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Abstract.
Background: Visual short-term memory (VSTMT) and visual attention (VAT) exhibit decline in the Alzheimer’s disease
(AD) continuum; however, network disruption in preclinical stages is scarcely explored.
Objective: To advance our knowledge about brain networks in AD and discover connectivity alterations during VSTMT and
VAT.
Methods: Twelve participants with AD, 23 with mild cognitive impairment (MCI), 17 with subjective cognitive decline
(SCD), and 21 healthy controls (HC) were examined using a neuropsychological battery at baseline and follow-up (three
years). At baseline, the subjects were examined using high density electroencephalography while performing a VSTMT and
VAT. For exploring network organization, we constructed weighted undirected networks and examined clustering coefficient,
strength, and betweenness centrality from occipito-parietal regions.
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Results: One-way ANOVA and pair-wise t-test comparisons showed statistically significant differences in HC compared to
SCD (t (36) = 2.43, p = 0.026), MCI (t (42) = 2.34, p = 0.024), and AD group (t (31) = 3.58, p = 0.001) in Clustering Coefficient.
Also with regards to Strength, higher values for HC compared to SCD (t (36) = 2.45, p = 0.019), MCI (t (42) = 2.41, p = 0.020),
and AD group (t (31) = 3.58, p = 0.001) were found. Follow-up neuropsychological assessment revealed converge of 65% of
the SCD group to MCI. Moreover, SCD who were converted to MCI showed significant lower values in all network metrics
compared to the SCD that remained stable.
Conclusion: The present findings reveal that SCD exhibits network disorganization during visual encoding and retrieval with
intermediate values between MCI and HC.

Keywords: Alzheimer’s disease, brain networks, electroencephalography, mild cognitive impairment, subjective cognitive
decline, visual attention, visual short-term memory

INTRODUCTION

Alzheimer’s disease (AD) is characterized by
progressive cognitive impairment and behavioral
changes with high socioeconomical impact [1]. In
the preclinical stages of AD, such as mild cogni-
tive impairment (MCI) or subjective cognitive decline
(SCD), memory difficulties are generally apparent
in tasks that require complex thinking, episodic
memory, learning, or retention of visual and verbal
information [2–7]. In particular, SCD is clinically
defined as self-perceived changes in memory and
cognition that individuals report in the absence of
objective evidence of abnormality in clinical and
neuropsychological evaluation. It is increasingly rec-
ognized as a risk factor both for MCI and AD
compared to demographically matched healthy elders
(hazard ratio 4.5) [4, 8–11]. SCD remains poorly
explored with respect to the integrity of a wide
array of brain functions and with a continuing debate
regarding its clinical, research, and everyday util-
ity [4, 12–14]. Therefore, it is imperative to seek
and identify measurable indices and tools to detect
indicative characteristics, patterns, causality, indica-
tors, and factors in order to forestall both SCD and
MCI [15, 16].

Meanwhile, technology and neuroimaging tools
promise to provide more efficient and objective mea-
surements as opposed to time- and effort-consuming
neuropsychological assessment and interviews. In
this light, the so-called “digital biomarkers” are
emerging from the analysis of data streams from
both lifestyle and biomedical technologies, includ-
ing wearable and traditional electroencephalography
(EEG) technology. The ongoing ‘Remote Assess-
ment of Disease and Relapse–Alzheimer’s Disease’
(RADAR-AD, https://www.radar-ad.org/) interna-
tional study uses remote monitoring technologies
(RMTs) to continuously and objectively monitor

functional decline in AD. This paper explores
EEG analysis as a means for efficient and reliable
assessment using technology, in the context of the
RADAR-AD study. Remote monitoring technologies
in the RADAR-AD study utilizes wearable and smart
home devices as well as applications, used both at
participant homes and during laboratory trials. The
RADAR-AD study highlights the importance of effi-
cient and reliable assessment using technology in
such international studies. Motivated by the fact that
portable EEG headbands will be used in RADAR-
AD home trials, this paper explores the potential of
EEG analysis obtained in a lab environment to be later
transferred and compared to portable EEG applica-
tions at home.

Visual attention and short-term memory as
indicators of cognitive impairment

A hallmark of aging widely observed in older-old
adults is a decline in visual short-term memory and
visual attention [17–20]. It refers to the ability to
maintain the focus of cognitive activity over time on a
given task and to preserve in mind a visual represen-
tation after the sensory stimulus has been disappeared
[21, 22]. In particular, visual attention highly interacts
with the encoding process of memory implementa-
tion [23], which utilizes neural circuits tailored for
sensory perception and long-term memory retrieval
[21, 24–27]. By this account, after the visual sensory
input has been removed from sight, visual short-term
memory is implemented by prolonged activations,
through visual attention, of the same parietal and
occipital brain areas which are supposed to evoke
visual perception [28–31]. Visual short-term memory
and attention are distinct yet interrelated processes
and hold great scientific interest for AD research as
precursors of cognitive decline related to AD. Cog-
nitive mechanisms and neural activity underlying

https://www.radar-ad.org/
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these tasks show a large degree of overlap. There-
fore, the examination of these cognitive processes in
a clinical setting in general or during brain activity
recording in particular could indicate early disruption
mechanisms related to dementia pathology and future
progression. Especially activity within the posterior
parietal cortex reflects object maintenance across
distraction or sustained attention per se, it is neces-
sary to control for attentional demands inherent in
VSTM tasks. During this process, parietal and occip-
ital regions play pivotal role [32–37], whereas the
prefrontal cortex does not constitute a particular brain
region for memory storage [29, 38]. Thus, plenty
of findings, even with single-unit recordings, have
provided substantial information with regards to the
control of visual processing and stimulus selection in
the visual cortex over the parietal cortices [39–49].

Previous studies have shown that AD as well
as MCI patients frequently demonstrate deficits
on visual attention and visual short-term memory
and can be characterized by significant abnormality
[50–55]. The deficits relate to reduced white mat-
ter integrity [56, 57], worse performance of daily
activities, and lower quality of life [53, 58–60].
Electrophysiological studies employing the compu-
tational theory of visual attention [61, 62] have found
also decreased visual short-term memory storage
capacity in elders compared to younger adults [18,
63–66]. Moreover, several neuroimaging studies have
identified interrupted connections, basically located
over the superior longitudinal and inferior fronto-
occipital fasciculus, the parietal and frontal eye field
regions, and corpus callosum, which has been found
to be responsible for visuospatial dysfunction in cases
of brain damage [67, 68].

Recent studies underline the principle involve-
ment of posterior parietal cortices (PPC) in visual
short-term memory [30, 69], given that create mental
images, while combining sensory and motor inputs.
Therefore, the activity in the PPC is highly correlated
with the proportion of scene-related information and
mental representations that can be stored in visual
short-term memory [30]. Functional changes in early
stages of AD are located over the posterior hemi-
spheres rather than the frontal areas of the brain
[32–37]. Studies highlight the pivotal role of the PPC,
visual and prefrontal cortices, a key neural factor of
the mental representation of the visual world in atten-
tion [68, 70–76]. In particular, the PPC might act
as a capacity-limited store for the representation of
the visual scene, while pieces of evidence suggest
that item location and identification are in generally

taken place in dorsal (occipito-parietal) and ventral
(occipito-temporal) cortical visual areas, respectively
[44]. As a result, impairment in attentional mech-
anisms related to divide and sustain attention has
been related to impaired visuospatial memory func-
tion in older-old adults [53, 77–80]. Finally, pieces
of evidence have showed that visuospatial decline
is linked to reduced bilateral parietal and right
temporo-parietal metabolism in mild to moderate
AD [81]. Despite this body of work, research focus-
ing on associations between brain activation and
visual short-term memory and visual attention per-
formances among people with MCI and SCD is still
in its infancy.

Brain connectome in preclinical stages of AD
continuum

Investigating human brain connectome, based on
graph theory, can improve our understanding of the
complex organization of the human brain [82–85].
Recent findings underline that subtle connection
between different brain regions, showing reduced
functional connectivity (FC), constitutes the substrate
of the AD pathophysiological mechanisms [86]. Evi-
dences shows that AD is associated with alteration of
FC among different brain regions [87–90]. Specif-
ically, it has been shown that AD patients have
decreased FC between regions in the hippocampus, in
prefrontal lobe and medial frontal, parietal and poste-
rior cingulate cortex, and between the two lobes [91,
92]. In detail, FC abnormalities have been described
as a disconnection syndrome and have been widely
reported in preclinical stages, such as MCI and SCD,
as well [57, 93–95]. Thus, they promise great util-
ity in predicting future transition to more advanced
stages of cognitive decline and conversion to AD
[96, 97]. Despite the fact that resting state has been
already investigated in SCD population, brain con-
nectome during memory and attentional performance
is scarcely explored [98–100].

Our recent review [94] suggested that SCD may
actually demonstrate intermediate changes between
healthy elders and MCI at a network level of the
brain and implies that brain connectome could be
considered as a potential biomarker of predicting
future cognitive deterioration associated with AD.
However very limited studies have so far explored
the brain network in SCD using EEG [93, 94]. In
the majority of the included studies, SCD exhib-
ited lower values compared to healthy controls with
regards to local efficiency, network strength, and
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shortest path length but preserved global network
properties such as small-world and rich-club. On the
other hand, local network metrics like degree, short-
est path length, clustering coefficient, etc., revealed
the subtle connectivity issues in spatial, functional,
and structural changes in particular brain areas in
SCD compared to HC. Nevertheless, studies based
on EEG have revealed that MCI subjects displayed
a significant decrease in alpha power, a slowing of
the EEG, a reduced complexity of the EEG signals,
and perturbations in the EEG synchrony compared
to normal elderly people [101–104]. Furthermore, it
has been reported that there is a prominent decrease
in the functional coupling of EEG rhythms in AD and
MCI compared to normal elderly subjects [105–109].
Therefore, the investigation of the complex brain
mechanisms holds great scientific interest for the
SCD using FC patterns, against those of more
advanced stages. So far, the knowledge about the
course of FC alterations in the SCD is really scarce
[110, 111], while the exploration of FC in SCD using
high density EEG is still limited [93, 94].

Study aim

The present study constitutes a novel research
that focuses on investigating brain connectivity
abnormalities and network metrics [112] (Clustering
Coefficient, Strength, and Betweenness Centrality)
at the occipito-parietal area throughout preclinical
stages of AD by implementing High Density-
Electroencephalography (HD-EEG, EGI GES 300)
during a visual attention (VAT) and a short-term
memory task (VSTMT). We have constructed cor-
relation matrices and weighted undirected networks
to precisely detect brain network properties across
the four groups and compare the results with stan-
dard neuropsychological tests. In light of previous
research findings [93, 94], our expectation in this
study was to find differences in network proper-
ties among SCD individuals with regards to HC.
In particular, we hypothesized that the SCD group
would exhibit brain changes and network interrup-
tion in a similar way to those displayed in MCI,
although to a lower extent, yielding in an interme-
diate stage between HC and MCI [93, 94]. To the
best of our knowledge, there is no existing study that
has explored the potential of these particular network
metrics in SCD population during VAT and VSTMT
with HD-EEG [94]. Therefore, our study aimed to:
1) compare VSTMT and VAT performances between
HC and people with SCD, people diagnosed with

MCI and AD by standardized neuropsychological
tests at baseline and after three years, and 2) exam-
ine the clinical relevance between visual short-term
memory and visual attention performances with the
parameters of the brain network, so as to improve our
understanding of factors contributing to the signs and
symptoms of SCD.

MATERIALS AND METHODS

Settings and participants

In total 80 participants were recruited from the
memory & dementia clinic of the 1st Department
of Neurology, U.H. AHEPA, Aristotle University
of Thessaloniki, Greece (https://www.med.auth.gr/)
and the Greek Association of Alzheimer’s Dis-
ease and Related Disorders (GAADRD; https://www.
alzheimer-hellas.gr/index.php/el/). The study was
carried out in accordance with the Declaration of
Helsinki, has received approval by the Scientific &
Ethic committee of GAADRD (No 41/6-6-2018),
while a written informed consent was obtained from
all participants prior to their participation in the study.
The diagnosis of HC, SCD, MCI, and AD was set
by a neuropsychiatrist (MT) according to the struc-
tural magnetic resonance imaging (MRI), medical
history, neuropsychological tests, and neurological
examination. Upon initial processing, we identified
that the EEG data of seven individuals were highly
contaminated by both head and eye movement arti-
facts. This can be explained due to the nature of
the experiment that constitutes several participants
to ask the experiment to help them. Hence, they
were excluded from the signal analytic EEG pipeline,
yielding 73 participants for the final results in the
study.

In detail, the SCD group consisted of 17 partic-
ipants, the MCI group consisted of 23 participants,
the AD group consisted of 12 participants, while 21
HC were also included having similar range of ages
and education. The participants in all four groups
were over 60 years old [113–115]. Table 1 presents
the average age with the standard deviation for each
group of participants. Participants with AD fulfilled
the National Institute of Neurological and Communi-
cation Disorders and Stroke/Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA)
criteria for probable AD [116], as well as the Diag-
nostic and Statistical Manual of Mental Disorders
(DSM-V) criteria for dementia of Alzheimer type

https://www.med.auth.gr/
https://www.alzheimer-hellas.gr/index.php/el/
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Table 1
Mean ± SD (standard deviation) and p value of demographic characteristics of participants

(HC = 21, SCD = 17, MCI = 23, AD = 12)

HC SCD MCI AD p

Demographics

Age 62.62 (13.86) 66.82 (8.20) 69.61 (6.91) 70.50 (7.69) 0.734
Gender (M:F) 8:13 6:11 7:16 4:8 0.522
Years of Education 14.70 (5.32) 12.76 (4.77) 10.08 (4.36) 9.78 (3.96) 0.253

(APA, 1994). On the other hand, the MCI partici-
pants fulfilled the Petersen criteria [117], while the
SCD group met IWG-2 Guidelines [118] as well as
the SCD-I Working Group instructions [119]. More
specifically, the criteria for recruiting SCI participants
were in accordance with the latest suggestions pro-
posed by the SCD-I Working Group [119], while for
the participants of the other groups the respective
above mentioned criteria were followed. Moreover,
we would like to make clear that with regards to our
study, the identification of SCD participants further
included self-perceived memory decline compared
to other cognitive functions and in reference to oth-
ers of the same age occurring during the past five
years as determined by the individuals’ medical his-
tory and an informant report, at an age cut-off of
60. Regarding the preclinical stage of SCD, we tried
to eliminate possible confounding factors based on
blood tests (hormonal disorders, vitamin deficiency,
etc.) and structural MRI (vascular/demyelinating
lesions, tumors, anatomical variations, etc.). All the
above were taken under consideration for the recruit-
ment process, since they could affect our sample
performance and signal elicitation. Additional inclu-
sion criteria for the SCD and HC subjects were to
have a normal general medical, neurological, and
neuropsychological examination. Exclusion criteria
included 1) severe psychiatric, physical, or other
neurological disorder illness or any other somatic
disorder which may cause cognitive impairment,
2) history of alcohol or drug and use of neu-
romodifying drugs except cholinesterase inhibitors
or memantine for the AD patients, and 4) left
handedness.

Neuropsychological assessment

All participants underwent a detailed neuropsy-
chological evaluation at baseline, where the EEG
recording took place and after 3 years (follow-up),
which included the same standardized neuropsycho-
logical battery, an insightful psychological interview
and medical history using the Structured Clinical

Interview for DSM-IV Axis I Disorders Clinical
Version (SCID-CV) [120], as well as physical and
neurological examination. In particular, the follow-
ing neuropsychological battery was implemented
in order to assess cognitive status comprehensively
and evaluate aspects like working memory, execu-
tive functioning, attention, memory and language:
a) the Greek version of Mini-Mental State Exami-
nation (MMSE) [121], b) Functional Rating Scale
for Dementia (FRSSD) [122], c) Functional and
Cognitive Assessment Test (FUCAS) [123], d) Trail
Making Test part-B [124], e) RBMT-story Direct and
delayed recall [125], f) Rey Osterrieth Complex Fig-
ure Test copy and delay recall (ROCFT-copy and
delayed recall) [126], g) Rey Auditory Verbal Learn-
ing Test (RAVLT), and h)Verbal Fluency test (FAS).
Evaluation of mood and behavior took place both
from the interview data and the participant and care-
giver answers to the relative brief self-report tools,
the Neuropsychiatric Inventory (NPI) [127] and the
Perceived Stress Scale (PSS) [128].

Notably, in each of the neuropsychological tests
we used to test the cognitive performance of the
four groups, the performance of all subjects in HC
and SCD was indicative of normal cognitive sta-
tus (Table 1). In other words, the aforementioned
neuropsychological tests are only capable of dis-
tinguishing between normal and abnormal cognitive
status and lacks the sensitivity necessary to classify a
subject as HC or SCD. This is not the case for the other
groups, since according to the One-way ANOVA
test, used to investigate differences between our four
groups, the MCI and AD group showed statistically
significant worse performance scores in the majority
of MMSE, FRSSD, FUCAS, RAVLT, FAS, ROCFT,
and RBMT memory tests. In Table 2, superscripts
indicate when the difference between two groups is
statistically significant using the independent sam-
ple t-test. Table 2 presents the mean values and
standard deviation in the baseline, the follow-up neu-
ropsychological assessment, and the SCI and MCI
who converted to more advanced stages after three
years.
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Visual attention and short-term memory task
(VAT & VSTMT) and EEG recording

For this research, participants had to fulfil one task
involving visual attention and short-term memory.
The task began with a 5-point calibration procedure,
to correctly map eye position onto screen coordinates
and written instructions were given to participants. In
total, 22 images containing landscapes or events were
used and a multiple-choice question, relating to the
image, followed immediately after the image disap-
peared. Each trial began with a fixation circle, which
remained on the screen for 1 s. Each image was after-
wards projected for 20 s and subjects were instructed
to pay particular attention to the images and its items
(VAT). After the presentation, the fixation circle was
presented and then the question followed (VSTMT).
Participants were asked to respond to a question rele-
vant to the image as quickly as possible and proceed to
the following. Two examples were given in the begin-
ning, to help subjects familiarize with the experiment.
The whole procedure was divided into two blocks,
each one consisting of 11 images and a 1-min break
between them. The total duration was approximately
12 min. The whole process is illustrated in Fig. 1.

EEG data acquisition and network construction

Regarding the data acquisition, we have followed
the same protocol as we did in our previous research
efforts [93]. Figure 2 illustrates the pipeline process
for data acquisition, construction of the weighted
undirected networks, and extraction of the metrics
derived from the Correlation Matrices of the EEG,
during VSTMT and VAT. HD-EEG data were
recorded with the EGI 300 Geodesic EEG system
(GES300) using a 256-channel HydroCel Geodesic
Sensor Net (HCGSN) and a sampling rate of 250
Hz (EGI Eugene, OR). Moreover, the researcher
placed the electrodes in accordance with the ‘256
HCGSN adult 1.0’ montage system, while the
signals were recorded relative to a vertex reference
electrode (Cz) and with AFz as the ground electrode.
The impedance was kept for all electrodes below
50 k� throughout the experimental procedure
as recommended for the high-input impedance
amplifier [129]. The SMI Red500 (SensoMotoric
Instruments) eye-tracker was used to generate gaze
maps and ensure the sustained attention of the
participants while avoiding fatigue. The experiment
was projected on a 22” monitor and the tasks were
developed using the Experiment Center software,
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Fig. 1. EEG, Eye-Tracker Set-Up, and VAT & VSTMT process timeline

powered by SMI. Subjects sat approximately 60 cm
away from the monitor. HD-EEG data were initially
filtered with a 5th-order bandpass Butterworth IIR
filter of 0.3–70 Hz and then segmented using the task
triggers timestamp and an epoch time of 1 s, includ-
ing 100 ms pre-stimulus time. In addition, artefact
detection and bad channel replacement was per-
formed. Data were baseline-corrected using a 100 ms
pre-stimulus period and the Net Station 4.3 software
(EGI; https://m.egi.com/clinical-division/clinical-
division-clinical-products/ges-300). We examined
both tasks (VAT and VSTMT). Detection of “bad”
segments was executed by marking those segments
with amplitudes more than 100 �V. Also, signals
from the rejected (bad) electrodes were replaced
using an interpolation process provided by the ‘bad
channel replacement’ algorithm (Net Station 4.3).
The brain network analysis was conducted at a
first level in a personalized fashion, deriving the
individual weighted correlation matrices upon all
trials. Then the averaged profiles (i.e., averaged
correlation matrices) were estimated for every group
(HC, SCD, MCI, and AD) and were considered as
the input matrices for the estimation of the network

metrics. The Pearson Correlation Coefficient (PCC)
was employed in order to measure connectivity
between all pairs of electrodes. PCC is a measure
of normalized covariance between two continuous
variables that can be estimated by dividing the
covariance of two variables by the product of their
standard deviations. In this respect, the weighted
correlation matrices were created using the PCC
between the time series of each pair of electrodes
(all electrodes at VAT and VSTMT, occipito-parietal
electrodes). Besides the pre-processing steps per-
formed using Net Station’s algorithms, all other
processing and analysis steps were performed using
Matlab 2019 (The Mathworks, Natick, USA).

Occipito-parietal network analysis

We employed weighted correlation matrices from
the EEG electrodes in order to analyze the undirected
brain network and explore particular network metrics.
In detail, we considered a local network of selected
electrodes (parietal and occipital region), which is the
most prominent choice for the examination of VAT
and VSTMT [130–134]. Regarding the network, we

https://m.egi.com/clinical-division/clinical-division-clinical-products/ges-300
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Fig. 2. Outline of the experimental procedure and the methodology for extracting the network metrics derived from Correlation Matrices
after VAT and VMT.

chose the following electrodes according to the EGI
system numbering: “66, 72, 75, 76, 77, 78, 84, 85,
86, 87, 88, 95, 97, 98, 99, 100, 101, 104, 105, 106,
107, 108, 109, 110, 112, 113, 114, 115, 116, 117,
118, 119, 121, 122, 123, 124, 125, 126, 127, 128,
129, 134, 135, 136, 137, 138, 139, 140, 141, 142,
146, 147, 148, 149, 150, 151, 152, 153, 154, 156, 157,
158, 159, 160, 161, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 188,
189, 200” [135], which represent the respective pari-
etal and occipital areas. The corresponding electrodes
of the EEG were considered to constitute the nodes
of the graph [112], while the correlation between the
nodes – electrodes (absolute value of PCC) represents
the edges of the graph [136, 137]. More information
about the position of the electrodes can be found in
Electrical Geodesics Inc (2007) Geodesic Sensor Net
Technical Manual (https://www.egi.com/research-
division/geodesic-sensor-net). In this way, we con-
structed a weighted graph in order to analyze the brain

network and explore the network metrics of cluster-
ing coefficient, strength and betweenness centrality.
Whereas strength (S) quantifies aggregation and
clustering coefficient (CC) segregation, we also con-
sidered the betweenness centrality (BC) as a measure
of centrality [138]. Using the toolboxes of Brain Con-
nectivity (https://brain-connectivity-toolbox.net) and
FieldTrip (https://www.fieldtriptoolbox.org/), these
network metrics were derived from the weighted
adjacency matrices with the intention to characterize
the connectivity properties of local occipito-parietal
network. The details of these network metrics are
briefly presented below.

Clustering Coefficient (CC)
Given a graph G of N nodes and weighted con-

nections, the weighted clustering-coefficient CCv of
node v provide us with a measure of interconnection
between node v and its neighbors, where Nv is the

https://www.egi.com/research-division/geodesic-sensor-net
https://brain-connectivity-toolbox.net
https://www.fieldtriptoolbox.org/
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number of links between neighbors of v and Kv its
degree [138].

CCv = 2Nv

Kv − 1
(1)

Strength (S)
The connection strength Sk of each node k in the

graph is estimated as the sum of the weights of all
the connections of node k, gaining information on
the total level of (weighted) connectivity of a node
[138]. The strength expresses how strongly the node
is connected with its neighboring nodes, by summing
all weights of the connections of this node. Strength
equals to the sum of connectivity weights attached
to a given node. It may serve, approximately, as a
centrality measure, indicating the importance of the
associated brain region within the observed network
organization:

Sk =
N∑

r /= k

Wkr (2)

Betweenness Centrality (BC)
The Betweenness Centrality BCv of a node v in the

graph is related to the fraction of the total number of
the shortest paths, that pass through node v from node
s to node t (σst(v)), to the total number of the shortest
paths from node s to node t (σst)[138]. BC describes
the centrality of a graph using shortest paths and rep-
resents the degree to which nodes stand between each
other. The total BC of the graph G is the average of
all N node Betweenness Centralities:

BCv =
∑

s /= v /= t

σstV

σst

(3)

Statistical analysis

We compared brain network data (in terms of PCC)
among the four groups at the level of significance
p = 0.05. Network metrics were compared between
groups using ANOVA analysis. Statistical analysis
was performed using SPSS v25.0 for Windows (IBM
Corporation, Armonk, NY, USA). For assessing the
normality assumption for continuous and categori-
cal variables we used the Kolmogorov-Smirnov and
chi-squared test, respectively. For examining the
potential statistical significance between two inde-
pendent groups (e.g., HC versus SCD), we used the
independent sample t-test. Moreover, independent
sample t-test was used for the years of education
variable yielding no statistical difference among the

groups, with p = 0.253, while no gender differences
were found after Chi-Square analysis (p = 0.522). We
used One-Way ANOVA in order to analyze the dif-
ference in the network metrics across the four groups
both for VAT and VSTMT. In cases, where net-
work metrics showed statistical significance between
groups, within group differences were tested using
the t-test. Correlation between neuropsychological
tests and network-derived metrics was assessed by
using PCC.

RESULTS

Comparison of network properties between HC,
SCD, MCI, and AD

In order to compare the network properties of
the different groups we have employed the follow-
ing analysis: a) The mean and standard deviation
of the averaged measured corresponding to the net-
work metrics (Clustering Coefficient, Strength, and
Betweenness Centrality) of each group and for each
task (see Table 2 and Supplementary Figure 1). These
are further complemented by the result of the one-
way ANOVA test across the four groups and for
each network metric and task, and the results of an
independent sample t-test to evaluate the statistically
significant difference between pairs of groups (super-
scripts are used to indicate the statistically significant
difference between a pair of groups); b) Boxplots
visualizing the separability of the four groups for each
network metric and task (Fig. 3); and c) Topoplots
generated from the correlation matrices for the three
networks metrics for both tasks (VAT and VSTMT)
(Fig. 4).

In Table 2, we can observe that the mean val-
ues of the HC are higher compared to the rest of
the groups (i.e., SCD, MCI, and AD). Moreover, the
results of the one-way ANOVA test show that there is
statistically significant difference in several network
metrics across the four groups of participants at level
p = 0.05, such as: i) in VSTMT: CC: [F (3, 69) = 4.56,
p = 0.006], S: [F (3, 69) = 4.76, p = 0.005], and BC:
[F (3, 69) = 0.78, p = 0.510], and ii) VAT: CC: [F (3,
59) = 5.06, p = 0.003], S: [F (3, 69) = 5.40, p = 0.002],
and BC: [F (3, 69) = 3.54, p = 0.019]. In addition, the
results of the independent sample t-test indicate that
statistically significant differences are also present
between pairs of groups as described below:
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Fig. 3. Boxplots showing differences for the four groups of participants (HC = 21, SCD = 17, MCI = 23, AD = 12) in Clustering Coefficient,
Strength, and Betweenness Centrality during VAT and VSTMT.

VAT
According to Independent Sample t-test, CC

was higher for HC (M = 0.71, SD = 0.12) com-
pared to SCD (M = 0.62, SD = 0.09), t (36) = 2.43,
p = 0.026, to MCI (M = 0.59, SD = 0.19), t (42) = 2.34,
p = 0.024, and to AD group (M = 0.48, SD = 0.25),
t (31) = 3.58, p = 0.001 as well. On the other hand,
with regards to S, statistical analysis showed higher
values for HC (M = 56.42, SD = 8.06) compared to
SCD (M = 50.59, SD = 6.19), t (36) = 2.45, p = 0.019,
to MCI (M = 48.91, SD = 11.97), t (42) = 2.41,
p = 0.020, and to AD group (M = 40.77, SD = 16.74),
t (31) = 3.58, p = 0.001. Finally, BC showed no sta-
tistically significant differences between HC and
SCD or MCI but only between HC (M = 5.33,
SD = 4.15) compared to AD (M = 1.97, SD = 0.82), t
(31) = 2.75, p = 0.010 and SCD (M = 5.33, SD = 3.08)
compared to AD (M = 1.97, SD = 0.82), t (27) = 3.67,
p = 0.001.

VSTMT
Similar to VAT, according to Independent Sam-

ple t-test, CC was also higher for HC (M = 0.69,
SD = 0.12) compared to SCD (M = 0.59, SD = 0.11), t
(36) = 2.33, p = 0.025, to MCI (M = 0.59, SD = 0.15),
t (41) = 2.43, p = 0.019 and to AD group (M = 0.48,
SD = 0.24), t (31) = 3.25, p = 0.003 as well. Addition-
ally, with regards to S, statistical analysis showed
higher values for HC (M = 55.15, SD = 8.36) com-
pared to SCD (M = 49.27, SD = 7.47), t (36) = 2.26,
p = 0.030, MCI (M = 48.21, SD = 9. 71), t (41) = 2.44,
p = 0.019, and AD group (M = 41.52, SD = 15.83), t
(31) = 3.25, p = 0.003. On the other hand, with regard
to BC, comparisons between the remainder of the
groups revealed no statistically significant difference
either between SCD versus MCI and AD or MCI
versus AD.

In Fig. 3, we can observe increased FC (lower mean
values in CC and higher mean S) in HC with regards
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Fig. 4. Topoplots for the three network metrics (clustering coefficient, strength and betweenness centrality during VAT (right) and VSTMT
(left) across the four groups of participants (HC = 21, SCD = 17, MCI = 23, AD = 12).

to SCD, MCI, and AD participants, while lower mean
values of BC have also been found in later stages of
the disease.

Finally, in Fig. 4, we can see that HC group presents
a denser network with several connections between
nodes at occipito-parietal electrodes regarding CC
and S. As the disease progresses, we can see more
apparent connections between nodes during VAT and
VSTMT (Fig. 4). The correlation differences are
more obvious in the VAT. Especially in the case of
AD the network connections are much more aber-
rant, while network interruption is widely observed
over the occipito-parietal network.

Sensitivity and specificity of network
properties

In this section, we investigate the potential utility of
the abovementioned network properties for VAT and
VSTMT as a marker to distinguish an individual’s
cognitive condition (SCD, MCI, and AD) compared
to HC by testing Sensitivity and Specificity among
the groups (Table 3). More specifically, we exam-
ined the Area Under the Curve (AUC), as formed by
drawing the curve of Sensitivity versus Specificity.
These pieces of evidence can provide information
about the use of CC, S, and BC as indicators that

would distinguish SCD from the other conditions
(and more importantly the HC from SCD) using
objective measures. Specificity and Sensitivity values
were estimated by using SPSS v25.0. In particular, we
developed ROC curves and identified the best thresh-
old of the network metrics to differentiate the groups.
The Sensitivity and Specificity scores corresponding
to the cutoff thresholds alongside with the AUC are
shown in Table 4, while Fig. 5 visualizes the AUC,
Sensitivity, and Specificity of the respective network
metrics.

In detail, we manage to successfully discriminate
HC from SCD using either the CC (Sensitivity = 75%
and Specificity = 64%, AUC = 71%) or the S (Sen-
sitivity = 75% and Specificity = 64%, AUC = 71%)
measure during VAT and VSTMT. Also, we man-
age to discriminate HC from MCI using either
the CC (Sensitivity = 64% and Specificity = 80%,
AUC = 73%) or the S (Sensitivity = 80% and Speci-
ficity = 64%, AUC = 79%) measure during both tasks.
Finally, HC also discriminated from AD using either
the CC (Sensitivity = 65% and Specificity = 82%,
AUC = 79%) or the S (Sensitivity = 65% and Speci-
ficity = 82%, AUC = 79%) both in VAT and VSTMT.
None of the other simulation tests for BC did man-
age to yield a performance over the minimum value
(AUC = 60%) both for Specificity and Sensitivity
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Table 3
Sensitivity and Specificity of Clustering Coefficient, Strength, and Betweenness Centrality at VAT and VSTMT for all different combinations

between pair of groups

Groups Task Network Property AUC Threshold Sensitivity Specificity
(%) Value (%) (%)

HC versus SCD VAT Clustering Coefficient 71 0.62 71 65
Strength 71 50.72 71 65
Betweenness Centrality 45 4.14 62 41

VSTMT Clustering Coefficient 71 0.65 67 65
Strength 70 52.84 62 65
Betweenness Centrality 51 6.32 29 65

HC versus MCI VAT Clustering Coefficient 67 0.70 52 74
Strength 67 55.83 52 74
Betweenness Centrality 57 3.77 67 61

VSTMT Clustering Coefficient 71 0.63 71 61
Strength 70 51.76 67 61
Betweenness Centrality 59 4.77 52 65

HC versus AD VAT Clustering Coefficient 78 0.64 62 67
Strength 78 48.74 86 58
Betweenness Centrality 75 2.24 71 67

VSTMT Clustering Coefficient 77 0.62 62 67
Strength 77 52.70 62 67
Betweenness Centrality 64 2.54 76 58

SCD versus MCI VAT Clustering Coefficient 48 0.62 41 44
Strength 49 50.46 41 44
Betweenness Centrality 64 3.92 65 65

VSTMT Clustering Coefficient 54 0.62 53 57
Strength 53 49.97 53 52
Betweenness Centrality 56 4.29 53 57

MCI versus AD VAT Clustering Coefficient 67 0.61 61 67
Strength 67 49.43 61 67
Betweenness Centrality 66 1.83 61 67

VSTMT Clustering Coefficient 60 0.54 61 50
Strength 61 46.60 61 58
Betweenness Centrality 52 2.16 61 50

Table 4
Mean ± SD of network properties during VAT and VMT across the four groups (HC = 21, SCD = 17, MCI = 23, AD = 12). The last column of
the table shows the p-value of one-way ANOVA. Superscripts indicate the statistical significance between groups after independent sample

t-test

HC SCD MCI AD

Mean SD Mean SD Mean SD Mean SD p

VAT Clustering Coefficient 0.71∗ 0.12 0.62 0.09 0.59∗∗∗ 0.19 0.48∨ 0.25 0.003
Strength 56.42∗∗ 8.06 50.58 6.19 48.91∗∗∗ 11.99 40.77∨ 16.74 0.002
Betweenness Centrality 5.33∨ 4.15 5.33 3.08 3.92 3.02 1.98 0.81 0.012

VSTMT Clustering Coefficient 0.69∗∗ 0.12 0.60 0.11 0.59∗∗∗ 0.15 0.49∨ 0.24 0.006
Strength 55.15∗∗ 8.36 49.27 7.47 48.21∗∗∗ 9.71 41.52∨ 115.83 0.005
Betweenness Centrality 4.64 2.49 4.51 3.06 3.87 2.71 3.36 2.11 0.531

∗HC versus SCD - p < 0.05. ∗∗HC versus SCD – p < 0.01. ∗∗∗HC versus MCI – p < 0.05. ∨HC versus AD – p < 0.001.

(Fig. 5). Consequently, although there are cases that
we managed to surpass 60%, which indicates a good
classification of patient groups, there is still work
to do for reaching a clinically meaningful and a
highly robust level of discrimination between groups
that will allow the adoption of these metrics by the
clinicians.

Neuropsychological assessment and network
properties

Neuropsychological assessment revealed no statis-
tically significant difference between HC and SCD,
whereas significant difference was found between
HC and the rest of the groups (MCI and AD) at
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Fig. 5. ROC Curves showing the Clustering Coefficient, Strength, and Betweenness centrality at VAT and VSTMT for discriminating
between: A) SCD and HC, B) MCI and HC, C) AD and HC, D) MCI and SCD, E) SCD and AD, F) MCI and AD.

baseline (Table 1). On the other hand, follow-up neu-
ropsychological assessment after 3 years (Table 1)
revealed significant changes in the cognitive perfor-
mance of the SCD group since 35.3% remained at
SCD stage and 64.7% converged to MCI. In addi-
tion, from the MCI group, 13% converged to AD
and 78.2% remained at MCI group. On the other
hand, from the HC group only 9.5% converged to
MCI. Moreover, the SCD group who converted to
MCI and MCI group who had further cognitive
decline or converted to AD showed worse perfor-
mance in the second neuropsychological examination
compared to the baseline assessment (Table 1). Addi-
tionally, with regards to the network metrics, SCD
who do converted to MCI had lower performance: i)
in VSTMT: CC: (M = 0.57, SD = 0.12), S: (M = 47.80,

SD = 7.73), and BC: (M = 4.19, SD = 3.16); ii) VAT:
CC: (M = 0.62, SD = 0.11), S: (M = 50.73, SD = 7.03)
and BC: (M = 4.86, SD = 3.30). On the other hand, the
SCD that remained stable showed increased values i)
in VSTMT: CC: (M = 0.72, SD = 0.11), S: (M = 57.29,
SD = 7.03), and BC: (M = 4.35, SD = 2.70); ii) VAT:
CC: (M = 0.68, SD = 0.10), S: (M = 54.93, SD = 6.14)
and BC: (M = 3.58, SD = 0.51).

As seen in Table 1, statistically significant dif-
ferences at baseline are mostly found between the
group of HC compared to MCI (less frequent) and AD
(in almost all tests), supporting the differentiation of
MCI and AD compared to HC in a variety of cog-
nitive domains (e.g., Daily functionality, Memory,
Executive Function, etc.). However, as expected, in
the case of patients with SCD, who are clinically and
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cognitively equal to HC, no significant differentiation
was found between traditional neuropsychological
tests at baseline, which motivates the need to explore
other mechanisms for distinguishing between HC and
SCD, given that both groups present similar cognitive
profile and neuropsychological performance. Albeit,
in the follow-up assessment after three years, statis-
tically significant difference was found among the
four groups and between the baseline and follow-
up assessment in each group of SCD, MCI, and AD
showing deterioration in global cognition, visuospa-
tial ability, and episodic memory.

DISCUSSION

The present study presents the results of investigat-
ing brain connectome alterations in the preclinical
stages of AD by using a HD-EEG during VSTMT
and VAT. The evidence collected suggest the impor-
tance of brain network metrics extracted through
EEG, for the characterization of a subject as SCD that
is highly likely to convert to more advanced stages
of AD and its connectivity mechanisms as a trigger
of the dementia. Our study showed that SCD and
MCI participants demonstrate interruptions both in
visual attention and in short-term memory network
compared to HC, showing the potential use of these
networks to identify people that even though they still
exhibit a normal neuropsychological profile, they are
at risk of developing AD.

In more detail, the results showed that AD patients
were always characterized by high impairment lev-
els, while MCI and SCD patients had an intermediate
performance compared to HC. In HC, increased CC
and S over posterior regions has been found dur-
ing VSTMT, presumably related to better encoding
process during the attentional phase which yields
subsequent better retrieval, whereas in SCD and
MCI reduced CC and S over posterior regions was
detected. According to the conditions and/or the mea-
sures considered, SCD performances were close to
MCI patients. Indeed, SCD participants’ retrieval
processes were impaired in visual modality, which
paves the way to suggest that SCD, MCI, and AD
patients present limited access of the memory trace
or that they have not successfully encoded the infor-
mation. Therefore, a disrupted attentional process
might be partly indicative of the deficit particularly in
VSTMT, presenting subtle connectivity alterations.

Moreover, in order to evaluate the potential use of
these network metrics as biomarkers, we employed

the ROC curve analysis to define the cut-off scores
and the Sensitivity and Specificity of each met-
ric (clustering coefficient, strength and betweenness
centrality). Based on our findings, the clustering
coefficient and strength during VAT have the poten-
tial to serve as markers for the detection of SCD,
since they manage to distinguish SCD from HC with
71% Sensitivity and 65% Specificity (AUC = 71%,
in ROC curves), MCI from HC with 71% Sensitivity
and 61% Specificity (AUC = 71% and AUC = 70%,
respectively, in VSTMT ROC curves), and AD
from HC with 62% Sensitivity and 67% Specificity
(AUC = 78% in ROC curves). An important finding
deriving from the present study is that several SCD
participants, that exhibited a similar neuropsycho-
logical profile with HC in the baseline examination
but differed in brain network, demonstrated signifi-
cant cognitive decline after three years compared to
HC as revealed by the follow-up assessment. These
findings suggest that people who present intermedi-
ate values to HC and MCI, may actually convert to
MCI after 3 years. In detail, even before detecting
decline in neuropsychological tests, network disrup-
tions might show a common disconnection pattern
of the brain connectome in SCD, although not to the
same extent as in MCI. Moreover, the SCD group who
converted to MCI and the MCI who presented worse
performance or converted to AD had lower scores
in the majority of neuropsychological assessment
after three years compared to those who remained
stable. Similarly, it has been demonstrated that cog-
nitive measures can predict progression from MCI to
Alzheimer’s type dementia/AD [11].

While a prevailing body of literature underlined
impaired memory and execution in SCD and MCI
population, our findings are in contrast with recent
longitudinal studies supporting that neuropsycholog-
ical assessment in elderly population demonstrates
impairment of executive functions, memory, but not
attention [52, 139, 140]. In a cross-sectional study
[52], it was highlighted the existence of statistical
significant differences with respect to selective and
sustained attention in HC and SCD, whereas a subse-
quent longitudinal study concluded that the decline
in simple sustained attention in MCI may be early
precursors of future cognitive decline related to AD
[140]. In this common vein, previous studies have
demonstrated good performance in visual short-term
memory tasks in asymptomatic cases, prior to the
onset of dementia [55]. On the other hand, recent
studies have demonstrated increased visual attention
and memory errors in patients with AD [141–143],
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which are aligned with our results supporting that
people with cognitive decline present extensive
interruption with regards to brain connectome dur-
ing visual attention and short-term memory tasks.
Together, these findings provide growing support for
the view that AD and its preclinical stages is asso-
ciated with visual short-term memory impairments,
and that lower performance in visual short-term mem-
ory related tasks might be an important signature
of cognitive decline. In particular, a large part of
the literature has suggested that lower test scores
for memory is related to progression from MCI
to AD [58]. The aforementioned research evidence
is in line with our main findings that the visual
attention and visual short-term memory may be vul-
nerable cognitive domains to early neurodegenerative
process associated with SCD. Therefore, our clini-
cal observations also supported this hypothesis, as
SCD may frequently report frustration during han-
dling work with more cognitive demands in other
non-memory function, such as attention or informa-
tion processing. Nevertheless, in a recent study, they
explored the visual short-term memory deficits by
comparing performance in patients with AD to a
group of individuals with SCD [55]. SCD people,
although mentioned decline in cognitive function,
did not demonstrate objective clinical and cognitive
changes at the time of the baseline assessment. Inter-
estingly, compared to AD, SCD patients overall did
not demonstrate any impairment in short-term reten-
tion of object-location bindings. In contrast with this
study, our results showed statistically significant bet-
ter performance in SCD group compared to AD but
to lower extent than those of HC.

In line with previous research, we found apparent
connections over the posterior regions of the brain
during both tasks in people with SCD compared to
HC. In particular, a recent study showed that SCD had
decreased FC between the lingual gyrus, the left hip-
pocampus and calcarine sulcus, which are areas that
are basically involved in encoding visual memories
[144, 145], and retrieval [99]. Therefore, interrupted
FC between these brain regions could be indicative
of poorer visual memory processing that impacts the
subjective feeling of cognitive decline and might be
also influenced by aging [50, 146, 147]. However,
what decreasing FC between the primary visual cor-
tex and other brain regions implies for SCD, is still
under investigation, especially as direct connectivity
between parietal regions and visual cortex is between
in the dorsal and ventral brain areas [93, 148, 149].
Thus, decreased FC across the region of hippocampus

and calcarine sulcus and lingual gyrus may reflect
disrupted information transition to the hippocampus,
indicating that cortical atrophy in visual regions may
reflect AD, which is related to lower visuospatial abil-
ity and executive function [35, 54, 83, 150]. Thus,
decreasing parietal to occipital FC in SCD, as we
found in our study, strengthens support for SCD as
a dementia precursor. Also, an important strength
of the current study that relates to its design is the
comparison of neuropsychological tests at baseline
and 3-year follow-up, allowing us to derive the per-
centage of subjects that actually converted to a more
advanced stage of AD, despite having a normal neu-
ropsychological profile at baseline. In this way, we
were able to quantify the benefit of having brain net-
work properties measured during VAT and VSTMT
that are capable of discriminating HC from SCD at
baseline. Given that SCD were found to eventually
convert in MCI with much higher percentage than
HC, further advocates the potential of using EEG,
after testing it in larger sample, as a tool for the early
detection of people that may develop future cognitive
decline so as to enable personalized and timely inter-
ventions. Although SCD is recognized as a high-risk
status of AD with a normal cognitive level, which is
earlier than the stage of MCI [151, 152], the conver-
sion rate of SCD to MCI is 2.3% and 6.6% per year.
However, a recent longitudinal neuroimaging study
found that 31% of SCD progressed to MCI accord-
ing to MRI and neuropsychological tests [153], while
52 out of 111 SCD remained stable. In our sample
the conversion rate of 64.7% after 3 years follow-up
can be explained also due to the fact that the partic-
ipants were recruited from the outpatient clinics and
day centers where the patients have an increased con-
cern about their memory and cognitive ability instead
of general public, given that community-based SCD
subjects confer a much lower risk of progression to
MCI over 3 years compared to clinical cohorts [154].
Therefore, the conversion of the SCD may not only
due to cutting off sample sizes, insufficient follow-up
time or could also misidentify many SCDs who could
potentially convert to MCI, which could result in a
highly mixed and heterogenous sSCD group, further
reducing statistical power [153].

Nevertheless, several limitations should be repor-
ted in the present research study. The subject number
was limited especially for AD, therefore raising con-
cerns on whether the results might be biased by the
small sample size. However, there are plenty of neu-
rophysiological and brain connectome studies, which
have used a similar number of participants or even
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smaller (12 SCD and 19 MCI [100]; 16 HC and
18 MCI [111]; 13 HC, 16 SCD, and 8 AD [155];
9 HC and 14 MCI [156]; 16 MCI and 12 HC [157]).
Therefore, we believe that given the complexity of
conducting a neurophysiological brain connectome
study in the patient population, the small number
of participants might be a limitation but not a crit-
ical one that could mislead the results of the present
study. Nevertheless, a possible future extension of
this study could be the verification of the presented
results in a larger sample including more participants
from each stage. Moreover, another limitation of the
study is that follow-up assessment was based solely
on neuropsychological assessment and not on brain
network properties. Thus, future longitudinal stud-
ies should focus on follow-up assessment of brain
network properties on SCD subjects. This study high-
lights the importance of brain connectome during
visual attention and visual short-term memory pro-
cess to distinguish the subjects that are at higher
from the ones that are at lower risk of develop-
ing cognitive decline in the future as a marker of
preclinical AD. Further work is needed to examine
additional task-specific factors, such as examining
the same metrics after some time. Moreover, future
studies could also explore A� markers or PIB-PET
at baseline to investigate if they had any biomark-
ers of AD (i.e., cerebrospinal fluid amyloid or tau)
or any information on the atrophy (like medial tem-
poral lobe atrophy) or white matter hyperintensities
(like Fazekas score) in the patients with SCD as com-
pared with HC at baseline. That could strengthen
the link between SCD and cognitive performance, as
well as evaluating the extent to which other specific
factors not examined in this study (e.g., genetic pre-
disposition, volumetric properties of specific regions)
may increase the association between SCD and brain
networks markers as observed in this study. PCC
was selected as a means to estimate connectivity
between all pairs of electrodes. Power-based connec-
tivity measurements, like PCC, have been examined
by several studies [78, 148, 158, 159] with the
scope of constructing weighted brain networks and
this was the main reason we followed the same
strategy here. Clearly, phase-based connectivity mea-
surements such as weighted phase lag index (PLI),
weighted PLI, or Spectral Coherence, could be also
explored. This will in essence affect the network’s
structure (i.e., phase-based and power-based mea-
sures of connectivity tend to reveal different patterns
of connectivity), as the connectivity here is assumed
to be instantaneous, while volume conduction issues

must be also taken into consideration. Hence, phase-
based connectivity measurements could be explored
in any future extensions of this study as a means of
verification but also as means to identify additional
network properties that differ among the popula-
tions so as to measure connectivity such as Weighted
Phased Lag Index [160], Phase Locking Value [161],
and Granger Causality [162]. Further future work
includes the RADAR-AD Tier 2 and Tier 3 study,
which will take place at the CERTH-ITI Smart Home
(https://smarthome.iti.gr), both utilizing EEG head-
bands. The Tier 2 study is already taking place
in homes across European sites and utilized the
DREEM EEG headband (https://dreem.com/). The
Smart Home is a real living environment in Thessa-
loniki, Greece (https://smarthome.iti.gr/), equipped
with a multitude of smart home sensors that mon-
itor both environmental and behavioral parameters
such as appliance usage and presence in rooms. The
RADAR-AD Tier 3 study will involve healthy age-
matched participants, SCD, and MCI to visit the
Smart Home and take part in semi-directed as well as
free living activities both during the day and during
an overnight stay. They will use apps for assessment
and intervention for AD and will be monitored by the
sensors in order to investigate their suitability and
performance as a testbed for future trials with MCI,
SCD, and AD. Sensors will include portable EEG
to explore similarities and differences to the present
HD-EEG study, such as the capabilities and insights
provided by the equipment as well as the acceptance
and practicality of both applications. Additionally,
the Muse EEG portable device will be employed so as
to detect brain activity during mindfulness and resting
state in people with SCD, MCI, and HC. As both stud-
ies include different EEG devices, both at home and
at a home-like controlled environment, future work
will explore similarities and differences, as well as
the potential to transfer and compare the outcomes of
the present HD-EEG study over to those applications.
It will also explore the acceptance and practicality of
these, more portable, applications.

Conclusions

This is the first ever reported study which investi-
gates brain connectivity by using HD-EEG in order
to explore network changes in SCD with regards
to HC, MCI, and AD individuals while performing
a VSTMT and VAT. Therefore, our study provides
pieces of evidence that SCD may actually indicate
a transitional preclinical stage of AD with network

https://smarthome.iti.gr
https://dreem.com/
https://smarthome.iti.gr/
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changes and brain connectome interruptions. HC
presents a denser visual attention and short-term
memory network with several connections between
nodes at occipito-parietal electrodes regarding CC
and S, whereas less connectivity between nodes (elec-
trodes) in more advanced stages of AD was observed.
The differences are more obvious during the visual
attention, where the subjects must pay attention and
encode the information. At 3-year follow-up exami-
nation, SCD showed worse performance in most of
the neuropsychological tests compared to HC, while
the MCI and AD also showed deterioration in almost
all tests. Thus, considering the absence of any dif-
ferentiation in the neuropsychological tests of HC
and SCD at baseline, the ability of brain connectome
analysis with EEG during VAT and VSTMT to dif-
ferentiate between these groups can be considered
particularly valuable.
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[155] Tóth B, File B, Boha R, Kardos Z, Hidasi Z, Gaál ZA,
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