-106%39%)       | 0.004                   |  |
| CE(17:1)             | -38%                | (-70%5%)         | 0.037                   |  |
| CE(18:2)             | -36%                | (-73%6%)         | 0.034                   |  |
| CE(18:3)             | -67%                | (-97% – -40%)    | 0.004                   |  |
| CE(20:4)             | -34%                | (-67% – -1%)     | 0.046                   |  |
| CE(20:5)             | -42%                | (-73% – -10%)    | 0.017                   |  |
| CE(22:5)             | -54%                | (-88% – -23%)    | 0.009                   |  |
| Diglycerides         |                     |                  |                         |  |
| DG(16:0_18:2)        | 42%                 | (9% – 74%)       | 0.009                   |  |
| DG(18:1_18:1)        | 44%                 | (14% – 80%)      | 0.012                   |  |
| DG(18:1_18:2)        | 53%                 | (21% - 86%)      | 0.004                   |  |
| DG(18:2_18:2)        | 49%                 | (16% – 82%)      | 0.017                   |  |
| Triglycerides        |                     |                  |                         |  |
| TG(16:0_36:2)        | 41%                 | (5%-75%)         | 0.036                   |  |
| TG(16:0_36:3)        | 43%                 | (11%-68%)        | 0.017                   |  |
| TG(16:0_36:4)        | 40%                 | (5% - 66%)       | 0.036                   |  |
| _TG(16:0_38:2)       | 38%                 | (2% – 74%)       | 0.046                   |  |
| TG(16:0_38:3)        | 47%                 | (12% – 73%)      | 0.017                   |  |
| TG(16:0_38:4)        | 36%                 | (4% – 57%)       | 0.020                   |  |
| _TG(16:0_40:6)       | 39%                 | (2%-73%)         | 0.039                   |  |
| TG(16:0_40:7)        | 45%                 | (8% - 82%)       | 0.026                   |  |
| TG(16:0_40:8)        | 39%                 | (3%-73%)         | 0.044                   |  |
| TG(17:0_36:3)        | 45%                 | (13% – 70%)      | 0.012                   |  |
| TG(17:0_36:4)        | 42%                 | (10% – 75%)      | 0.017                   |  |
| TG(17:1_36:3)        | 37%                 | (2%-65%)         | 0.046                   |  |
| TG(17:2_36:4)        | 38%                 | (2%-75%)         | 0.042                   |  |
| TG(17:2_38:5)        | 47%                 | (13% - 82%)      | 0.017                   |  |
| TG(17:2_38:6)        | 46%                 | (10% - 80%)      | 0.024                   |  |
| TG(18:0_36:2)        | 37%                 | (5%-69%)         | 0.034                   |  |
| TG(18:0_36:3)        | 44%                 | (9% – 76%)       | 0.022                   |  |
| TG(18:0_36:4)        | 44%                 | (13% – 78%)      | 0.004                   |  |
| TG(18:0_38:6)        | 42%                 | (7% – 76%)       | 0.031                   |  |
| TG(18:1_33:2)        | 37%                 | (6% - 68%)       | 0.034                   |  |
| TG(18:1_34:2)        | 39%                 | (7%-66%)         | 0.031                   |  |
| TG(18:1_35:2)        | 38%                 | (5% – 70%)       | 0.020                   |  |
| TG(18:1_35:3)        | 32%                 | (1%-63%)         | 0.049                   |  |
| _TG(18:1_36:1)       | 41%                 | (6% – 79%)       | 0.031                   |  |
| TG(18:1_36:2)        | 51%                 | (15% - 87%)      | 0.012                   |  |
| TG(18:1_36:3)        | 54%                 | (21% - 85%)      | 0.004                   |  |
| <u>TG(18:1_36:4)</u> | 46%                 | (14% – 79%)      | 0.009                   |  |
| TG(18:1_38:5)        | 35%                 | (2%-70%)         | 0.044                   |  |

|                |                     | Plasma      |                         |
|----------------|---------------------|-------------|-------------------------|
| Metabolite     | Effect <sup>a</sup> | CI95        | <b>FDR</b> <sup>b</sup> |
| TG(18:2_33:0)  | 33%                 | (0%-66%)    | 0.050                   |
| TG(18:2_33:1)  | 34%                 | (1%-64%)    | 0.046                   |
| TG(18:2_33:2)  | 38%                 | (8%-68%)    | 0.017                   |
| TG(18:2_34:0)  | 36%                 | (3%-61%)    | 0.040                   |
| TG(18:2_34:1)  | 42%                 | (8% - 68%)  | 0.009                   |
| TG(18:2_34:2)  | 42%                 | (8%-68%)    | 0.024                   |
| TG(18:2_35:1)  | 42%                 | (12%-68%)   | 0.012                   |
| TG(18:2_35:2)  | 41%                 | (9%-67%)    | 0.026                   |
| TG(18:2_35:3)  | 34%                 | (2%-64%)    | 0.040                   |
| TG(18:2_36:0)  | 35%                 | (1%-68%)    | 0.046                   |
| TG(18:2 36:1)  | 46%                 | (12% – 78%) | 0.020                   |
| TG(18:2 36:2)  | 53%                 | (18% - 89%) | 0.004                   |
| TG(18:2_36:3)  | 46%                 | (9% – 76%)  | 0.012                   |
| TG(18:2_36:4)  | 36%                 | (3%-67%)    | 0.039                   |
| TG(18:2_38:4)  | 35%                 | (0%-60%)    | 0.047                   |
| TG(20:0_32:3)  | 49%                 | (15% – 76%) | 0.012                   |
| TG(20:0_32:4)  | 41%                 | (8%-67%)    | 0.034                   |
| TG(20:1_34:0)  | 39%                 | (3% – 74%)  | 0.044                   |
| TG(20:1_34:1)  | 40%                 | (2%-76%)    | 0.047                   |
| TG(20:1_34:2)  | 36%                 | (1%-64%)    | 0.047                   |
| TG(20:2_34:1)  | 45%                 | (13% – 73%) | 0.015                   |
| TG(20:2_34:2)  | 36%                 | (4% – 59%)  | 0.037                   |
| _TG(20:3_34:0) | 36%                 | (3%-68%)    | 0.043                   |
| TG(22:0_32:4)  | 39%                 | (8%-73%)    | 0.022                   |
| TG(22:5_34:1)  | 42%                 | (9% – 79%)  | 0.022                   |
| TG(22:5_34:2)  | 40%                 | (4% - 76%)  | 0.039                   |
| TG(22:6_34:1)  | 40%                 | (3%-77%)    | 0.046                   |
| TG(22:6 34:2)  | 41%                 | (5% - 78%)  | 0.040                   |

aa, diacyl; ae, acyl-alkyl; CE, cholesteryl ester; Cer, ceramide; CI95, 95% confidence interval; Cn, acylcarnitine Cn:0; DG, diglyceride; DHEAS, dehydroepiandrosterone sulfate; EPA, eicosapentaenoic acid; FA, fatty acid; FDR, false discovery rate; PC, phosphatidylcholine; SM, sphingomyelin; TG, triglyceride.

<sup>a</sup> Male sex regression coefficient in units of 1 standard deviation of the distribution of controls.

<sup>b</sup> FDR control with q-values following bootstrapped p-values of multivariable de-sparsified L1regularized linear regression models. FDR  $\leq 0.05$  is rounded to 3 decimal places and highlighted in red (upregulated) and blue (downregulated).



Supplementary Figure 1. Distributions of AD Regression Coefficients for Lipids by Class

Distribution of regression coefficients of lipid species in cortex and plasma with the reference dotted line crossing zero representing no effect in AD, i.e., matching controls. All lipid classes covered by the assay are included. The groups were formed so as to best highlight the differences between distributions. This visualization facilitates the interpretation of how each lipid class is altered, e.g., whether the group as a whole or its subset. aa, diacyl; ae, acyl-alkyl; LCFA, long-chain fatty acid; VLCFA, very long-chain fatty acid.



Supplementary Figure 2. Example Boxplots of Altered Metabolites and Metabolic Indicators

Boxplots, overlayed with individual values, of several representative metabolites (top part) and metabolic indicators (bottom part), which we found altered in both AD plasma (odd rows) and cortex (even rows). This figure serves as an illustrative example of the magnitue of the alterations. The differences are relatively small with respect to the variation, not constituting precise biomarkers. Note that no other confounding effects (e.g., age) are visualized except for sex subgrouping. 5-AVA, 5-aminovaleric acid; Cer, ceramide; DG, diglyceride; Hex2Cer, dihexosylceramide; t4-OH-Pro, *trans*-4-hydroxyproline; TG, triglyceride.