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Abstract.
Background: Recent studies had explored that gut microbiota was associated with neurodegenerative diseases (including
Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS)) through the gut-brain axis,
among which metabolic pathways played an important role. However, the underlying causality remained unclear.
Objective: Our study aimed to evaluate potential causal relationships between gut microbiota, metabolites, and neurodegen-
erative diseases through Mendelian randomization (MR) approach.
Methods: We selected genetic variants associated with gut microbiota traits (N = 18,340) and gut microbiota-derived metabo-
lites (N = 7,824) from genome-wide association studies. Summary statistics of neurodegenerative diseases were obtained from
IGAP (AD, 17,008 cases; 37,154 controls), IPDGC (PD, 37,688 cases; 141,779 controls), and IALSC (ALS, 20,806 cases;
59,804 controls) respectively.
Results: Greater abundance of Ruminococcus (OR, 1.245; 95%CI, 1.103–1.405; p = 0.0004) was found significantly related to
higher risk of ALS. Besides, our study found suggestive associations of Actinobacteria, Lactobacillaceae, Faecalibacterium,
Ruminiclostridium, and Lachnoclostridium with AD, of Lentisphaerae, Lentisphaeria, Oxalobacteraceae, Victivallales, Bacil-
lales, Eubacteriumhalliigroup, Anaerostipes, and Clostridiumsensustricto1 with PD, and of Lachnospira, Fusicatenibacter,
Catenibacterium, and Ruminococcusgnavusgroup with ALS. Our study also revealed suggestive associations between 12
gut microbiome-dependent metabolites and neurodegenerative diseases. Glutamine was related to lower risk of AD. For the
serotonin pathway, serotonin was found as a protective factor of PD, while kynurenine as a risk factor for ALS.
Conclusion: Our study firstly applied a two-sample MR approach to detect causal relationships among gut microbiota, gut
metabolites, and neurodegenerative diseases. Our findings may provide new targets for treatments and may offer valuable
insights for further studies on the underlying mechanisms.
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INTRODUCTION

Neurodegenerative diseases are characterized by
progressive loss of structure or function of neurons
in the central or peripheral nervous system, which
involves irreversible long-term motor or cognitive
impairments [1]. The prevalence of neurodegenera-
tive diseases, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), and amyotrophic lateral
sclerosis (ALS), are rising worldwide with the
increasing life expectancy. In recent years, emerg-
ing evidence has indicated that gut microbiota
derived metabolites including short-chain fatty acids
(SCFAs) [2, 3] and neurotransmitters such as gluta-
mate [4], serotonin [5, 6], and �-aminobutyric acid
(GABA) [7] may play a central role in the gut-
brain axis alterations and risk of neurodegenerative
diseases [8]. However, few consistent links connect-
ing gut microbiota and diseases or their associated
metabolic pathways were found.

Increasing number of cross-sectional studies have
implicated the association between gut microbiota
and neurodegenerative diseases, including AD, PD,
and ALS [9]; however, such associations differed
across studies. For example, an observational study
(N = 25) found a significantly decreased abundance of
Ruminococcaceae and Actinobacteria and significant
increase in abundance of Bacteroidetes in patients
with AD compared with control individuals [10];
while another cross-sectional study (N = 43) showed
an opposite outcome of those microbiota [11]. Simi-
larly, the association between gut microbiota and PD
or ALS also differed in different studies [12–15]. The
results of those small observational studies should
be considered with caution due to participant selec-
tion bias, confounding bias, and reverse causation.
However, it is crucial to identify whether those rela-
tionships were robust causal associations or spurious
correlations.

Mendelian randomization (MR) approach, which
uses genetic variants as instrumental variables (IVs),
has been widely accepted to determine the causal
effect of exposures on diseases [16]. As single
nucleotide polymorphisms (SNPs) are of random
allocation and is independent of confounders, MR is
similar to randomized controlled trial and circumvent
the limitations of previous observational studies.

Therefore, our study firstly applied a two-sample
MR approach to detect causal relationships among
gut microbiota, metabolites, and neurodegenera-
tive disorders including AD, PD, and ALS, using

summary statistics from the largest genome-wide
association studies (GWAS) so far.

MATERIALS AND METHODS

Data sources and instruments

Summary statistics applied for investigating traits
had the largest sample sizes with similar populations,
and exposure and outcome statistics were obtained
from different consortia, sample overlap tended to be
little [17]. Details of the contributing GWAS consor-
tiums are listed in Supplementary Table 1.

Gut microbiota

We leveraged summary statistics from most com-
prehensive exploration of genetic influences on
human gut microbiota so far. The MiBioGen con-
sortium recruited 18,340 participants of multiple
ancestries (including European, American Hispanic/
Latin, East Asian, etc.) from 24 cohorts [18]. After
extracting DNA from fecal samples, 16S rRNA gene
sequencing was utilized to characterize the gut micro-
biome using SILVA as a reference database [19],
with truncation of the taxonomic resolution to genus
level.

Gut metabolites

Considering the important roles of gut metabo-
lites in microbiota-host crosstalk, we also leveraged
summary-level data from a GWAS of the human
metabolome conducted among European-descent
subjects (TwinsUK and KORA, N = 7824). The GW
AS tested all 486 metabolite concentrations present
in both datasets at each SNP. Then we applied HMDB
[20] to obtain a list of 81 gut microbiota derived
metabolite traits from all the quantified metabolites
in the GWAS.

Neurodegenerative diseases

We utilized the GWAS summary statistics from the
largest and most recent datasets for AD, PD, and ALS
so far. We obtained the corresponding genetic vari-
ants from the International Genomics of Alzheimer’s
Project (IGAP) including 17,008 cases and 37,154
controls [21], the International Parkinson’s Disease
Genomics Consortium (IPDGC) including 37,688
cases and 141,779 million controls [22], and the Inter-
national Amyotrophic Lateral Sclerosis Genomics
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Consortium (IALSC) including 20,806 cases with
ALS and 59,804 controls [23]. Cases of those neu-
rodegenerative diseases were all clinically confirmed
using published criteria.

Ethical approval for each study had been obtained
in all original articles [18, 21–24], and no ethical
approval for the current analyses was needed as they
were based on publicly available summary statistics.

Selection of instrumental variables

To ensure the validity of the conclusion, our study
applied several quality control steps to select instru-
ment variables. First, SNPs significantly related to gut
microbiome were selected as instrumental variables.
Two thresholds were used to select the instrumen-
tal variable. In order to obtain more comprehensive
results and increase sensitivity to IVs, SNPs smaller
than the locus-wide significance level (1 × 10–5)
was selected as instrumental variables in primary
analysis. We also selected exposure-related SNPs at
genome-wide significance (p < 5 × 10–8) as instru-
mental variables in secondary analysis to maximize
specificity. Second, we manually checked all the
identified SNPs by PhenoScanner GWAS database
(http://www.phenoscanner.medschl.cam.ac.uk/) and
excluded variants for the linkage disequilibrium
(LDlink: https://ldlink.nci.nih.gov/; LD, R2 < 0.001).
All GWAS were assumed to be coded on the for-
ward strand. Third, we also computed the F-statistic
of each exposure, and SNPs that had F-statistics less
than 10 were excluded to avoid weak instrument bias.
Finally, for gut microbiota instruments, a total of
8,269 host SNPs were identified, which were asso-
ciated with 200 gut microbiota traits (9 phyla + 16
classes + 20 orders + 36 families + 119 genera), and
for gut metabolite instruments, 3,134 SNPs asso-
ciated with 81 traits were included in our study.
Summary statistics of these significant SNPs are
assessed in Supplementary Tables 2 and 3.

Statistical analyses

We applied two sample MR as our main statistical
methods to estimate causal associations between each
instrument-exposure (gut microbiota and metabolite)
and instrument-outcome (AD, PD, and ALS). The
MR approach was based on three key assumptions:
1) the genetic variant must be truly associated with the
exposure; 2) the genetic variant should not be asso-
ciated with confounders of the exposure-outcome
relationship; and 3) the genetic variant should only be

related to the outcome of interest through the expo-
sure under study [25].

Primary analyses were performed using Inverse-
variance weighted (IVW) method, which essentially
assumed the intercept was zero, and our results
were corrected for multiple hypothesis testing using
the Benjamini and Hochberg false discovery rate
(FDR), as significance threshold was set at FDR-
corrected p-values < 0.05 [26], while associations
with p < 0.05, but not reaching the FDR-controlled
threshold were reported as suggestive of association.
Power calculations were conducted based on the web-
site http://cnsgenomics.com/shiny/mRnd/ [27] (see
Supplementary Table 6).

To validate assumption 3 and improve the
robustness of the findings, we also undertook a
series of sensitivity analyses including MR-Egger
regression, weighted mode, weighted median, sim-
ple median methods, and robust adjusted profile
score (MR.RAPS) method, which provided differ-
ent assumptions about horizontal pleiotropy [28,
29]. However, the MR-Egger method had the low-
est power among the 6 methods and was based on the
instrument strength independent of the direct effects
(INSIDE) assumption, with no measurement error in
the SNP exposure effects (NOME) assumption [30].
Therefore, MR Egger was performed when I2GX was
> 0.9 [31].

Cochran Q statistic and leave-one-out sensitiv-
ity analysis were also adopted to the SNPs that
may influence the outcome through an unaccounted
causal pathway, and Steiger analysis was perfor-
med to explore direction of causal effects [32].
Furthermore, MR-Egger intercept and Mendelian
Randomization Pleiotropy RESidual Sum and Out-
lier (MR-PRESSO) global test were used to detect
the presence of pleiotropy [33].

At last, we conducted multivariable MR (MVMR)
analyses using IVW method to estimate the direct and
indirect effect of each exposure on an outcome, as we
found a high degree of IV overlap across gut micro-
biota (Lentisphaerae at phylum level, Lentisphaeria
at class level, and Victivallales at order level) in uni-
variable MR analyses on PD [34]. Furthermore, we
also conducted multivariable MR-Egger analyses to
evaluate the horizontal pleiotropy for direct and indi-
rect effects. The IVs used for MVMR analysis were
listed in Supplementary Table 8.

A flowchart of our study was provided in Fig. 1.
The MR analyses were performed in the R version
4.0.2 computing environment using the latest Two
SampleMR (https://github.com/MRCIEU/TwoSam

http://www.phenoscanner.medschl.cam.ac.uk/
https://ldlink.nci.nih.gov/
http://cnsgenomics.com/shiny/mRnd/
https://github.com/MRCIEU/TwoSampleMR
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Fig. 1. Flowchart of current study. AD, Alzheimer’s disease; PD,
Parkinson’s disease; ALS, amyotrophic lateral sclerosis.

pleMR), MVMR (https://github.com/WSpiller/
MVMR), and MRPRESSO (https://github.com/ron
dolab/MR-PRESSO) packages.

RESULTS

Associations between gut microbiota and
neurodegenerative diseases

By the means of IVW method, results reaching a
threshold of p < 0.05 are presented in Fig. 2. Causal
effects were estimated by odds ratio (OR), which rep-
resented increased risk of binary outcomes (AD, PD,
ALS) per SD increase in abundance of gut microbiota
feature. By the means of IVW method, we found sug-
gestive associations of host-genetic-driven increases
in Actinobacteria at class level (OR, 1.027; 95%CI,
1.006–1.048; p = 0.013); Lactobacillaceae at family
level (OR, 1.027; 95%CI, 1.006–1.048; p = 0.014);

Lachnoclostridium at genus level (OR, 1.03; 95%CI,
1.005–1.056; p = 0.019) and higher risks of AD, while
genetically increased in Faecalibacterium at genus
level (OR, 0.975; 95%CI, 0.954–0.997; p = 0.028)
were associated with protective effects on the risk
of AD. We also found suggestive causal effect
of Ruminiclostridium6 at genus level (OR, 1.025;
95%CI, 1.006–1.045; p = 0.009) on higher risk of
AD, while Ruminiclostridium9 (OR, 0.969; 95%CI,
0.943–0.996; p = 0.009) on lower risk of AD. How-
ever, after calculating FDR, we found that all q-values
were over 0.05, suggesting no significant associ-
ations. In addition, associations between the gut
microbiota traits and risk of AD were consistent in
sensitivity analyses (see Table 1). MR-Egger inter-
cept (we calculated I2GX, which were all over 0.9)
and Mendelian randomization pleiotropy residual
sum and outlier (MR-PRESSO) were applied to test
the directional pleiotropy, and all p values were
over 0.05, suggesting no significant pleiotropy, while
Cochran Q statistic of both the IVW test and the MR-
Egger regression was used to test the heterogeneity,
and no notable heterogeneity across instrument SNP
effects was indicated (see Supplementary Table 7).
However, we had limited power (less than 80%) to
test causal effects of those gut microbiota features on
AD.

Causal relationship between gut microbiota and
other neurodegenerative diseases were also ana-
lyzed by the same process. Our study revealed that
genetically increased abundance of Lentisphaerae
at phylum level (OR, 0.836; 95%CI, 0.724–0.965;
p = 0.015); Lentisphaeria at class level (OR, 0.847;
95%CI, 0.728–0.986; p = 0.032), and Victivallales
at order level (OR, 0.847; 95%CI, 0.728–0.986;
p = 0.032) were potentially associated with a protec-
tive effect of PD. In contrast, no notable effects of
the three gut microbiota features on the risk of PD
could be observed after mutual adjustment using mul-
tivariable MR method (see Supplementary Table 7).
In addition, genetically increased abundance of
Oxalobacteraceae at family level (OR, 1.13; 95%CI,
1.003–1.273; p = 0.044); Bacillales at order level
(OR, 1.144; 95%CI, 1.013–1.292; p = 0.03); Eubac-
teriumhalliigroup (OR, 1.253; 95%CI, 1.055–1.487;
p = 0.01), and Clostridiumsensustricto1 (OR, 1.354;
95%CI, 1.068–1.716; p = 0.012) were related to
higher risk of AD; while Anaerostipes (OR, 0.744;
95%CI, 0.587–0.944; p = 0.015) was related to pro-
tective effect of PD (Fig. 2).

Besides, genetically increased Lachnospira (OR,
1.315; 95%CI, 1.063–1.628; p = 0.012); decreased

https://github.com/WSpiller/MVMR
https://github.com/rondolab/MR-PRESSO
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Fig. 2. Associations of genetically predicted gut microbiota with risk of neurodegenerative diseases using IVW method. OR, odds ratio; CI,
confidence interval; FDR, False discovery rate.

Fusicatenibacter (OR, 0.855; 95%CI, 0.752–0.972;
p = 0.016) and Catenibacterium (OR, 0.848; 95%CI,
0.74–0.97; p = 0.017) were potentially related to a
higher risk of ALS. Our study also revealed that
increased RuminococcaceaeUCG004 (OR, 1.245;
95%CI, 1.103–1.405; p = 0.0004) and decreased
Ruminococcusgnavusgroup (OR, 0.884; 95%CI,
0.792–0.986; p = 0.027) were related to a higher
risk of ALS. Among all those results, we found
a significant causal effect of increased Ruminococ-
caceaeUCG004 on risk of ALS (FDR-corrected
p-value < 0.05) (Fig. 2).

Those estimate effects mentioned above were con-
sidered robust (Table 1) with no directional pleiotropy
or heterogeneity was significant (see Supplementary
Table 7), and MR power calculation results were
showed in Supplementary Table 6.

Associations between gut metabolites and
neurodegenerative diseases

Among 81 gut microbiota-derived metabolites
incorporated in our MR analyses, we found 11
suggestive estimate effects of gut metabolite on

neurodegenerative diseases. Those metabolites were
classified into two types: host-derived or dietary
molecules [35].

With regard to host metabolites transformation,
our study suggested that increased abundance of tau-
rodeoxycholate, which was a product of primary bile
acids (OR, 1.16 for risk ratio of ALS per SD unit of
taurodeoxycholate; 95%CI, 1–1.345; p = 0.050) was
associated with higher risk of ALS. However, no
steroid hormone was proved relevance to neurode-
generative diseases.

For the dietary molecules, amino acids, complex
plant polysaccharides and polyphenols were consid-
ered to exert impact on brain function. In tryptophan
metabolism, our study revealed that serotonin (OR,
0.535; 95%CI, 0.292–0.979; p = 0.043) was a pro-
tection factor of PD, while kynurenine (OR, 1.756;
95%CI, 1.113–2.769; p = 0.015) was a risk factor
of ALS. In arginine metabolism, dimethylarginine
(OR, 1.826; 95%CI, 1.003–3.321; p = 0.049) was
suggested to be related to higher risk of ALS. Pheny-
lacetate, a modulator of central adrenergic functions
(OR, 1.064; 95%CI, 1.008–1.124; p = 0.024). Other
ammino acids such as glutamine (OR, 0.803; 95%CI,
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Table 1
Sensitivity analyses of MR analyses of neurodegenerative diseases on gut microbiota by MR Egger, simple mode, weighted median, and weighted mode

Outcome Exposure Weighted mode Weighted median Simple mode MR Egger RAPS

level Microbiota OR (95%CI) p OR (95%CI) p OR (95%CI) p OR (95%CI) p OR (95%CI) p

AD Class Actinobacteria 1.048 (1.009,1.088) 0.03 1.039 (1.011,1.068) 0.01 1.022 (0.979,1.067) 0.33 1.08 (1.023,1.141) 0.02 1.031 (1.01,1.052) 0.00
AD Family Lactobacillaceae 1.015 (0.981,1.051) 0.41 1.022 (0.996,1.049) 0.10 1.01 (0.978,1.043) 0.56 0.986 (0.936,1.038) 0.60 1.024 (1.002,1.046) 0.03
AD Genus Faecalibacterium 0.98 (0.946,1.015) 0.29 0.977 (0.949,1.007) 0.13 0.979 (0.942,1.018) 0.31 0.979 (0.938,1.021) 0.35 0.976 (0.952,1) 0.05
AD Genus Ruminiclostridium6 1.01 (0.974,1.048) 0.59 1.019 (0.992,1.048) 0.17 1.015 (0.97,1.062) 0.53 1.005 (0.958,1.053) 0.85 1.025 (1.004,1.045) 0.02
AD Genus Ruminiclostridium9 0.984 (0.926,1.045) 0.61 0.984 (0.947,1.022) 0.40 0.983 (0.921,1.05) 0.63 0.96 (0.852,1.082) 0.53 0.967 (0.938,0.996) 0.03
AD Genus Lachnoclostridium 1.004 (0.939,1.074) 0.91 1.023 (0.99,1.058) 0.17 1.006 (0.944,1.073) 0.85 1.031 (0.939,1.133) 0.53 1.034 (1.007,1.062) 0.01
PD Phylum Lentisphaerae 0.745 (0.555,0.999) 0.08 0.762 (0.629,0.921) 0.01 0.743 (0.538,1.026) 0.11 0.715 (0.431,1.186) 0.23 0.832 (0.71,0.975) 0.02
PD Class Lentisphaeria 0.751 (0.559,1.009) 0.10 0.783 (0.641,0.957) 0.02 0.747 (0.539,1.037) 0.13 0.743 (0.45,1.225) 0.29 0.844 (0.714,0.996) 0.04
PD Family Oxalobacteraceae 1.202 (0.934,1.547) 0.18 1.177 (1.007,1.376) 0.04 1.194 (0.901,1.583) 0.24 1.422 (0.856,2.362) 0.20 1.133 (0.994,1.291) 0.06
PD Order Victivallales 0.751 (0.555,1.015) 0.11 0.783 (0.64,0.959) 0.02 0.747 (0.536,1.042) 0.13 0.743 (0.45,1.225) 0.29 0.844 (0.714,0.996) 0.04
PD Order Bacillales 1.221 (0.931,1.601) 0.19 1.179 (0.996,1.397) 0.06 1.215 (0.934,1.581) 0.18 1.133 (0.614,2.092) 0.70 1.164 (1.017,1.331) 0.03
PD Genus Eubacterium 1.462 (0.97,2.202) 0.09 1.361 (1.075,1.723) 0.01 1.526 (0.967,2.407) 0.09 1.329 (0.916,1.928) 0.16 1.274 (1.056,1.538) 0.01

hallii group
PD Genus Anaerostipes 0.588 (0.336,1.029) 0.09 0.747 (0.54,1.034) 0.08 0.6 (0.342,1.052) 0.10 0.579 (0.26,1.288) 0.21 0.739 (0.569,0.961) 0.02
PD Genus Clostridium 1.416 (0.942,2.128) 0.15 1.413 (1.043,1.915) 0.03 1.404 (0.915,2.154) 0.17 1.728 (1.009,2.959) 0.10 1.358 (1.041,1.77) 0.02

sensustricto 1
ALS Genus Ruminoco 1.259 (0.92,1.723) 0.18 1.251 (1.06,1.476) 0.05 1.263 (0.934,1.707) 0.17 0.76 (0.398,1.45) 0.18 1.271 (1.114,1.45) 0.00

ccaceae UCG 004
ALS Genus Lachnospira 1.15 (0.745,1.776) 0.56 1.298 (0.987,1.708) 0.01 1.431 (0.933,2.196) 0.16 2.518 (0.707,8.97) 0.43 1.326 (1.046,1.682) 0.02
ALS Genus Fusicatenibacter 0.882 (0.635,1.225) 0.46 0.838 (0.703,0.999) 0.06 0.873 (0.617,1.234) 0.16 0.702 (0.423,1.166) 0.23 0.848 (0.735,0.979) 0.02
ALS Genus Catenibacterium 0.924 (0.757,1.128) 0.48 0.884 (0.756,1.034) 0.05 0.927 (0.731,1.176) 0.45 0.617 (0.159,2.39) 0.19 0.841 (0.723,0.978) 0.02
ALS Genus Ruminococ 0.811 (0.628,1.047) 0.14 0.887 (0.775,1.014) 0.12 0.776 (0.599,1.004) 0.57 0.921 (0.542,1.563) 0.53 0.875 (0.772,0.991) 0.04

cusgnavus group

OR, Odds ratios for associations of genetically predicted gut microbiota traits with neurodegenerative diseases; CI, confidence interval; MR, Mendelian randomization; RAPS, robust adjusted
profile score; AD, Alzheimer’s disease; PD, Parkinson’s disease; ALS, amyotrophic lateral sclerosis.
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0.667–0.968; p = 0.022) and isoleucine (OR, 0.791;
95%CI, 0.678–0.923; p = 0.003) were revealed as
protective factors of AD and PD respectively.
Besides, phenylalanine (PAA), one of phenylala-
nine derivatives (OR, 1.064; 95%CI, 1.008–1.124;
p = 0.024) was indicated to increase the risk of AD.
We also found that hippurate, a product of polyphe-
nols (OR, 1.531; 95%CI, 1.142–2.051; p = 0.004),
was associated with high risk of ALS. Gut microbiota
also generated a protective factor of AD, mannitol
(OR, 0.993; 95%CI, 0.988–0.998; p = 0.009), and a
risk factor of PD (OR, 2.143; 95%CI, 1.026–4.476;
p = 0.043).

Furthermore, those results were judged to be reli-
able without pleiotropy through sensitivity analyses
(Table 2, Supplementary Table 7). However, no sig-
nificant association was revealed (FDR-corrected
p-values > 0.05), and MR power calculation results
were showed in Supplementary Table 6.

The results of MR analysis which applied a
SNP selecting threshold of genome-wide significant
level of p < 5 × 10–8 were shown in Supplementary
Tables 10 and 11. However, the results should be
considered with caution as the number of the IVs
applied in analysis was not much enough to perform
sensitivity analysis.

DISCUSSION

In the present MR study, we found significant asso-
ciation of increased abundance of genera Ruminococ-
caceaeUCG004 and higher risk of ALS. Besides, we
found suggestive evidence of causal associations of
Actinobacteria, Lactobacillaceae, Faecalibacterium,
and Ruminiclostridium, Lachnoclostridium with AD,
of Lentisphaerae, Lentisphaeria, Oxalobacteraceae,
Victivallales, Bacillales, Eubacteriumhalliigroup,
Anaerostipes, and Clostridiumsensustricto1 with PD,
and of Lachnospira, Fusicatenibacter, Catenibac-
terium, and Ruminococcusgnavusgroup with ALS.
Additionally, metabolites including amino acids, bile
acids, amino acids, polyphenols produced by gut
microbiota were also potentially related to the risks of
neurodegenerative disorders, indicating their impor-
tant roles in gut microbiota-brain axis.

A previous MR study has suggested that increase
in Blautia and elevated �-aminobutyric acid (GABA)
were related to lower risk of AD [36]. However, our
study failed to repeat these findings, nor Blautia or
GABA including putrescine, glutamate, arginine, or
ornithin which produces GABA were found related
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Fig. 3. Associations of genetically predicted gut microbiota-dependent metabolites with risk of neurodegenerative diseases using IVW
method. OR, odds ratio; CI, confidence interval; FDR, False discovery rate.

to risk of AD, which is potentially due to lack of
significance of results and scale of GWAS. Another
MR study proved no causal association of trimethy-
lamine N-oxide (TMAO) or its precursor with AD,
which was consistent with our results [37]. Addition-
ally, our finding of Actinobacteria at family level as
a risk factor of AD was opposite to previous studies
[10], while the findings of relationships between Lac-
tobacillaceae and Faecalibacterium with AD were in
accordance with the result of previous cross-sectional
studies [11]. Interestingly, genera Ruminiclostrid-
ium6 and Ruminiclostridium9 represent different
effects on risk of AD in our analysis results, which
remind us that inconsistencies in results of previous
clinical studies were potentially due to insufficiently
digging deeper into classification of genera level of
gut microbiota. Besides, our study suggested that
phenylacetate, which was a potential tracer of glibal
metabolism was related to increased risk of AD [38].
In addition, mannitol, a microbial metabolite was
found as protective factor of AD, which may provide
new ideas for disease interventions.

Our study revealed suggestive causal effect of
increased abundance of phylum Lentisphaerae, class
Lentisphaeria, and order Victivallales on protective
effects of PD; however, no direct effect revealed after
multivariable MR analysis, while no relevant result
was reported in previous studies either, therefore,
such results should be treated with caution. Other
associations of Family Oxalobacteraceae, Order
Bacillales, Eubacteriumhalliigroup, Anaerostipes,
and Clostridiumsensustrictol with risk of PD were

in accordance with the result of previous cross-
sectional studies [12, 13, 39]. In a previous clinical
study, which compared the fecal microbiota of 25
ALS patients with 32 controls, significant higher
abundance of uncultured Ruminococcaceae at genus
level was observed in ALS patients [14]. How-
ever, our study found significant association between
RuminococcaceaeUCG004 and higher risk of ALS,
and suggestive association between Ruminococcus-
gnavusgroup and lower risk of ALS. Inconsistent
results between these studies may likely be attributed
to small study sample sizes of previous observa-
tional studies, sample heterogeneity, and different
sequencing technologies. Therefore, a standardized
classification system for gut microbiota at genus level
or even more specific level is crucial to direct mech-
anism research and provide more accurate clinical
guidance.

Tryptophan is broken down by the microbiota
into indole derivatives and also tryptamine and
kynurenine metabolites, and those metabolites were
considered important in gut-brain axis [40, 41]. Pre-
vious studies have revealed that glutamate signals are
destroyed by serotonergic overdrive, and serotoner-
gic dysfunction is associated with the development
of motor and non-motor symptoms and complica-
tions in PD [42]. Moreover, kynurenine pathway (KP)
of tryptophan degradation is involved with several
neuropathological features present in ALS including
neuroinflammation, excitotoxicity, oxidative stress,
immune system activation, and dysregulation of
energy metabolism [43]. Previous clinical studies
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have revealed that serum kynurenine in controls were
lower than that in ALS [44]. Our study proved that
serotonin was protective factor of PD, while kynure-
nine was risk factor of ALS, and those molecules may
become potential biomarkers to assess the progres-
sion of relative diseases. In addition, other amino acid
such as glutamine and isoleucine were found causally
associated with lower risk of AD and PD. Actually,
up to 50% of all �-amino groups of glutamate and
glutamine are derived from leucine. Leucine is a reg-
ulator of the mechanistic target of rapamycin (mTOR)
complex 1 (mTORC1), which is critical on pro-
tein synthesis and degradation, autophagy as well as
maintenance of glutamate homeostasis, and may have
effects on the neuronal solute transport and the exci-
tatory neurotransmitter function [45]. Moreover, in
the glutamate-glutamine cycle, synaptically-released
glutamate is rapidly transported into astrocytes, and
glutamine is then released by astrocytes through
SN-type glutamine transporters into the extracellu-
lar fluid. A� has been shown to reduce the surface
expression of GLT-1and to impair astrocyte gluta-
mate uptake [46, 47]. A recent study demonstrated
that altered astrocyte glutamine synthesis directly
impaired neuronal GABA synthesis in brain slices of
the 5xFAD mouse model of AD [48], and our results
provided clinical evidence to confirm that reduction
of glutamine in peripheral blood was causally asso-
ciated with occurrence of AD.

Bacterial metabolites produced from polyphenol
precursors were also found at levels sufficient to exert
biological effects enter circulation [49]. In vitro cul-
tures have shown that polyphenol metabolites such as
ferulic acid are able to exert protective effects on neu-
ronal cultures and neurodegenerative models, mostly
through a decrease in inflammatory responses [50,
51]; however, in vivo evidence remains lacking. Our
study suggested hippurate belongs to the group of ure-
mic toxins as a risk factor of ALS, which may indicate
potential treatment of disease. Since those neurode-
generative diseases develop through a long prodromal
phase, it is plausible that our findings may inform
early interventions by targeting the microbiota via gut
microbiota transplantation, psychobiotics, or antibi-
otics in the future. Plus, gut microbiome is explicitly
bidirectionally associated with diet [52]. Recent stud-
ies have found that Mediterranean diet adherence
is found to reshape gut microbiota composition
with increased abundance of Bacteroides, Prevotella,
Ruminococcus, and Faecalibacterium [53]. Those
gut microbiota may play a role through generat-
ing healthy SCFAs and producing anti-inflammation

effects in preventing AD, PD, and ALS [54–56].
Therefore, more in-depth investigations are needed
to find out mechanisms underlying the relationships
among diet, gut microbiota, and occurrence of differ-
ent neurodegenerative diseases.

Among the strengths of the study are the most com-
prehensive MR study on association of gut microbiota
and metabolite traits with neurodegenerative dis-
eases, and the largest sample size so far. However,
our study still suffers from several limitations. First,
most of the results did not survive a strict FDR
correction. However, MR was a hypothesis-driven
approach, and it could be used to detect some causal
relationships regardless of FDR adjusting when some
biological evidence exists. Second, 16S rRNA gene
sequencing describes gut microbiota from genus to
phylum level only, and metagenomic and multi-
omic approaches may offer opportunities to target
gut microbiota composition at a more specific level,
avoiding bias if species of more specific level asso-
ciated with neurodegenerative diseases. Third, our
findings might have been affected by weak instrument
bias as we included a loose cutoff of exposure-related
SNPs at a threshold of p < 1 × 10–5, although we had
excluded SNPs that had F-statistics less than 10 to
avoid weak instrument bias, and the result based on
exposure-related SNPs at genome-wide significance
(p < 5 × 10–8) should be considered with caution due
to low sensitivity of IVs. Finally, gut microbiota is
affected by several environmental factors including
diet, lifestyle, and medication, whereas the original
studies lacked detailed information on disease sever-
ity or medication status, further subgroup analysis
was hard to be performed so far.
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Moon JY, Kim HN, Lüll K, Barkan E, Shah SA, Fornage
M, Szopinska-Tokov J, Wallen ZD, Borisevich D, Agreus
L, Andreasson A, Bang C, Bedrani L, Bell JT, Bisgaard
H, Boehnke M, Boomsma DI, Burk RD, Claringbould A,
Croitoru K, Davies GE, van Duijn CM, Duijts L, Falony
G, Fu J, van der Graaf A, Hansen T, Homuth G, Hughes
DA, Ijzerman RG, Jackson MA, Jaddoe VWV, Joossens M,
Jørgensen T, Keszthelyi D, Knight R, Laakso M, Laudes
M, Launer LJ, Lieb W, Lusis AJ, Masclee AAM, Moll HA,
Mujagic Z, Qibin Q, Rothschild D, Shin H, Sørensen SJ,
Steves CJ, Thorsen J, Timpson NJ, Tito RY, Vieira-Silva S,
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