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Abstract.

Background: Metabolites are biological compounds reflecting the functional activity of organs and tissues. Understanding
metabolic changes in Alzheimer’s disease (AD) can provide insight into potential risk factors in this multifactorial disease
and suggest new intervention strategies or improve non-invasive diagnosis.

Objective: In this study, we searched for changes in AD metabolism in plasma and frontal brain cortex tissue samples and
evaluated the performance of plasma measurements as biomarkers.

Methods: This is a case-control study with two tissue cohorts: 158 plasma samples (94 AD, 64 controls; Texas Alzheimer’s
Research and Care Consortium — TARCC) and 71 postmortem cortex samples (35 AD, 36 controls; Banner Sun Health
Research Institute brain bank). We performed targeted mass spectrometry analysis of 630 compounds (106 small molecules:
UHPLC-MS/MS, 524 lipids: FIA-MS/MS) and 232 calculated metabolic indicators with a metabolomic kit (Biocrates MxP®
Quant 500).

Results: We discovered disturbances (FDR <0.05) in multiple metabolic pathways in AD in both cohorts including
microbiome-related metabolites with pro-toxic changes, methylhistidine metabolism, polyamines, corticosteroids, omega-
3 fatty acids, acylcarnitines, ceramides, and diglycerides. In AD, plasma reveals elevated triglycerides, and cortex
shows altered amino acid metabolism. A cross-validated diagnostic prediction model from plasma achieves AUC =82%
(Clgs =75-88%); for females specifically, AUC=88% (Clgs =80-95%). A reduced model using 20 features achieves
AUC =79% (Clys =71-85%); for females AUC =84% (Clos =74-92%).

Conclusion: Our findings support the involvement of gut environment in AD and encourage targeting multiple metabolic
areas in the design of intervention strategies, including microbiome composition, hormonal balance, nutrients, and muscle
homeostasis.

Keywords: Alzheimer’s disease, antioxidants, bacterial toxins, biomarkers, human microbiome, hyperlipidemia, lipidomics,
metabolic pathways, metabolomics, polyamines

INTRODUCTION

Every year, over 6 million people worldwide
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diseases [2]. Underlying mechanisms eventually lead
to accumulation of amyloid plaques, neurofibrillary
tangles, and neuronal death [3]. When exactly neu-
ronal homeostasis becomes pathological is unclear.

Following the success of genomic studies, other
omic techniques applied to AD have shed light on
disease mechanisms that can potentially identify
biomarkers for early detection [4]. One of them is
metabolomics, which allows the quantitative analysis
of physiological metabolites in numerous classes of
compounds present in biofluids and tissues. Metabo-
lites are the high-level mediators of biochemical
processes in the human body and are of important
diagnostic value.

Broad metabolomic studies in AD are limited,
generally lacking validation and sometimes yielding
contradictory results [5]. To date, no metabolomic
model in AD has reached sufficient performance
to serve as a reliable clinical diagnostic biomarker.
Replication efforts are hindered by differences
in assay coverages and participant characteristics
including AD stage. Among the larger studies, Varma
et al. [6] used a targeted assay and compared two
serum cohorts and one brain cohort in terms of
metabolite association with multiple AD pathology
related scores and produced a list of 25 metabolites
ranked by the number of associated scores. Proitsi
et al. [7] performed untargeted analysis and list sev-
eral compounds different in AD, only two of which
are identified by chemical name. Barupal et al. [8]
found 15 metabolites different in AD without con-
sidering covariates. Recently, Lim et al. [9] recorded
152 metabolites different in AD, but included several
summary lipid measures as covariates, effectively
comparing relative proportions of individual lipid
species rather than absolute values. Studies rarely
consider such confounding factors as comorbidities,
medication, and sample handling. Protection against
violations of model assumptions is often neglected,
e.g., silently assuming homoscedasticity, which can
lead to incorrect results.

In this case-control study, we performed a compre-
hensive targeted metabolomic analysis in plasma and
in tissue from the frontal cortex to identify metabolic
changes characteristic of AD, which could extend our
understanding of the disease and potentially serve as
a diagnostic biomarker or target for intervention. The
analysis covers most important metabolic pathways.
Targeted analysis generally offers higher accuracy
compared to untargeted approaches and a more reli-
able identification of the compounds. We included
a range of possible confounders and performed a

statistically robust analysis with a series of regression
models and explored possible plasma biomarkers
with a cross-validated diagnostic prediction model.

METHODS

Participants and samples

Plasma samples (200 wl) were obtained from 94
AD cases and 64 control subjects, which were
part of a longitudinal study conducted by the
Texas Alzheimer’s Research and Care Consor-
tium (TARCC) [10]. The study was performed in
2005-2018 with participants, older than 55 years,
recruited at dementia clinics of the TARCC mem-
ber institutions. Controls included volunteers and
family members (although we do not have access
to the familial pairing). We selected a large subset
with the following characteristics: consistent diagno-
sis during subsequent follow-up visits with at least
3 annual follow-ups, no other major disorder of
central nervous system (CNS), equal sex represen-
tation, and controls with matched distributions of
age, sex, and apolipoprotein E (APOE) 4 allele car-
riers. The diagnosis follows a clinical examination
with a neuropsychological battery using NINCDS-
ADRDA criteria [11], with our AD cases classified
as “probable AD”, while controls showed no cogni-
tive impairment and achieved a zero on the Clinical
Dementia Rating (CDR) scale [12]. The selected
samples were collected in 2007-2014 at 4 sites:
Baylor College of Medicine (Houston, TX), Univer-
sity of Texas Southwestern Medical Center (Dallas,
TX), Texas Tech University Health Sciences Cen-
trum (Lubbock, TX), and University of North Texas
Health Science Center (Fort Worth, TX). All 4 cen-
ters followed a harmonized collection protocol and
we adjusted for a possible site-related effect in the
statistical analysis.

Postmortem frontal cortex samples (500 mg) from
35 AD cases and 36 controls, collected in 2004—2018
and continuously stored at —80°C, were obtained
from the Banner Sun Health Research Institute brain
bank [13] (Sun City, AZ). The diagnosis followed
histopathological examination and NIA-Reagan clas-
sification [14], with the AD cases classified as “high
likelihood of AD”. Controls had no history of clinical
diagnosis of cognitive impairment. The participants
had no other major CNS pathology.

We excluded several non-White or Hispanic sub-
jects because there were not enough observations
to reliably estimate the effect of other races or
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ethnicities. Presence of such effects is plausible due
to cultural differences in diet and lifestyle as well as
genetic variations and not accounting for them would
negatively impact statistical power of the analysis.
Additional details on sample filtration are provided
in the Supplementary Methods.

We also accessed and analyzed available data on
non-CNS diagnoses and current medication use as
listed in the Supplementary Methods. For the cortex
cohort, these data were updated during pre-mortem
Visits.

Chromatography and mass spectrometry

Targeted metabolomic analysis was based on triple
quadrupole ultra-high-performance liquid chro-
matography tandem mass spectrometry (UHPLC-
MS/MS) using Shimadzu Nexera chromatography
platform (Shimadzu Corporation, Kyoto, Japan)
coupled to Sciex QTrap 5500 mass spectrome-
ter (AB Sciex LLC, Framingham, MA, USA). We
applied the Biocrates MxP® Quant 500 targeted kit
(Biocrates Life Sciences AG, Innsbruck, Austria),
potentially quantitating 106 small molecules in chro-
matography mode and 524 lipids in flow-injection
mode (FIA-MS/MS), covering the most important
metabolic pathways. Annotations for the individual
metabolites with identifiers to external databases are
provided in Supplementary File 1. Additionally, 232
metabolic indicators were calculated from sums or
ratios of relevant metabolites according to Biocrates
MetaboINDICATOR™ formulas [15]. We refer to
the whole set of metabolites and metabolic indica-
tors as analytes. The indicators can be regarded as
physiologically-relevant derived measures and are
statistically analyzed separately from metabolites.
The indicators denoted as “X synthesis” are computed
as a ratio of metabolite X and its main precursors in
attempt to reflect the conversion ratio. Since there are
multiple explanations why such an indicator could be
altered, the interpretation needs to be done cautiously
in context of the individual metabolites.

Brain cortex samples were extracted with 85%
ethanol in phosphate buffered saline at concen-
tration 3 pl/mg, homogenized with sonicator, and
centrifuged for 20 minutes. The clear extract (30 pl)
was transferred onto a kit plate (with pre-injected
internal standards) and dried down. For plasma sam-
ples, we added 10 pl directly to the plate. In brief,
the rest of the assay includes derivatization with
5% phenylisothiocyanate in pyridine, ethanol and
water (1:1:1), and subsequent extraction with 5 mM

ammonium acetate in methanol. Chromatography
was done with 0.2% formic acid in acetonitrile
(organic mobile phase) and 0.2% formic acid in water
(inorganic mobile phase). Flow-injection analysis
was performed with methanol and Biocrates MxP®
Quant 500 proprietary additive of undisclosed com-
position. As proprietary knowledge, Biocrates prefers
to keep mass transitions of individual metabolites
undisclosed.

Sample handling was done on dry ice to avoid
multiple freeze-thaw cycles. We randomized the sam-
ples across plates already prior to their processing to
avoid any accidental bias towards one of the diagnos-
tic groups. Plates included blanks to calculate limits
of detection and repeats of a quality control sample
to monitor the coefficient of variation (presented in
the Limitations section in Discussion; also see Sup-
plementary Methods for more details).

Data preprocessing

Chromatographic peaks were identified and inte-
grated in Biocrates Met/DQ™ Oxygen-DB110-3005
and manually reviewed. Areas of metabolite peaks
were divided by areas of their respective internal
standards. Further processing was done in R v3.6.1
[16] with RStudio [17] and details are provided in
the Supplementary Methods. Briefly, we performed
median scaling plate normalization to account for
possible batch effects, calculated limits of detection
from blanks to filter out low-abundant metabolites
with poor detection, transformed the data via Box-
Cox transformation through R package car [18] to
better approximate normal distributions, and adjusted
outliers via Tukey’s fencing [19] to avoid skewing
the means by extreme values. The values were then
standardized with respect to control samples to facil-
itate comparison of regression coefficients in the
statistical analysis. We imputed several cases of miss-
ing sociodemographic values (BMI, education) by
manual review of other visits (plasma cohort) or con-
ditioned on diagnosis group and sex (cortex cohort).

Statistical methods

The statistical analysis was done in R v3.6.1 [16]
with RStudio [17] and package ggplot2 [20] for
visualization. We provide more details in the Supple-
mentary Methods. Briefly, differential analysis was
performed with a series of multivariable bootstrapped
de-sparsified L1-regularized linear regression models
via R package hdi [21], checked for collinearity with
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Participant Demographics and Sample Characteristics

Plasma Frontal cortex
AD Controls p* AD Controls p?
(n=94) (n=64) (n=35) (n=36)

Sex, male, No. (%) 47 (50%) 32 (50%) 1 20 (57%) 22 (61%) 0.81
Age, y, mean (SD) 71 (8) 71 (8) 0.78 81(9) 82 (10) 0.44
Race All non-Hispanic White 1 All non-Hispanic White 1
Education, y, mean (SD) 15 (3) 16 (3) 0.002 15(2) 14 (3) 0.66
BMI, kg/m?, mean (SD) 27 (4) 28 (5) 0.37 24 (4) 25(5) 0.73
APOE, €4 carrier, No. (%) 43 (46%) 27 (42%) 0.74 18 (51%) 5 (14%) 0.008
s4/e4 carrier®, No. (%) 6 (6%) 2 (3%) 0.47 2 (6%) 0 (0%) 0.24
MMSE, mean (SD) 23 (4) 29 (1) <0.001 15 (8) 28 (1) <0.001
Fasting, h, mean (SD) 54) 4(3) 0.09 NAS¢ NAS¢ NAS¢
PMI, h, mean (SD) NA® NA® NA® 3.4(0.8) 3.2(1.0) 0.26
Storage, y, mean (SD) 10 (2) 10 (2) 0.56 7(2) 10 (4) 0.002

AD, Alzheimer’s disease; APOE, apolipoprotein E; BMI, body mass index; MMSE, Mini-Mental State Examination; NA, not available; PMI,
postmortem interval. *Group comparison was performed with Welch’s #-test (continuous variables) and Fisher’s exact test (count variables).
YHere, e4/e4 carriers are a subgroup of &4 carriers. ®Fasting status is unknown for deceased donors. Postmortem interval is not applicable

for living plasma donors.

R package car [18] and adjusted for heteroscedas-
ticity when suspected with Breusch-Pagan test [22]
(R package Imtest [23]). This type of model has
been shown suitable for accurate high-dimensional
inference with many covariates, estimating reliable
confidence intervals thanks to de-sparsification and
bootstrapping [24]. The covariates include sociode-
mographic attributes, disorders, medication, and
supplementation as well as sample collection and
handling attributes. The unit of regression coeffi-
cients is 1 standard deviation (SD) of the distribution
of controls. False discovery rate (FDR) is controlled
with g-values [25]. Pathway analysis was done with
human KEGG [26] and SMPDB [27] metabolic path-
ways, borrowing a statistical approach introduced in
ChemRICH enrichment analysis [28] with FDR con-
trol using q-values [25]. For biomarker analysis, we
constructed diagnostic prediction models via extreme
gradient boosting (XGBoost) [29] with nested cross-
validation and evaluated them in terms of area under
receiver operating characteristic curve (AUC) score
with R package pROC [30] with respect to the num-
ber of features used after step-wise elimination. We
report the top 30 most predictive features. Demo-
graphics were compared with Welch’s #-test and
Fisher’s exact test. We explored associations with
other diagnoses in terms of odds ratios (OR) with uni-
variable logistic regression models, FDR-controlled
with Benjamini-Hochberg procedure [31].

RESULTS

Participant characteristics are summarized in
Table 1. We also present all metadata and data tables

(from raw values to final tables) as Supplementary
Dataset files (separately for both cohorts and for
metabolites and metabolic indicators). The largest
differences are in Mini-Mental State Examination
(MMSE) score [32] (p <0.001), with mild-moderate
impairment (mean =23, SD =4) in the plasma cohort
AD and mild-severe impairment (mean = 15, SD = 8)
in the cortex cohort AD (based on MMSE to dementia
severity mapping [33]). Education of AD participants
in the plasma cohort is slightly lower compared to
controls (—1.3y, p=0.002). Postmortem intervals are
short, close to 3 hours on average, with no difference
between the groups. Duration of storage in the freezer
since the collection is somewhat higher for the con-
trol cortex samples, as we had to go further in time
and obtain “older” samples to get an adequate number
of controls. Nevertheless, it does not pose an issue:
Any tissue degradation would be reflected in higher
levels of choline and amino acids, but the observed
values do not conform to this pattern. Choline levels
of longer stored control samples are indistinguish-
able from control samples with shorter freezer storage
(Welch’s t-test p = 0.92 for upper versus lower tertile).
We also control for a potential freezer storage effect
in the regression alongside other covariates.

Brief association analysis further shows a link
between AD and diagnosis of depression (OR=4.1,
95% confidence interval (Clgs)=1.4-14.5, FDR =
0.044), hypercholesterolemia (OR =2.3, Clg5 =1.2—
4.5, FDR=0.044), and hypertension (OR=2.2,
Clys =1.2-4.2, FDR =0.044), in the plasma cohort,
and between AD and cerebral amyloid angiopa-
thy (OR =33, Clg5 =9.1-208, FDR <0.001), APOE
g4 allele (OR=5.6, Clg5=2.5-13, FDR<0.001),
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and cerebral white matter rarefaction (OR =44,
Clg5 =1.9-11, FDR =0.010) in the cortex cohort.

Metabolomic analysis in plasma

Differentially altered metabolites and metabolic
indicators

We found 353 metabolites (including lipid species)
and 26 metabolic indicators altered in AD plasma.
Among small molecules (Table 2), the most intrigu-
ing findings are changes related to microbial
activity. There is increased 5-aminovaleric acid (+
0.72, Clg5=0.36-1.09, FDR=0.001), para-cresol
sulfate (+0.35, Clgs =0.02-0.70, FDR =0.017) and
trimethylamine N-oxide (+ 0.45, Clg5=0.00-0.87,
FDR =0.020). Indole derivatives are shifted towards
more abundant indoxyl sulfate (+ 0.49, Clgs =0.18-
0.82, FDR=0.001) and 3-indoleacetic acid (+
0.36, Clos5=0.02-0.70, FDR=0.013), whereas 3-
indolepropionic acid is decreased (—0.35, Clgs=
—0.67-0.05, FDR =0.012). Bile acid profile is altered
by decreased cholic acid (-0.32, Clg5 =—0.71-0.01,
FDR =0.023) and its increased 7a-dehydroxylation
(+0.53, Clg5 =0.13-0.92, FDR =0.037).

Further, methylhistidine metabolism (methylhis-
tidines, carnosine, [B-alanine) is upregulated. Poly-
amine metabolism is disrupted with increased sper-
mine. Steroids cortisol and cortisone are elevated.
Levels of omega-3 fatty acids (docosahexaenoic
acid (DHA) and eicosapentaenoic acid (EPA)) are
decreased. Several carboxylic acids are elevated: 3-
hydroxyglutaric acid, succinic acid, and aconitic acid.
Betaine synthesis (ratio betaine/choline) is decreased.
There is a mild increase in amino acids, with alanine,
arginine, threonine, and valine reaching a statisti-
cally significant FDR level. Volcano plot (Fig. 1A)
shows the most significantly altered small molecules
in plasma: 5-aminovaleric acid, carnosine, indoxyl
sulfate, 3-alanine, DHA, EPA, 3-indoleacetic acid,
3-indolepropionic acid, and trans-4-hydroxyproline.

In lipid metabolism (Table 3; individual lipid
species are listed in Supplementary Table 1), we see
general elevation in multiple lipid classes: Several
saturated acylcarnitines are elevated (3:0, 8:0, 10:0,
18:0). Phosphatidylcholines are increased, most sig-
nificantly polyunsaturated and diacyl phosphatidyl-
cholines. Lysophosphatidylcholines are increased
regardless of saturation or size, possibly indicat-
ing higher activity of phospholipase A2. Ceramides
are increased, including some glycosylceramides.
Unsaturated triglycerides, diglycerides, and several
cholesterol species are also elevated. Volcano plot

of lipid species (Fig. 1B) captures the upregulated
lipid metabolism. See Supplementary Figure 1 for
visualization of AD effects across lipid classes and
Supplementary Figure 2 for illustrative boxplots of
several of the altered analytes.

Additionally, we report on observed sex-specific
metabolic changes (Supplementary Table 2): Com-
pared to females, males have higher levels of
several amino acids (only glycine is lower), increased
tryptophan metabolism including serotonin, muscle-
related metabolites, spermidine, betaine as well as
dehydroepiandrosterone sulfate (DHEAS), but lower
EPA. Among lipids, males have consistently lower
ceramides, glycosylceramides, sphingomyelins, hy-
droxysphingomyelins, cholesteryl esters, phosphati-
dylcholines, lysophosphatidylcholines, and higher
diglycerides and triglycerides.

Differentially altered pathways

Pathway analysis identified several KEGG path-
ways (Table 4) dysregulated in AD: steroid bio-
synthesis, branched-chain amino acid biosynthesis, 3
pathways related to omega-6 and omega-3 fatty acids,
metabolism of glycerolipids and glycerophospho-
lipids, and metabolism of sphingolipids. The custom
set of metabolites linked to microbial activity is also
significant.

These results are repeated with SMPDB path-
ways (Table 5), which provide rather better coverage,
and extend the set of significant results by sev-
eral pathways related to methylhistidine metabolism
(histidine metabolism, (3-alanine metabolism, carno-
sine synthesis), homocysteine metabolism (betaine
metabolism, glycine, and serine metabolism), sper-
midine and spermine biosynthesis, and multiple
pathways related to biosynthesis of triglycerides and
phosphatidylethanolamines. Note that both KEGG
and SMPDB pathway databases are incomplete and
do not contain majority of lipid pathways.

Diagnostic prediction model

Using all analytes and basic sociodemographic
data (sex, age, education, BMI, APOE &4), the cross-
validated model achieves AUC 82% (Clgs="75-
88%), significantly more (p <0.001) than a model
with the basic sociodemographic data alone (AUC
58%, Clgs =48-67%), which in turn is not sig-
nificantly better than a random model (AUC
54%, Clo5 =45-63%) as expected (since the con-
trols have matched distributions of sex, age, and
APOE €4). Interestingly, the model seems to
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Table 2

Regression Coefficients of Small Molecules and Indicators Altered in AD Plasma or Frontal Cortex

Plasma Frontal cortex
Metabolite or indicator Effect® Clos FDR® Effect® Clos FDR?
Microbiome-related metabolites
5-Aminovaleric acid 2% (36% — 109%) 0.001 61% (23% — 101%) 0,015
para-Cresol sulfate 35% (2% — 70%) 0,017 50% (3% — 95%) 0.07
Trimethylamine N-oxide 45% (0% — 87%) 9% (-29% — 51%) 0.43
3-Indoleacetic acid 36% (2% —70%) . 34% (=17% —79%) 0.16
3-Indolepropionic acid -35% (-67% — —5%) 0.012 NAC NA¢ NA¢
Indoxyl sulfate 49% (18% — 82%) 0.001 58% (14% — 100%) 0.027
Sum of indoles 48% (16% — 82%) 10.009 55% (16% — 100%) 10.020
Cholic acid -32% (~71% - 1%) 0.023 1% (~41% — 37%) 0.54
Deoxycholic acid 28% (=6% — 62%) 0.044 7% (=35% — 46%) 0.48
7Ta-Dehydroxylation of cholic acid 53% (13% — 92%) - 12% (—27% — 49%) 0.29
Methylhistidine metabolism
1-Methylhistidine 33% (2% - 67%) 0.024 50% (10% — 90%) 0.034
3-Methylhistidine 36% (1% — 67%) - 5% (—43% — 32%) 0.46
1-Methylhistidine synthesis -38% (=74% — -3%) 0.10 47% (6% —91%) -
B-Alanine 46% (12% — 81%) 34% (~12% — 80%) 0.15
Anserine NA® NA® NA® -80% (~=145% — —-13%) 0.049
Anserine synthesis NA® NA® NA® -85% (-121% — -50%) 0.003
Carnosine 64% (27% — 99%) 38% (2% — 78%) 0.09
Carnosine synthesis 65% (27% - 105%) 6% (=30% — 46%) 035
Homocysteine metabolism
Homocysteine 21% (9% — 55%) 0.06 71% (23% — 117%) -
Betaine -25% (=62% — 13%) 0.06 -62% (-110% — —14%) 0.034
Betaine synthesis —44% (-81% — -18%) 0.019 -13% (—=54% — 27%) 0.28
Sum of betaine and related metabolites -33% (-66% — —6%) 0.046 -64% (-109% — -15%) 0.022
Choline 12% (—22% — 45%) 0.13 -58% (-93% — -23%) 0.007
Sarcosine synthesis from choline -1% (-34% — 28%) 0.62 65% (25% — 109%) -
Cystine —4% (=30% — 37%) 0.21 70% (28% — 110%) -
Cysteine synthesis 4% (=33% — 38%) 0.60 51% (5% — 97%) 10.039
Glutathione constituents 16% (~19% — 46%) 0.44 100% (47% — 158%) 10.003
Taurine synthesis —8% (—44% — 18%) 0.44 —85% (-131% — -36%) 0.003
Polyamines
Putrescine 9% (-42% — 26%) 0.17 ~52% (=90% — —16%) 0.015
Putrescine synthesis —22% (=57% — 9%) 0.24 ~76% (-121% — -29%) 0.003
Spermidine 8% (-28% — 39%) 0.20 63% (26% — 102%) 10,007
Spermidine synthesis 22% (9% — 50%) 0.23 75% (33% — 115%) -
Spermine 37% (0% — 72%) 0.021 12% (=25% — 55%) 0.41
Spermine synthesis 38% (1% — 68%) 0.08 51% (-88% — —13%) 0.003
Sum of polyamines 10% (=32% — 43%) 0.59 60% (26% — 97%) 10.007
Purines
Xanthine synthesis NA® NA® NA® 71% (32% — 109%) -
Steroids
Cortisol 41% (=1% — 81%) 80% (42% — 117%) 10.007
Cortisone 35% (2% — 73%) NA® NA® NAS®
Omega-3 fatty acids
DHA —42% (=78% — —14%) 0.003 -33% (=67% — 0%) 0.07
EPA -37% (=71% — —6%) 0.009 —44% (—83% — —5%) 0.05
Ratio of DHA to ARA -55% (-93% — —-16%) 0.030 -33% (—68% — 2%) 0.06

(Continued)
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Table 2
(Continued)
Plasma Frontal cortex
Metabolite or indicator Effect® Clos FDRP Effect® Clos FDRP
Carboxylic acids
Aconitic acid 26% “1%-61%) 004N 10% (=29% — 49%) 041
3-Hydroxyglutaric acid 37% Q% - 71%) 0.017 53% (7% - 104%) 0.06
Lactic acid 25% (~10% — 62%) 0.06 73% (27% - 118%) 0,015
Succinic acid 27% 7% -62%) 0046 53% (7% - 96%)
Sum of carboxylic acids 26% (-11% — 63%) 0.23 79% (37% — 124%) .
Amino acids
Alanine 32% (1% — 63%) 0038 118% (72% — 171%) 10.007
Arginine 33% (2% — 64%) 0,017 73% (30% — 111%)
Cysteine 15% (~19% — 54%) 0.11 106% (54% — 157%) .
Glutamine 9% (~19% — 43%) 0.13 61% (22% — 103%) 0.022
Histidine 2% (-33% — 29%) 0.22 87% (42% — 133%) 10.007
Isoleucine 26% (~6% — 59%) 0.05 67% (22% — 109%)
Leucine 20% (~13% - 53%) 0.07 67% (25% — 110%)
Lysine 24% (~13% — 60%) 0.06 56% (12% - 101%)
Methionine 25% (-9% — 61%) 0.05 63% (20% — 106%) 10.007
Phenylalanine 4% (=25% - 35%) 0.19 109% (60% — 159%) 10.007
Serine 1% (=37% - 37%) 0.23 91% (43% — 144%) 10.007
Threonine 30% (6% -64%) 0083  118% (59% — 177%)
Tryptophan 3% (=34% - 38%) 0.22 118% (63% — 169%) .
Tyrosine 1% (-33% — 32%) 0.22 105% (57% — 158%) 10.007
Valine 24% 9% -58%)  [0080  94% (46% — 139%) 10.007
Dihydrolipoamide dehydrogenase deficiency 11% (-25% — 46%) 0.48 —65% (-106% — —24%) 0.007
Fischer ratio 34% (2% — 67%) 0.15 -49% (-93% — —5%) 0.045
Glycine synthesis 10% (=26% — 43%) 0.48 —49%  (-105% --24%)  0.020
(-91% — -4%)
(-86% — —12%)
Sum of AAs 25% (8% — 61%) 0.23 116% (62% — 168%) 10,003
Sum of aromatic AAs 1% (=31% - 35%) 0.61 111% (60% — 160%) 10.003
Sum of branched-chain AAs 24% (-9% — 56%) 0.24 78% (37% — 123%) 10.003
Sum of essential AAs 22% (-14% — 59%) 0.30 99% (50% — 146%)
Sum of non-essential AAs 26% (9% — 61%) 0.23 109% (58% — 158%) .
Sum of solely glucogenic AAs 29% (—4% — 65%) 0.15 112% (57% — 165%) -
Sum of solely ketogenic AAs 24% (~11% - 59%) 0.24 65% (22% - 110%) 10.007
Sum of sulfur-containing AAs 28% (=8% — 65%) 0.23 101% (49% — 150%) -
Others amino acid related
a-Aminoadipic acid 9% (=27% - 39%) 0.17 131% (75% — 185%) 10.007
o-Aminobutyric acid 26% (~14% - 66%) 0.06 55% (15% — 110%)
Acetylornithine NA® NA® NA® 53% (7% - 102%)
Creatinine 20% (~14% - 53%) 0.08 74% (30% — 118%)
Histamine NA® NA® NA® 54% (11%-101%) 0042
Homoarginine 13% (=20% — 41%) 0.13 50% (13% — 88%) 0.031
trans-4-Hydroxyproline 52% (10%-91%)  [0008  92% 45% - 134%) 0007
Kynurenine 9% (-43% — 27%) 0.15 99% (47% — 147%)
Methionine sulfoxide “13%  (-45% - 17%) 0.12 54% (12% - 97%)
Methionine oxidation 27% (-58% — 5%) 0.19 —44% (-84% — -4%) 0.039
SDMA 9% (=30% — 45%) 0.18 50% (16% — 85%) 0.022
Sum of dimethylated arginine 9% (-30% — 48%) 0.52 50% (14% — 85%) -

(Continued)
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Table 2
(Continued)
Plasma Frontal cortex
Neurotransmitters
DOPA synthesis NASC NASC NA® -130% (-191% — —68%) 0.003
GABA synthesis —6% (-35% — 30%) 0.59 —63% (-100% — —29%) 0.003
Serotonin synthesis 2% (-32% — 32%) 0.64 ~73% (-120% — —29%) 0.003

Metabolic indicators: Anserine synthesis, anserine/carnosine; Betaine synthesis, betaine/choline; Carnosine synthesis, carnosine/histi
dine; Cysteine synthesis, cysteine/(serine + methionine); 7a-Dehydroxylation of cholic acid, deoxycholic acid/cholic acid; Dihydrolipoa-
mide dehydrogenase deficiency, proline/phenylalanine; DOPA synthesis, DOPA/tyrosine; Fischer ratio, sum of branched-chain amino acids/
sum of aromatic amino acids; GABA synthesis, GABA/glutamate; Glutathione constituents, glutamate + glycine + cysteine; Glycine syn-
thesis, glycine/serine; Methionine oxidation, methionine sulfoxide/methionine; 1-Methylhistidine synthesis, 1-methylhistidine/(carnosine +
anserine); Putrescine synthesis, putrescine/ornithine; Sarcosine synthesis from choline, sarcosine/choline; Serotonin synthesis, serotonin/
tryptophan; Spermidine synthesis, spermidine/putrescine; Spermine synthesis, spermine/spermidine; Taurine synthesis, taurine/cysteine;
Xanthine synthesis, xanthine/hypoxanthine. AAs, amino acids; ARA, arachidonic acid; BC, branched-chain; Clgs, 95% confidence inter-
val; DHA, docosahexaenoic acid; DOPA, 3,4-dihydroxyphenylalanine; EPA, eicosapentaenoic acid; FDR, false discovery rate; GABA,
y-aminobutyric acid; NA, not available; SDMA, symmetric dimethylarginine. * AD regression coefficient in units of 1 standard deviation of
the distribution of controls. PFDR control with g-values following bootstrapped p-values of multivariable de-sparsified L1-regularized linear
regression models. FDR < 0.05 is rounded to 3 decimal places and highlighted in red (upregulated) and blue (downregulated). ©Value not
available when the metabolite was not sufficiently detected (in at least 50% of samples in either group above the limit of detection). In case of
indicators, this happens if a) all metabolites of a sum indicator were not sufficiently detected, b) all metabolites in a nominator or denominator
of a ratio indicator were not sufficiently detected, or c) the remaining sufficiently detected metabolites in the indicator completely overlap

with another more specific indicator (e.g., Sum of triglycerides and Sum of unsaturated triglycerides).

classify females more accurately (p=0.06) with
AUC 88% (Clg5s=80-95%) versus AUC 75%
(Clg5 =64-85%) for males. A model with all ana-
Iytes but without basic sociodemographic data
achieves almost identical performance as the full
model.

Step-wise reduction of the model features (Fig. 2A)
shows a stable performance up to around 120 fea-
tures with AUC 83% (slight increase comparing to
the full model, since feature selection reduces noise),
after which the performance slowly decreases down
to AUC 79% at around 20 features, followed by a
rapid deterioration in performance down to AUC 70%
with 2 features.

Importance plot (Fig. 2B) captures the distribu-
tion of average feature importance with respect to the
feature rank during the reduction process. The top
30 features are detailed in Fig. 2C, with 5-amino-
valeric acid and carnosine synthesis (ratio carno-
sine/histidine) being most important. We can see
multiple metabolites or indicators already detected
in the differential analysis: microbial metabolites,
methylhistidine metabolites, omega-3 fatty acids,
cortisol, proline hydroxylation, and certain lipids.
Additionally, there are three metabolites not pre-
viously detected as statistically different: DHEAS,
acylcarnitine C5:0, and serotonin, all of them with
downregulation predictive of AD. Education is also
among the top 30 features and its lower value is more
characteristic of AD.

Metabolomic analysis in brain frontal cortex

Differentially altered metabolites and metabolic
indicators

We found 103 metabolites and 66 indicators
altered in AD brain cortex. Several of the small
molecules (Table 2) are related to microbial activity:
5-aminovaleric acid (+0.61, Clgs =0.23-1.01, FDR =
0.015) and indoxyl sulfate (+ 0.58, Clgs =0.14-1.00,
FDR =0.027), while para-cresol sulfate is close
to FDR significance (+ 0.50, Clos=0.03-0.95,
FDR =0.07).

Methylhistidine metabolism is disrupted with
elevated 1-methylhistidine and decreased anser-
ine. Homocysteine metabolism exhibits upregulated
transsulfuration pathway and decreased betaine and
choline. Polyamines are dysregulated by decreased
putrescine and elevated spermidine, but unchanged
spermine. Cortisol is elevated. Purine metabolism
exhibits increased xanthine synthesis (ratio xan-
thine/hypoxanthine), which may indicate increased
activity of xanthine oxidoreductase. Decrease in
omega-3 fatty acids is close to FDR significance
(EPA 0.05, DHA 0.07). Among carboxylic acids,
lactic acid and succinic acid are elevated, and ele-
vation of 3-hydroxyglutaric acid is close to FDR
significance (0.06). Synthesis of multiple neurotrans-
mitters is decreased (serotonin, y-aminobutyric acid
(GABA), dopamine precursor dihydroxyphenylala-
nine (DOPA)). There is a general increase across most
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Fig. 1. Volcano Plots for Plasma Metabolites. Volcano plots of AD regression coefficients for small molecules (A) and lipids (B) in
plasma. The red referrence line denotes FDR significance of 0.05. The most outlying values for small molecules are labeled. Notice
the large skew towards positive significant values in lipids, indicating hyperlipidemia. 5-AVA, 5-aminovaleric acid; beta-Ala, B-alanine;
DHA, docosahexaenoic acid; EPA, eicosapentaenoic; Ind-SO4, indoxyl sulfate; 3-IAA, 3-indoleacetic acid; 3-IPA, 3-indolepropionic acid;

t4-OH-Pro, trans-4-hydroxyproline.

of amino acids and their related compounds, includ-
ing trans-4-hydroxyproline, kynurenine, methionine
sulfoxide, a-aminoadipic acid, creatinine, and sym-
metric dimethylarginine (SDMA).

Among lipids (Table 3; individual lipid species
are listed in Supplementary Table 1), we found
elevated acylcarnitines, regardless of their satura-
tion or length. Acyl-alkyl phosphatidylcholines are
increased, whereas lysophosphatidylcholines show
the opposite trend (FDR<0.1). Several sphingo-
myelins are elevated as well as ceramides, especially
glycosylceramides. Certain unsaturated triglycerides

and diglycerides are increased. Saturated cholesteryl
esters are increased, whereas polyunsaturated
cholesteryl esters are decreased.

Differentially altered pathways

On the pathway level, we see alterations across
many amino acid groups in KEGG (Table 4).
Next, there are changes in several pathways reflect-
ing transsulfuration, B-alanine metabolism, purine
metabolism, glyoxylate and dicarboxylate meta-
bolism, nicotinate and nicotinamide metabolism, and
from lipids glycerolipid and glycerophospholipid
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Table 3
Regression Coefficients of Lipid Indicators Altered in AD Plasma or Frontal Cortex
Plasma Cortex
Indicator Effect® Clos FDR®  Effect® Clos FDR®
Acylcarnitines
Ratio of ACs to fatty acids 17%  (-15%-50%) 036 8%  (42%-131%)  [0I008)
Ratio of hydroxylated ACs to ACs NA¢ NA¢ NAC -70%  (-110% - -31%)  0.003
Ratio of SCFA ACs to MCFA ACs -27% (-61% - 6%) 0.21 61% (12% - 114%) -
MCAD deficiency screen (C8/C2) 58% (17% - 101%) - NA® NA® NA®
SBCAD deficiency screen (C5/CO0) —40% (~78% — 0%) 0.13 50% (12% - 90%) -
Sum of ACs 11% (-25% — 42%) 0.48 92% (48% — 136%) -
Sum of MUFA ACs 15% (-16% — 49%) 0.38 63% (21% - 104%) -
Sum of PUFA ACs NAC NA¢ NAC 70% 9% — 125%) -
Sum of SFA ACs 9% (-25% - 42%) 0.51 91% (50% — 135%) -
Sum of LCFA ACs 10% (-25% - 46%) 0.47 63% (10% — 113%) -
Sum of MCFA ACs 29% (-5% - 67%) 0.21 65% (26% — 105%)
Sum of SCFA ACs 20% (-11% — 50%) 0.29 90% (52% — 127%) .
Phosphatidylcholines
Ratio of PCs to choline 19% (-13% - 52%) 0.30 62% (23% - 99%) -
Ratio of diacyl PCs to choline 20% (=12% — 50%) 0.29 60% (20% — 101%)
Ratio of acyl-alkyl PCs to choline 11% (-17% — 41%) 0.38 66% (35% —99%) .
Ratio of acyl-alkyl to diacyl PCs -20% (=53% - 14%) 0.30 44% (4% — 81%) -
Sum of PCs 51% (20% — 85%) 5% (-51% - 64%) 0.37
Sum of diacyl PCs 53% (22% - 87%) . 9% (-65% — 48%) 0.34
Sum of acyl-alkyl PCs 32% 2% —61%) 0.12 44% (8% —76%) -
Sum of PUFA PCs 56% (26% — 90%) 5% (-48% — 55%) 0.38
Sum of lysoPCs 68% (35% - 100%) -34% (=76% - 1%) 0.09
Sum of MUFA 1ysoPCs 57% (20% - 90%) —41% (-92% - 3%) 0.07
Sum of PUFA lysoPCs 81% (47% - 112%) -32% (-66% — 4%) 0.08
Sum of SFA lysoPCs 58% (24% - 90%) -28% (-65% - 1%) 0.11
Sum of LCFA lysoPCs 69% (36% — 104%) -34% (=74% — 6%) 0.09
Sum of choline lipids 58% (26% — 93%) -51% (-88% — —15%) 0.020
Phospholipase A2 activity (over PC aa C38:6) 51% (21% - 81%) -17% (=73% — 36%) 0.29
Sphingomyelins
Ratio of hydroxylated SMs to non-hydroxylated SMs ~ —23% (=53% — 7%) 0.23 49% (16% — 83%) -
Sum of hydroxylated SMs 11% (~13% - 43%) 0.37 58% (19% - 94%) -
Sum of VLCFA SMs 14% (-12% - 43%) 0.32 42% (5% —T1%) -
Ceramides
Ratio of glycosylCer to Cer —47%  (-77% —-14%)  0.037 37% (3% — 76%) 0.07
Ratio of hexosylCer to Cer -49%  (-80% ——-13%)  0.019 36% (-3% — 75%) 0.07
Sum of Cer 60%  (24%-92%) 0019  41% (8% —78%)
Sum of glycosylCer 16% (=17% — 51%) 0.34 39% (6% — 73%)
Sum of hexosylCer 10% (-21% - 41%) 0.47 38% (4% —72%)
Sum of dihexosylCer 19% (~14% - 52%) 0.32 39% (4% —13%) -
Sum of trihexosylCer 20% (-10% - 49%) 0.25 47% (3% —94%) -
Sum of LCFA Cer 60%  (26%-95%) [0  46% 9% -86%) (0022
Sum of LCFA glycosylCer 15% (-16% — 46%) 0.37 42% (6% —75%) -
Sum of VLCFA Cer 58% (27% — 92%) - 35% (0% — 69%) 0.06
Sum of VLCFA glycosylCer 15% (~17% - 45%) 0.36 37% B% —T1%) -
Sum of VLCFA dihydroCer 81% (44% - 117%) - NA® NA® NA®

(Continued)
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Table 3
(Continued)
Plasma Cortex
Indicator Effect? Clos FDR? Effect? Clos FDRP
Diglycerides and triglycerides
Ratio of DGs to fatty acids 30% (-2% — 64%) 0.15 62% (30% — 94%) 10.003
Ratio of TGs to fatty acids 37% (4% —70%) 0.09 55% (11% — 100%) 0.022
Ratio of DGs to TGs -39% (<76% —~6%) 0.08 47% (7% — 84%) 10.036
Sum of DGs NA® NA® NA® 67% (26% — 103%) 10.003
Sum of unsaturated DGs 48% (14% — 82%) 10.037 66% (30% — 103%) 10,003
Sum of TGs 56% (28% — 86%) 10.009 NA® NA® NA®
Sum of unsaturated TGs 56% (27% — 90%) 10,009 56% (6% — 103%) 10,044
Cholesteryl esters
Sum of PUFA CEs 31% (3% — 63%) 0.1 -53% (~104% ——4%) 0.045
Sum of saturated CEs ~17% (=53% — 20%) 037 54% (6% — 102%) 10.039

ACs, acylcarnitines; CEs, cholesteryl esters; Cer, ceramides; Clgs, 95% confidence interval; Cn, acylcarnitine Cn:0; DGs, diglycerides;
FDR, false discovery rate; MCAD, medium-chain acyl-coenzyme A dehydrogenase; MCFA, medium-chain fatty acid; MUFA, monounsat-
urated fatty acid; NA, not available; LCFA, long-chain fatty acid; PCs, phosphatidylcholines; PUFA, polyunsaturated fatty acid; SBCAD,
short/branched-chain acyl-coenzyme A dehydrogenase; SCFA, short-chain fatty acid; SFA, saturated fatty acid; SMs, sphingomyelins; TGs,
triglycerides; VLCFA, very long-chain fatty acid. ?AD regression coefficient in units of 1 standard deviation of the distribution of con-
trols. ®PFDR control with g-values following bootstrapped p-values of multivariable de-sparsified L1-regularized linear regression models.
FDR < 0.05 is rounded to 3 decimal places and highlighted in red (upregulated) and blue (downregulated). ¢Value not available when the
metabolite was not sufficiently detected (in at least 50% of samples in either group above the limit of detection). In case of indicators, this
happens if a) all metabolites of a sum indicator were not sufficiently detected, b) all metabolites in a nominator or denominator of a ratio
indicator were not sufficiently detected, or ¢) the remaining sufficiently detected metabolites in the indicator completely overlap with another

more specific indicator (e.g., Sum of triglycerides and Sum of unsaturated triglycerides).

metabolism and sphingolipid metabolism. These
results are repeated with SMPDB pathways (Table 5)
and further extended with betaine metabolism, sper-
midine and spermine biosynthesis, urea cycle and
ammonia recycling, and biosynthesis of multiple
triglycerides and phosphatidylethanolamines.

Diagnostic prediction model

A model with all analytes and basic sociode-
mographic data (sex, age, education, BMI, APOE
&4) achieves cross-validated performance of AUC
80% (Clg5 =69-90%), which is significantly (p=
0.018) more than a random model (AUC 53%,
Clg5 =39-66%). A model with the basic sociode-
mographic data alone now yields AUC 64% (Clgs =
51-77%), mainly owing to the APOE &4 genotype,
and the full model outperforms it less significantly
with p=0.09. A model with all analytes but with-
out basic sociodemographic data achieves almost
identical performance as the full model. Again,
the full model tends to classify females (AUC
88%, Clgs =71-99%) better than males (AUC 74%,
Clg5 =58-88%), but the difference is not statistically
significant (p =0.27).

Step-wise reduction of the model features (Fig. 3A)
shows a stable performance up to around 100 features
with AUC 81%, after which the performance slowly

decreases down to AUC 75% at around 20 features,
and then further down to AUC 70% with 2 features.
Importance plot (Fig. 3B) captures the distribution of
average feature importance with respect to the fea-
ture rank during the reduction process. The top 30
features are detailed in Fig. 3C, with APOE €4 and
acylcarnitine C3:0 being most important. We can see
multiple metabolites or indicators already detected in
the differential analysis: lipid species and indicators
including cholesterols, triglycerides, acylcarnitines,
several amino acids and related products, serotonin,
trans-4-hydroxyproline, 5-aminovaleric acid as well
as indicators of anserine and spermidine synthesis.
Several triglycerides and lysophosphatidylcholine
C18:1 show a negative association with AD, which
we did not capture in the statistical analysis due to
lower FDR significance.

DISCUSSION

We found alterations in multiple metabolites
and metabolic pathways, often overlapping in
plasma and brain. The diagnostic prediction mod-
els achieve moderate performance, with the top
results exploiting around 100 metabolites and indi-
cators, but with most power coming from the top
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Table 4
KEGG Pathways Significantly Altered in AD Plasma or Frontal Cortex

Pathway Plasma Cortex

Effect® FDR® Effect® FDR®
Steroid biosynthesis 27% 10.006 13% 0.86
Arginine biosynthesis 15% 0.58 49% 1<0.001
Purine metabolism NA® NA® 35% -
Alanine, aspartate and glutamate metabolism 16% 0.54 58% -
Glycine, serine and threonine metabolism 13% 0.62 71% -
Cysteine and methionine metabolism 16% 0.47 72% -
Valine, leucine and isoleucine biosynthesis 25% - 87%
Lysine degradation 29% 0.25 66% -
Arginine and proline metabolism 25% 0.24 54% -
Histidine metabolism 25% 0.19 50%
Tryptophan metabolism 12% 0.67 65%
beta-Alanine metabolism 26% 0.23 47%
Taurine and hypotaurine metabolism 12% 0.79 77% -
D-Amino acid metabolism 21% 0.19 72% -
Glutathione metabolism 16% 0.62 52%
Glycerolipid metabolism 50% Q000N  21%
Glycerophospholipid metabolism 32% - 26%
Arachidonic acid metabolism 29% 22% 0.05
Linoleic acid metabolism 28% - 22% 0.05
alpha-Linolenic acid metabolism 30% <0001 22% 0.045
Sphingolipid metabolism 28% <0001 42% <0.001
Glyoxylate and dicarboxylate metabolism 14% 0.63 51% 10.003
Nicotinate and nicotinamide metabolism 16% 0.47 38% -
Sulfur metabolism 14% 0.62 69% 10.001
Aminoacyl-tRNA biosynthesis 15% 0.39 77% -
Microbial metabolites® 30% 0.012° 30% 0.1

FDR, false discovery rate. * Average magnitude (absolute value) of AD regression coefficients (from
bootstrapped multivariable de-sparsified L1-regularized linear regression models) for assigned metabo-
lites. °FDR control with g-values following set enrichment using Kolmogorov-Smirnov test. FDR < 0.05
is rounded to 3 decimal places and highlighted in gold. “Pathway excluded due to not passing the thresh-
old of at least 4 assigned metabolites. YA custom-defined set of metabolites related to microbial activity,
as they are not included in human KEGG pathways.

20 spread across various metabolic pathways. The
performance diminishes faster when using fewer
features. This supports the idea that the metabolic
changes act as independent risk factors, each con-
tributing to the outcome. Presence of APOE &4
allele remains among the most important fac-
tors. Top 30 features for the plasma and brain
models intersect on 5-aminovaleric acid, methylhisti-
dine metabolism, serotonin, trans-4-hydroxyproline,
and on involvement of acylcarnitines, triglycerides,
lysophosphatidylcholines, and cholesteryl esters. The
models tend to better classify females in both tis-
sue cohorts and given the incidence of AD is higher
among females [34], this increase seems to be
reflected in metabolism, although further study is
needed to confirm this trend.

In AD plasma, there are a number of microbiome-
related metabolites changed. 5-Aminovaleric acid
is a degradation product derived from various bac-
terial genera, e.g., Clostridium, Escherichia, and
Corynebacterium [35, 36], but can also be produced
endogenously. It has not previously been associated
with AD or cognitive impairment. Para-cresol sulfate
is a microbial uremic toxin inducing neuroinflam-
mation in mice [37]. Indoles are derived from gut
bacteria, by sequestering tryptophan, and indoxyl sul-
fate is another uremic toxin with neurotoxic effects
[38]. 3-indoleacetic acid is a pro-apoptotic compound
negatively associated with cognition [39]. In contrast,
3-indolepropionic acid is neuroprotective [40] and we
found it decreased. Other changes include elevated
trimethylamine N-oxide, which has been linked to
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Table 5
SMPDB Pathways Significantly Altered in AD Plasma or Frontal Cortex

Pathway Plasma Cortex

Effect® FDR" Effect? FDR®
Glycine and Serine Metabolism 18% 71% -
beta-Alanine Metabolism 27% 47% 10.008
Ammonia Recycling 7% 021 57% 0.001
Glutathione Metabolism 16% 0.11 78% 0,002
Alpha Linolenic Acid and Linoleic Acid Metabolism 21% 10,036 NA® NA®
Arginine and Proline Metabolism 20% 0.06 50% <0001
Oxidation of Branched-Chain Fatty Acids 22% 10,032 62% <0001
Valine, Leucine, and Isoleucine Degradation 21% - 68% -
Methionine Metabolism 14% 0.06 62%
Sphingolipid Metabolism 29% 0011 44% -
Histidine Metabolism 31% 0.004 51% <0001
Purine Metabolism 11% 0.1 37% 0.041
Urea Cycle 17% 0.08 58% <0001
Tryptophan Metabolism 15% 0.08 2% 10.004
Aspartate Metabolism 17% 0.09 41% <0001
Glutamate Metabolism 16% 0.08 62%
Betaine Metabolism 21% 63% -
Spermidine and Spermine Biosynthesis 21% 46%
Carnitine Synthesis 21% 47% .
Warburg Effect 18% 0.07 58% <0001
PE Biosynthesis PE(14:0/18:1(9Z)) NA® NA® 55% 10.008
PE Biosynthesis PE(16:0/16:1(9Z)) NA® NA® 55% 10,010
PE Biosynthesis PE(16:0/18:1(11Z)) 24% 56% 10.008
PE Biosynthesis PE(16:0/18:1(9Z)) 24% 56% 10.008
PE Biosynthesis PE(16:0/18:2(9Z,12Z)) 32% 62%
PE Biosynthesis PE(16:0/20:3(8Z,11Z,14Z)) NASC NA® 53% .
PE Biosynthesis PE(16:1(9Z)/18:1(9Z)) 29% 10,037 NAC NA®
PE Biosynthesis PE(18:0/20:4(5Z.,8Z,11Z,14Z)) NA® NA® 59%
PE Biosynthesis PE(18:1(11Z)/18:1(112)) 27% 57%
PE Biosynthesis PE(18:1(9Z)/16:0) 24% 56%
PE Biosynthesis PE(18:1(9Z)/18:1(9Z)) 27% 57%
PE Biosynthesis PE(18:1(9Z)/18:2(9Z,12Z)) 27% 47% 0.07
PE Biosynthesis PE(18:1(9Z)/20:3(8Z,11Z,14Z)) NA® NA® 53% 0,012
PE Biosynthesis PE(18:1(9Z)/20:4(5Z.8Z,11Z,14Z)) NA® NA® 48% 10.037
PE Biosynthesis PE(18:2(9Z,122)/18:2(9Z,122)) 29% 10,036 46% 0.07
PE Biosynthesis PE(18:2(9Z,122)/20:4(5Z.,8Z,11Z,14Z)) NA® NA® 52% 10.008
De Novo TG Biosynthesis TG(16:0/16:1(9Z)/18:0) 43% NAS¢ NA®
De Novo TG Biosynthesis TG(16:0/18:1(9Z)/20:0) 45% - NAS¢ NA®
De Novo TG Biosynthesis TG(16:0/18:1(92)/20:1(11Z)) 44% <0001 32% 0.1
De Novo TG Biosynthesis TG(16:0/18:1(9Z)/18:2(9Z,122)) 48% 1<0.001 NA® NA®
De Novo TG Biosynthesis TG(16:0/18:1(9Z)/20:4(5Z.8Z,11Z,14Z)) 54% <0.001 39% 10.035
De Novo TG Biosynthesis TG(16:0/18:2(9Z,122)/20:1(112)) 52% 1<0.001 NA® NA®
De Novo TG Biosynthesis TG(16:0/18:2(9Z,122)/20:4(5Z,8Z,11Z,14Z)) 56% <0001 43% 10.030
De Novo TG Biosynthesis TG(16:1(9Z)/18:1(9Z)/18:2(9Z,12Z)) 45% 1<0.001 NA® NA®
De Novo TG Biosynthesis TG(16:1(9Z)/18:1(9Z)/20:4(5Z.8Z,11Z,14Z)) 57% <0001 NA® NA®
De Novo TG Biosynthesis TG(18:1(9Z)/18:2(9Z,127)/20:4(5Z,8Z,11Z,14Z)) 53% 38% 0.09
De Novo TG Biosynthesis TG(16:0/18:1(9Z)/20:3(5Z.8Z.112)) 52% - 33% 0.14
De Novo TG Biosynthesis TG(16:0/18:1(92)/22:5(4Z,7Z,10Z,13Z,16Z)) 53% <0001 NA® NA®

(Continued)
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Table 5
(Continued)

Pathway Plasma Cortex

Effect® FDRP Effect® FDR"
De Novo TG Biosynthesis TG(16:0/18:1(92)/22:5(7Z.,10Z,13Z,16Z,19Z)) 53% 1<0.001 NA® NA®
De Novo TG Biosynthesis TG(16:0/18:2(9Z,122)/20:3(5Z.8Z,117)) 55% 1<0.001 NA® NA®
De Novo TG Biosynthesis TG(16:0/18:2(9Z,12Z)/18:3(6Z.9Z,12Z)) 57% <0001 29% 0.50
De Novo TG Biosynthesis TG(16:0/18:2(9Z,12Z)/18:3(9Z,12Z,15Z)) 57% <0001 29% 0.50
De Novo TG Biosynthesis TG(16:0/18:2(9Z,122)/22:6(4Z,72,10Z,13Z,16Z,19Z)) 29% 10,036 NA® NA®
De Novo TG Biosynthesis TG(18:1(9Z2)/18:2(9Z,127)/20:5(5Z,8Z,11Z,14Z,17Z)) 38% - 18% 0.48
Microbial metabolites’ 30% 10,002 30% 0.12

FDR, false discovery rate; PE, phosphatidylethanolamine; TG, triglyceride. * Average magnitude (absolute value) of AD regression coeffi-
cients (from bootstrapped multivariable de-sparsified L1-regularized linear regression models) for assigned metabolites. "FDR control with
g-values following set enrichment using Kolmogorov-Smirnov test. FDR < 0.05 is rounded to 3 decimal places and highlighted in gold.
¢Pathway excluded due to not passing the threshold of at least 4 assigned metabolites. YA custom-defined set of metabolites related to

microbial activity, as they are not included in human SMPDB pathways.

atherosclerosis and AD [41], and decreased cholic
acid with increased 7a-dehydroxylation into deoxy-
cholic acid, mediated by gut bacteria and previously
associated with cognitive decline [42], indicating
higher microbial activity converting primary bile
acids into pro-inflammatory secondary bile acids.
The changes in microbiome-related metabolites are
consistently in the pro-toxic direction and we hypoth-
esize that they contribute to the disease etiology.
Indeed, recent research reveals direct inflammatory
effect of microbiota in AD [43]. We found some
of these metabolites are elevated even in the AD
brain; i.e., S-aminovaleric acid, indoxyl sulfate, and
with FDR =0.07 also para-cresol sulfate. Whether
the presence of microbial metabolites in brain is due
to blood-brain barrier crossing or microbial invasion
of CNS, it highlights the importance of studying the
gut-brain interaction.

We found two dietary compounds with anti-inflam-
matory effects decreased in AD: omega-3 fatty acids
and betaine. Reduced omega-3 fatty acids have been
implicated in AD [44], possibly due to less effi-
cient synthesis in liver [45], which can affect the
microbiome composition [46]. Betaine regulates sig-
naling pathways involved in oxidative stress and
inflammation [47] and facilitates re-methylation of
homocysteine, linked to atherosclerosis [48] and AD
[49]. The betaine pathway may be stressed due to
impaired metabolism of folate and vitamin B12 defi-
ciency, commonly associated in AD [50]. Interest-
ingly, betaine supplementation has been reported to
provide clinical benefit in AD [51]. Altered methyla-
tion cycle flux can result in hypomethylation [52, 53]
or affect polyamines by enhanced decarboxylation

of S-adenosylmethionine, promoting aminopropyla-
tion. Increased polyamine spermidine in AD brain
has been previously reported [54], which we also
observed. In plasma, however, we found higher sper-
mine, perhaps due to lower abundance of spermine
synthase in cerebral cortex. Polyamines generally
have a protective effect [55] although increased lev-
els can promote tau condensation and neurotoxicity
[56, 57], potentially contributing to AD.

Some evidence implicates spermine oxidase
activity (ratio spermine/spermidine) in muscle patho-
physiology [58]. Indeed, AD is associated with
muscle reduction [59, 60], and we found elevated
amino acids (strongly in cortex) and methylhis-
tidine metabolites (mainly in plasma, especially
3-methylhistidine, a myofibrillar compound), indica-
tive of muscle degradation. Other amino acid
related metabolites are increased, including 3-
hydroxyglutaric acid with excitotoxic properties on
N-methyl-D-aspartate (NMDA) receptors [61]. Mus-
cle activity can affect the microbiome and in turn
influence neurodegeneration [62]. Musculature is
also affected by androgens, known to be decreased
in AD [63, 64], and negatively impacted by corti-
costeroids [65]. Consistent with the hypothesis of
hormonal link to AD muscle loss, we found increased
levels of corticosteroids and decreased DHEAS (in
the diagnostic prediction model), validating previ-
ous reports [66, 67]. This increase is sometimes
explained by chronic stress response or dysregu-
lated circadian cycle and sleep disorders, a common
theme in AD, negatively impacting glymphatic clear-
ance and hippocampal volume [68]. In connection
with brain function, we found decreased synthesis of
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Fig. 2. Predictive Performance and Most Important Features For Plasma Samples. A) AUC of a diagnostic prediction model for AD versus
controls in the plasma cohort in dependence on the number of selected features (analytes+basic sociodemographic profile: sex, age, edu-
cation, BMI, APOE &4). Dashed gold line shows AUC of a reference model using only basic sociodemographic profile. Dashed black line
shows AUC of a reference random model. Shaded areas illustrate 95% confidence intervals. The p-value was obtained with DeLong’s test
between the full model and basic model. B) Average importance (magnitude of feature contribution to the model decision) of the model
features plotted against the feature rank (as ranked by consecutive feature elimination, 0 =best). The green line denotes a threshold of top
30 features, which are deatiled in (C). The color scale corresponds to the importance weight. Positive value: increased in AD; negative:
decreased in AD. This figure presents results averaged over 20 randomizations to reduce random noise. Metabolic indicators: Asymmetrical
arginine methylation, asymmetrically dimethylated arginine (ADMA)/arginine; Carnosine synthesis, carnosine/histidine; MCAD defi-
ciency screen, C8/C2; 1-Methylhistidine synthesis, 1-methylhistidine/(carnosine + anserine); Proline hydroxylation, hydroxyproline/proline;
SBCAD deficiency screen, C5/C0. ACs, acylcarnitines; AUC, area under receiver operating characteristic curve; 5-AVA, 5-aminovaleric
acid; CE, cholesteryl ester; Cer, ceramide; Cn, acylcarnitine Cn:0; DHA, docosahexaenoic acid; DHEAS, dehydroepiandrosterone sulfate;
2MBG, 2-methylbutyrylglycinuria; MCAD, medium-chain acyl-CoA dehydrogenase; OH, hydroxylated; PC, phosphatidylcholine; PUFA,
polyunsaturated fatty acid; SBCAD, short/branched-chain acyl-CoA dehydrogenase; TG, triglyceride; VLCFA, very long-chain fatty acid.

neurotransmitters (serotonin, GABA, DOPA), ref-
lecting impairment associated with depression, a
common comorbidity in AD [69].

Another possible reason for neuromuscular degen-
eration occurring in AD is related to mitochondrial
dysfunction [70-72], promoted by oxidative stress,
inflammatory environment, and insulin resistance
[73], which is considered to be related to AD [74].
We observed elevated acylcarnitines, key elements in

mitochondrial beta-oxidation, which accumulate dur-
ing mitochondrial impairment [75] and correlate with
ICU-acquired muscle loss [76]. Further, aconitic acid
(plasma only) and succinic acid are elevated, sug-
gesting a disturbed mitochondrial tricarboxylic acid
(TCA) cycle, possibly due to inefficient succinate
dehydrogenase, which is involved in neurodegen-
eration and lipid accumulation [77]. Brain energy
metabolism includes production and consumption of
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Fig. 3. Predictive Performance and Most Important Features For Cortex Samples. A) AUC (area under receiver operating characteristic curve)
of a diagnostic prediction model for AD versus controls in the cortex cohort in dependence on the number of selected features (analytes + basic
sociodemographic profile: sex, age, education, BMI, APOE &4). Dashed gold line shows AUC of a reference model using only basic
sociodemographic profile. Dashed black line shows AUC of a reference random model. Shaded areas illustrate 95% confidence intervals. The
p-value was obtained with DeLong’s test between the full model and basic model. B) Average importance (magnitude of feature contribution
to the model decision) of the model features plotted against the feature rank (as ranked by consecutive feature elimination, 0 =best). The green
line denotes a threshold of top 30 features, which are deatiled in (C). The color scale corresponds to the importance weight. Positive value:
increased in AD; negative: decreased in AD. This figure presents results averaged over 20 randomizations to reduce random noise. Metabolic
indicators: Anserine synthesis, anserine/carnosine; MC deficiency screen, C16/C3; Serotonin synthesis, serotonin/tryptophan; Spermidine
synthesis, spermidine/putrescine. ACs, acylcarnitines; ae, acyl-alkyl; alpha-AAA, a-aminoadipic acid; AUC, area under receiver operating
characteristic curve; 5-AVA, 5-aminovaleric acid; CE, cholesteryl ester; Cer, ceramide; Cn, acylcarnitine Cn:0; OH, hydroxylated; PC,
phosphatidylcholine; MC, multiple carboxylase; MUFA, monounsaturated fatty acid; t4-OH-pro, trans-4-hydroxyproline; TG, triglyceride.

diabetes mellitus [84]. Glycosylceramides are abun-
dant in neuronal tissue and their elevation has also
been previously associated with AD [85]. Increased
plasma lysophosphatidylcholines may reflect phos-
pholipase A2 activity and are linked to inflammation

lactic acid [78], which is formed in cytosol via a path-
way alternative to the TCA cycle, and we found it
elevated in cortex. Lactate accumulates in inflamed
tissues [79], in traumatic brain injury [80] and is
implicated in accelerated production of (3-amyloid

peptide [81], thus possibly linked to AD.

Besides acylcarnitines, we found other lipid classes
elevated in AD. Ceramides are linked to oxida-
tive stress and mitochondrial dysfunction [82] and
might directly contribute to AD [83]. Increased
plasma dihydroceramides are predictive of future

and immunomodulation [86]. Interestingly, cortex
lysophosphatidylcholines show the opposite trend,
regardless of their saturation, but specifically those
with long chains, whereas those with very long chains
(VLCFA) all trend towards upregulation. This might
be due to inefficient transport to brain via Mfsd2a
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transporter, which is also the main route for omega-3
fatty acids uptake, but VLCFA lysophosphatidyl-
cholines are synthesized in brain tissue by elongases
and has been shown to be unaffected in MFSD2A
knock-out mice [87].

Elevated diglycerides, triglycerides, and cho-
lesteryl esters in AD correspond to results of other
studies [88, 89], although the decrease in polyun-
saturated cholesteryl esters in AD brain has not
been reported yet. Triglycerides are associated with
xanthine oxidoreductase activity [90] and we found
it similarly increased in AD brain. Overall, hyper-
lipidemia is considered a risk factor for AD [91],
reflecting inefficient lipid degradation in lysosomes
and autophagosomes [92, 93]. Lipotoxicity is further
implicated in liver disease and microbiome dysbiosis
[94], and in turn, liver disease is sometimes consid-
ered a contributor to AD [95].

Our findings align well with the metabolites iden-
tified by Varma et al. [6] as an intersection of
associations with several AD pathology scores (rang-
ing from future conversion to AD to histopathology
markers, amyloid-@, and tau proteins). They per-
formed a targeted study using Biocrates Absolute/DQ
p180, a predecessor of Biocrates MxP® Quant 500
which we applied in this study. Out of 20 metabolites
that they link to AD in brain, we discovered 11 (8 lipid
species + 3 small molecules), 3 more lipids achieved
slightly lower statistical significance (FDR < 0.006),
and additional 6 lipids all clearly show a correct trend
of downregulation although further from FDR signif-
icance. In great consistency, none of the metabolites
show an opposite trend than they predict. For plasma,
they list 16 metabolites (excluding two with inconsis-
tent association direction), out of which we identified
6 (5 lipids +1 small molecule) and 4 more lipids with
slightly lower FDR significance. For 5 metabolites we
did not see any trend and 1 metabolite we identified
in the opposite direction than they predict. This par-
ticular metabolite is acylcarnitine C3:0 and we found
it elevated in both AD brain and plasma, whereas
they found it positively associated in brain but neg-
atively associated in plasma. Collectively, this is a
good overlap considering we analyzed only clinical
AD diagnosis in the plasma cohort but not other mark-
ers of AD pathology or progression as described by
Varma et al.

In summary, we identified multiple metabolic
changes in AD with frequent similarities between
plasma and cortex indicating increased microbial tox-
ins, oxidative stress, pro-inflammatory environment,
and mitochondrial dysfunction on the one hand, and

decreased protective and anti-inflammatory poten-
tial on the other hand. While the changes are often
small, they provide some insight into the disease
complexity and potential risk factors. For example,
plasma level of 5-aminovaleric acid higher than 90%
of controls poses OR=3.5 (Clg5=1.5-9.1). Con-
sidering the prevalence of AD in general elderly
population around 10% [96], the estimated relative
risk (RR) would be 2.9 (Clgs =1.9-4.3), more than
that of diabetes mellitus (RR=1.5, Clgs=1.2-1.8)
in a meta-analysis [97]. Similarly for cortex, 5-
aminovaleric acid higher than 80% of controls leads
to the estimated RR=3.0 (Clgs5=1.6-5.7). More-
over, some of the metabolic changes are modifiable,
with several studies showing positive effects of spe-
cific diets on cognitive decline and risk of AD
[98]. Our results encourage the design of more
complex interventional strategies, targeting multi-
ple metabolic areas simultaneously, ideally tailored
to one’s metabolic profile, e.g., microbiome com-
position, hormonal balance, nutrients, and muscle
homeostasis.

Strengths and limitations

This is the first study to date to apply the
metabolomic kit Biocrates MxP® Quant 500 to
study AD. The assay explores a broad spectrum of
metabolic pathways together with hundreds of lipid
species in 12 lipid classes. The brain samples were
collected within a short postmortem interval averag-
ing 3 h, reducing any postmortem effect. We applied
advanced statistical methods to maximize statistical
power of the analysis while satisfying underlying
assumptions and adjusting for multiple hypothesis
testing. The model controls for various clinical infor-
mation as well as tissue handling factors, which
are often not considered in other studies. Further,
we applied a machine learning approach to test for
biomarkers with a nested cross-validation for a reli-
able estimation of the performance. Efforts were
made to minimize any potential bias.

While our analysis is broad and encompasses most
areas of the human metabolome, it does not cover
all metabolites within the pathways, which only
narrowly-focused specialized single-pathway meth-
ods can do. This, however, does not affect the validity
of our results. Second, the lipid part is performed
via flow-injection with a limited number of internal
standards (only several per lipid class). This is com-
mon in lipidomics and this might result in slightly
higher noise and less precise quantification. Based
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on quality control samples, the average coefficient of
variation was 14% (plasma, across 4 plates) and 10%
(cortex, 2 plates) in the UHPLC-MS/MS method, and
19% (plasma) and 20% (cortex) in the FIA-MS/MS
method. This is reasonable although the noise might
negatively impact the predictive performance. The
identification of lipid molecules provides lower res-
olution due to existence of potential isobaric and
isomeric forms inseparable by mass spectra only.
Another limitation is unavailability of any informa-
tion regarding dietary regime of the subjects, which
would allow to adjust for its contribution to their
metabolic profiles.

Conclusion

We present evidence that AD is associated with
multiple pro-toxic changes in microbial metabolites
and several metabolic pathways, often overlapping
in plasma and brain tissue, including metabolism
of methylhistidine, homocysteine, polyamines, cor-
ticosteroids, omega-3 fatty acids, carboxylic acids,
amino acids, and various lipid classes. We validated
multiple previously published studies and discovered
newly associated metabolites, e.g., 5-aminovaleric
acid, advancing our knowledge of metabolism in AD.
Overall, the results highlight the disease complexity
and a plausible role of the detected metabolic dys-
functions as individual risk factors for AD due to their
pathological nature.
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