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Abstract.
Background: Genetic studies reveal that single-nucleotide polymorphisms (SNPs) of SPI1 are associated with Alzheimer’s
disease (AD), while their effects in the Chinese population remain unclear.
Objective: We aimed to examine the AD-association of SPI1 SNPs in the Chinese population and investigate the underlying
mechanisms of these SNPs in modulating AD risk.
Methods: We conducted a genetic analysis of three SPI1 SNPs (i.e., rs1057233, rs3740688, and rs78245530) in a Chinese
cohort (n = 333 patients with AD, n = 721 normal controls). We also probed public European-descent AD cohorts and gene
expression datasets to investigate the putative functions of those SNPs.
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Results: We showed that SPI1 SNP rs3740688 is significantly associated with AD in the Chinese population (odds ratio
[OR] = 0.72 [0.58–0.89]) and identified AD-protective SPI1 haplotypes � (tagged by rs1057233 and rs3740688) and � (tagged
by rs3740688 and rs78245530). Specifically, haplotypes � and � are associated with decreased SPI1 gene expression level
in the blood and brain tissues, respectively. The regulatory roles of these haplotypes are potentially mediated by changes in
miRNA binding and the epigenetic landscape. Our results suggest that the AD-protective SPI1 haplotypes regulate pathways
involved in immune and neuronal functions.
Conclusion: This study is the first to report a significant association of SPI1 with AD in the Chinese population. It also
identifies SPI1 haplotypes that are associated with SPI1 gene expression and decreased AD risk.
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INTRODUCTION

The pathophysiological mechanisms of Alzhei-
mer’s disease (AD), a progressive neurodegener-
ative disease, remain largely unclear. AD has a
strong hereditary component, estimated at 74–79%
[1, 2], suggesting its progression is highly influ-
enced by genetic factors. The coding mutation
APOE �4 is the most well-accepted AD risk genetic
factor: having the APOE �4 coding mutation(s)
increases AD risk 3–15 fold [3]. Meanwhile, non-
coding mutations also modulate AD risk [4–6], likely
through modifying gene expression. For example,
genome-wide association studies (GWASs) suggest
that SPI1—which encodes PU.1, a transcription fac-
tor that regulates the expression of immune-related
genes in myeloid cells [7], is associated with AD
[4–6]. Specifically, three single-nucleotide polymor-
phisms (SNPs) of SPI1—rs3740688, rs1057233, and
rs78245530—protect against AD risk in populations
of European descent [4–6]. Interestingly, while ele-
vated brain SPI1 transcript level is associated with
AD [8], rs1057233 tags a common haplotype that
lowers SPI1 transcript level in myeloid cells [5].
Meanwhile, rs78245530 is associated with altered
DNA methylation states in the frontal cortex, suggest-
ing it regulates SPI1 gene expression through altering
the epigenetic landscape [6]. Hence, SPI1 can con-
tribute to AD pathogenesis, and its genetic factors
may modify AD risk through affecting SPI1 gene
expression.

It is unclear whether SPI1 genetic factors modu-
late AD risk in populations of non-European descent,
as related studies have only been conducted in
populations of European descent. Accordingly, we
conducted an AD-association analysis of the pre-
viously reported AD-protective SPI1 SNPs (i.e.,
rs1057233, rs3740688, and rs78245530) in a Hong
Kong Chinese AD cohort. Among these three SPI1

SNPs, only rs3740688 exhibits significant AD-
protective effects in Chinese patients with AD.
Moreover, we identified AD-protective SPI1 haplo-
types � (tagged by rs1057233 and rs3740688) and �
(tagged by rs3740688 and rs78245530). Specifically,
haplotypes � and � are associated with decreased
SPI1 gene expression levels in the blood and brain
tissues, respectively. Interestingly, in silico analy-
sis suggests that haplotype � alters the binding of
miRNAs with the three prime untranslated region
(3’-UTR) of the SPI1 gene, while brain epige-
netic profiling shows that the haplotype � tagging
SNP resides in the regulatory region. In addition,
Gene Ontology (GO) and network analyses suggest
that haplotype � regulates key pathways involved
in immune response and learning-related neuronal
activity in the cerebral cortex. Thus, we identified
AD-protective SPI1 haplotypes that are associated
with decreased SPI1 gene expression, revealing a
possible regulatory role of SPI1 in AD pathogenesis.

MATERIALS AND METHODS

Hong Kong Chinese Alzheimer’s disease cohort

The Hong Kong Chinese AD cohort in our study
comprised 333 patients with AD and 721 normal con-
trols (NCs). First, we recruited 333 patients with AD
and 319 NCs from the Specialist Outpatient Depart-
ment at the Prince of Wales Hospital, the Chinese
University of Hong Kong. We then examined all par-
ticipants (aged ≥ 65 years) using the Montreal Cogni-
tive Assessment [9] and diagnosed patients with AD
using the American Psychiatric Association’s Diag-
nostic and Statistical Manual of Mental Disorders,
5th Edition (DSM–5) [10]. We further genotyped
these participants by TaqMan assay. We also obtained
whole-genome sequencing (WGS) data of 402 inde-
pendent elderly NCs from the Specialist Outpatient
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Department at the Prince of Wales Hospital. This
study was approved by the Prince of Wales Hospi-
tal, the Chinese University of Hong Kong, and The
Hong Kong University of Science and Technology.
All participants provided written informed consent
for both study enrolment and sample collection.

DNA extraction and genotyping

We took 3 mL whole blood from each participant
using K3EDTA tubes (VACUETTE), followed by
centrifugation at 2,000×g for 15 min at 4◦C. Next,
we sent 420 �L cell pellet (lower part) from each
sample to the Centre for PanorOmic Science (CPOS)
(Genomics and Bioinformatics Cores, LKS Faculty
of Medicine, University of Hong Kong) where DNA
extraction was performed. The extraction was done
mechanically by QIAsymphony SP (QIAGEN) using
the QIAsymphony DSP DNA Midi Kit (QIAGEN).
Genomic DNA was eluted with 100 �L Elution
Buffer ATE (QIAGEN). Genotyping of the extracted
genomic DNA was then conducted by TaqMan assay
or WGS.

SNP genotyping of 333 patients with AD and 319
NCs was conducted by TaqMan Assay (SPI1 rs105
7233, C 1301007 20; SPI1 rs3740688, C 3088
8031 10; SPI1 rs78245530, C 27834508 10;
APOE rs429358, C 3084793 20; APOE rs7412,
C 904973 10; Cat No.: 4351374 for all probes;
Thermo Fisher Scientific). Reaction mixture (10 �L)
was prepared by adding 10 ng each DNA sample
to 5 �L TaqPath ProAmp Master Mix (A30867,
Applied Biosystems) and 0.5 �L TaqMan Assays,
then topping it up with nuclease-free water. Real-
time quantitative PCR was performed using the 7500
Fast Real-Time PCR System.

Variant calling of whole-genome sequencing data

High-coverage 40×WGS of 402 NCs was per-
formed by Novogene. The genomic DNA libraries
were sequenced using the Illumina NovaSeq 6000
System, generating 150 bp paired-end reads. We then
subjected the raw reads to fastp for quality con-
trol, reads trimming, and filtration [11] and aligned
the cleaned data to the GRCh37 reference genome
using BWA-mem [12]. Subsequently, we performed
variant calling using the Genome Analysis Toolkit
(GATK) best practices [13], which included duplicate
removal, base quality score recalibration, germline
joint calling, and variant quality score recalibration.
The phase of the genotypes were determined by Bea-
gle 4.0 [14].

Additional datasets

For our replication analysis of AD risk effects,
we obtained genetic and clinical information from
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset (http://adni.loni.usc.edu) [15], the
National Institute on Aging (NIA) Alzheimer’s
Disease Centers (ADC) Cohort (phs000372.v2.p1)
[16], and the NIA Late Onset Alzheimer’s Dis-
ease (LOAD) Family Study (phs000168.v2.p2) [17].
To investigate genotype-expression association, we
also retrieved genetic and transcriptomic data from
the Genotype-Tissue Expression (GTEx) Project
(phs000424.v8.p2) [18], the BRAINEAC database
[19], and the Cardiogenics Study (EGAC0000100
0088) [20]. Please see the Supplementary Material
for descriptions of these datasets.

Data preprocessing

We imputed and phased genetic data generated
from SNP microarrays using the TOPMed imputa-
tion server [21, 22]. To conduct a principal component
analysis (PCA) of whole genomes, we pruned vari-
ants using the command “–indep-pairwise 50 5 0.2”
and then computed the first 5 principal compo-
nents (PCs) using the “–pca” argument from PLINK
1.90b [23]. For the RNA-sequencing (RNA-seq)
data, we filtered the genes by median transcripts
per kilobase million (TPM) > 1 in each tissue and
applied rank-based inverse normal transformation
across individuals using the rankNorm function from
the RNOmni package in R [24].

Association analysis of SPI1 single-nucleotide
polymorphisms with Alzheimer’s disease

We evaluated the Hardy–Weinberg equilibrium of
the SPI1 SNPs using the HWExact function from the
HardyWeinberg package in R [25]. Next, we com-
pared the genotypic and allelic frequencies between
NCs and patients with AD using the fisher.test from
the stats package in R. To eliminate the effects of con-
founding factors, we performed logistic regression on
SNP dosage (i.e., 0, 1, or 2) adjusted for age and sex
using the glm function in R.

Association analysis of SPI1 haplotypes with
Alzheimer’s disease

For the TaqMan genotyping data from our Hong
Kong Chinese AD cohort, we identified the SPI1

http://adni.loni.usc.edu
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haplotypes using the haplo.em function from the
haplo.stats package in R. Meanwhile, we obtained
the haplotypes of Hong Kong Chinese WGS data
or European descent cohort data from phased VCF
files using the bcftools convert --hapsample func-
tion [26]. We then generated a M×(N + 1) haplotype
matrix for the study cohort with M participants and
N common haplotypes (excluding the reference hap-
lotype; frequency > 1%). The first N columns of the
matrix contained the dosage (i.e., 0, 1, or 2) of each
common haplotype, while the last column (labeled
“others”) denoted the dosage of other rare haplotypes
(frequency < 1%).

Next, we performed a multivariate regression by
simultaneously feeding the allele dosage of the N
common haplotypes and “others” haplotypes as input
with AD diagnosis as the outcome. We then con-
ducted a logistic regression using the glm function
in R, adjusted for age and sex for all cohorts as well
as the first three PCs for the ADC, ADNI, and LOAD
cohorts.

Association analysis of SPI1 haplotypes with
endophenotypes

We evaluated the additive effects of the haplo-
type dosage on age of AD onset, cognition, and
gene expression by regression analysis. For our
survival analysis, we applied a Cox proportional
hazards regression to the age of AD onset data
from the LOAD cohort using the coxph function
from the survival package in R, adjusted for sex
and the first three PCs [27]. To examine the asso-
ciation of the SPI1 haplotypes with cognition, we
applied the rank-based inverse normal transforma-
tion to the Mini–Mental State Examination (MMSE)
scores from the ADNI cohort using the rankNorm
function from the RNOmni package in R [24]. We
then fitted the normalized scores using the lm func-
tion in R, adjusted for age, sex, education, and the
first three PCs. To examine the association of the SPI1
haplotypes with transcriptome in the GTEx dataset,
we used the linear model from the MatrixEQTL pack-
age in R [28], adjusted for age, sex, the first three PCs,
and RNA integrity number. We removed genes anno-
tated as “pseudogenes” or “long non-coding RNA”
by the Ensembl database from a subsequent analysis.
For our association analyses of microarray data from
the Cardiogenics study and BRAINEAC database,
we subjected the normalized signal intensity data to
robust linear regression using the lmrob function from

the robustbase package in R [29]. Analyses of the Car-
diogenics data were adjusted for age, gender, center,
and the first three PCs.

Meta-analysis

To examine the AD risk of SPI1 haplotypes in
populations of Chinese and European descent, we
subjected beta and standard error (SE) data from
each AD cohort to a meta-analysis using META-
SOFT (v2.0.0) [30]. We used a random effects
(RE) model to estimate the effect size and Han and
Eskin’s Random Effects (RE2) model to calculate the
p-value.

Gene Ontology and network analyses

We subjected significantly downregulated (Beta <
0, p < 0.05) and upregulated (Beta > 0, p < 0.05) genes
associated with SPI1 haplotypes to the enrichGO
function from the clusterProfiler package in R [31].
For the analysis, we used GO terms categorized as
“biological process.” We subsequently queried the
STRING database for the protein–protein interaction
(PPI) network of genes enriched in different biologi-
cal processes [32]. The gene network was visualized
by Cytoscape 3.8.2 [33].

Genetic annotation and data visualization

We used IGV 2.8.0 to annotate the SPI1 locus with
candidate cis-regulatory elements obtained from the
SCREEN database [34]. We queried DNase sequenc-
ing (DNase-seq) and chromatin immunoprecipitation
sequencing (ChIP-seq) data of the epigenetic mark-
ers H3K4me3 and H3K27ac, derived from the
mononuclear cell and frontal cortex data in the
EpiMap database [35], as well as single-cell assay
for transposase-accessible chromatin using sequenc-
ing (scATAC-seq) data of the human cortex [36].
We visualized the sequencing data using the WashU
Epigenome Browser. All annotations were based on
the human reference genome GRCh37. We also visu-
alized linkage disequilibrium (LD) among the SPI1
SNPs using Haploview 4.2 [37]. A forest plot for our
meta-analysis was generated by ForestPMPlot [38].
We generated all bar, box, and survival plots using
GraphPad Prism 8.0.2. For box plots, boxes extend
from the 25th to 75th quartiles, and whiskers mark
the 10th and 90th quartiles.
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Table 1
Associations between SPI1 single-nucleotide polymorphisms and Alzheimer’s disease in the Chinese population

All participants (n = 333 AD, 721 NC)

SNP EA Betaa SE Z p EAF (NC) EAF (AD)

rs1057233 g –0.212 0.111 –1.914 0.056 0.274 0.231
rs3740688 g –0.326 0.109 –2.982 0.003 0.314 0.252
rs78245530 t –0.247 0.270 –0.914 0.361 0.038 0.033

All participants with APOE adjustment (n = 333 AD, 721 NC)

SNP EA Beta SE Z p EAF (NC) EAF (AD)

rs1057233 g –0.242 0.115 –2.108 0.035 0.274 0.231
rs3740688 g –0.350 0.113 –3.085 0.002 0.314 0.252
rs78245530 t –0.230 0.282 –0.814 0.416 0.038 0.033

APOE33 participants (n = 180 AD, 493 NC)

SNP EA Beta SE Z p EAF (NC) EAF (AD)

rs1057233 g –0.124 0.145 –0.857 0.392 0.273 0.243
rs3740688 g –0.328 0.146 –2.239 0.025 0.317 0.253
rs78245530 t –0.306 0.363 –0.843 0.399 0.041 0.031
aEstimated effect size. AD, Alzheimer’s disease; EA, effect allele; EAF, effect allele frequency; NC, normal control; SE, standard error;
SNP, single-nucleotide polymorphism.

RESULTS

Association between SPI1 and Alzheimer’s
disease in the Chinese population

To investigate whether SPI1 is associated with
AD in the Chinese population, we conducted a
genetic analysis of 3 SPI1 SNPs (i.e., rs1057233,
rs3740688, and rs78245530) in a Hong Kong Chinese
AD cohort [39] (n = 333 patients with AD, n = 721
NCs; Supplementary Table 1). The frequencies of
the rs1057233 g-allele and rs3740688 g-allele were
significantly lower in patients with AD than in NCs
(p = 0.0115 and 0.0002 for rs1057233 and rs3740688,
respectively; Supplementary Table 2), suggesting
their inverse associations with AD in the Chinese
population. We then examined their inverse associ-
ations with AD after controlling for the confounding
effects of age and sex. Among the three SNPs, only
the rs3740688 g-allele exhibited a significant AD-
protective effect (Beta = –0.326 ± 0.109; p = 0.003;
Table 1). As APOE is the most common genetic
risk factor for AD, we further conducted an asso-
ciation analysis controlling for APOE genotypes and
found that the significant AD-protective effect of the
rs3740688 g-allele remained (Beta = –0.350 ± 0.113;
p = 0.002; Table 1). Notably, the inverse associa-
tion between rs3740688 and AD passed the multiple
testing correction threshold (0.05 / 9 = 0.0056).
Meanwhile, among APOE �3 homozygous (i.e.,
APOE33) participants, we also observed a lower fre-
quency of the rs3740688 g-allele in patients with
AD when compared to NCs (Table 1, Supplementary

Table 2). Hence, these results corroborate previous
findings that SPI1 is associated with AD and its SNP
rs3740688 also exerts an AD-protective effect in the
Chinese population.

Identification of Alzheimer’s disease-protective
SPI1 haplotypes

As multiple variants residing in different haplo-
types can modify the effects of AD-associated loci,
we can expand our understanding of the genetic
basis of AD by examining the roles of individual
haplotypes in disease pathogenesis. Accordingly, we
performed a haplotype analysis on the three SPI1
SNPs. Linkage disequilibrium (LD) analysis showed
that the AD-protective SNP rs3740688 was in LD
with both rs1057233 (D’ = 0.92) and rs78245530
(D’ = 1.00) in the Chinese population (Fig. 1a). Of
note, we identified four common haplotypes (fre-
quency > 1%) defined by the three SNPs. We denoted
the major haplotype as � and minor haplotypes as
� (tagged by rs1057233 and rs3740688), � (tagged
by rs3740688 and rs78245530), and δ (tagged by
rs3740688 only) in descending order of frequency
(Fig. 1a, Supplementary Table 3). Interestingly, hap-
lotypes � and � had lower frequencies in patients
with AD (frequency = 0.204 and 0.019 for � and
�, respectively) than in NCs (frequency = 0.259 and
0.030 for � and �, respectively), suggesting that these
haplotypes have AD-protective effects (Table 2).
We subsequently examined the association of these
haplotypes with AD by simultaneously subjecting
their genotypes to multivariate logistic regression.
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Fig. 1. Identification of Alzheimer’s disease-protective SPI1 haplotypes. a) Linkage disequilibrium plot and haplotypes identified in the Hong
Kong Chinese Alzheimer’s disease (AD) cohort. Cell color and labeled numbers in the upper and lower panels represent D’ and Pearson’s
correlation coefficients (r2) between single-nucleotide polymorphisms (SNPs), respectively. Letters in upper and lower case denote major
and minor alleles, respectively. b) AD-protective effects of the identified haplotypes in populations of Chinese and European descent. Dot size
and filled color represent –log10(P) and Beta, respectively. ∗∗p < 0.01, ∗p < 0.05. c) Associations between haplotype � and age of AD onset
in APOE33 participants from the Late Onset Alzheimer’s Disease (LOAD) cohort. d) Associations between haplotype � and Mini–Mental
State Examination (MMSE) score in APOE33 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. ∗∗p < 0.01.
CHN, Chinese; EUR, European descent; HR, hazard ratio.

Table 2
Associations between SPI1 haplotypes and Alzheimer’s disease in the Chinese population

All participants (n = 333 AD, 721 NC)

Name rs1057233–rs3740688–rs78245530 Betaa SE Z p EAF (NC) EAF (AD)
� A-T-G 0.678 0.735
� g-g-G –0.337 0.118 –2.860 0.004 0.259 0.204
� A-g-t –0.726 0.342 –2.127 0.034 0.030 0.019
δ A-g-G –0.291 0.403 –0.722 0.470 0.017 0.015

All participants with APOE adjustment (n = 333 AD, 721 NC)

Name rs1057233–rs3740688–rs78245530 Beta SE Z p EAF (NC) EAF (AD)
� A-T-G 0.678 0.735
� g-g-G –0.368 0.122 –3.014 0.003 0.259 0.204
� A-g-t –0.709 0.359 –1.974 0.049 0.030 0.019
δ A-g-G –0.233 0.414 –0.564 0.573 0.017 0.015

APOE33 participants (n = 180 AD, 493 NC)

Name rs1057233–rs3740688–rs78245530 Beta SE Z p EAF (NC) EAF (AD)
� A-T-G 0.678 0.724
� g-g-G –0.308 0.158 –1.954 0.051 0.259 0.208
� A-g-t –0.727 0.455 –1.598 0.111 0.031 0.019
δ A-g-G –0.412 0.555 –0.741 0.459 0.017 0.015
aEstimated effect size. Letters in upper and lower case denote major and minor alleles, respectively. AD, Alzheimer’s disease; EA, effect
allele; EAF, effect allele frequency; NC, normal control; SE, standard error.
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Interestingly, both haplotypes � and � exerted a sig-
nificant AD-protective effect (Beta = –0.337 ± 0.118,
p = 0.004 for �; Beta = –0.726 ± 0.342, p = 0.034 for
�; Table 2) that remained significant after control-
ling for the APOE genotype (Beta = –0.368 ± 0.122,
p = 0.003 for �; Beta = –0.709 ± 0.359, p = 0.049 for
�; Table 2). Of note, only the AD-protective effect
of haplotype � passed the multiple testing correc-
tion threshold (0.05/9 = 0.0056). Meanwhile, among
APOE33 participants, both haplotypes � and � exhib-
ited a lower frequency in patients with AD as
compared to NCs. Thus, these results demonstrate
that the identified SPI1 haplotypes are associated with
decreased risk of AD in the Chinese population.

To further examine whether the identified SPI1
haplotypes are associated with AD in populations of
European descent, we performed a haplotype anal-
ysis of AD cohorts of European descent (n = 5,094
patients with AD, n = 4,663 NCs; Supplementary
Table 1). Among the three minor haplotypes identi-
fied in the Chinese population, haplotype δ exhibited
a very low prevalence in populations of European
descent (frequency < 1%; Supplementary Table 3)
and was thus excluded from the subsequent anal-
ysis. While we found that neither haplotype �
nor � was significantly associated with AD in all
participants (p > 0.05), haplotype � exhibited a sig-
nificant AD-protective effect in APOE33 participants
(Beta = –0.213 ± 0.137, p = 0.030; Fig. 1b; Supple-
mentary Table 4). Accordingly, a meta-analysis
showed that haplotype � also exhibited a signifi-
cant AD-protective effect in APOE33 participants
from both populations of Chinese and European
descent (Beta = –0.248 ± 0.133, p = 0.015; Fig. 1b;
Supplementary Table 5), although this result did
not pass the multiple testing correction threshold
(0.05/6 = 0.0083). To examine the possible AD-
protective effect of haplotype �, we investigated
its association with AD-related phenotypes in AD
cohorts of European descent. First, we examined the
association between haplotype � and age of AD onset
in the APOE33 participants from the LOAD cohort
(n = 1,248; mean age = 82.3 ± 10.6 years). Surpris-
ingly, all homozygous carriers of haplotype � (n = 10,
mean age = 86.9 ± 8.7 years) were free of dementia
(Fig. 1c). Furthermore, participants who carried hap-
lotype � exhibited a delayed onset of AD (hazard
ratio = 0.54 [0.30–0.95], p = 0.035; Fig. 1c; Supple-
mentary Table 6). Next, we examined the association
between haplotype � and cognitive performance
(measured by the MMSE) in the APOE33 partici-
pants from the ADNI cohort (n = 935) and found that

haplotype � was associated with better cognitive per-
formance (Beta = 0.173 ± 0.066, p = 0.009; Fig. 1d;
Supplementary Table 7). These results collectively
suggest that SPI1 haplotype � could protect against
AD risk only in APOE33 individuals for European
descent.

Association between SPI1 haplotypes and SPI1
gene expression

Since changes in SPI1 brain transcript level are
associated with AD [8], we investigated whether the
AD-protective SPI1 haplotypes modulate SPI1 tran-
script level in human tissues. We queried the GTEx
dataset (84.6% of the donors are of European descent)
for SPI1 transcript level quantified by RNA-seq in
47 human tissues [18] and found that most human
tissues express SPI1 transcript (TPM: 2.0–934.7;
Supplementary Table 8). To investigate the possi-
ble functions of the identified haplotypes in the AD
context, we first examined the genotype-expression
association in brain tissues. Interestingly, haplotype
� was significantly associated with SPI1 transcript
level in the brain tissues, specifically in the cerebral
cortex (Beta = –0.447 ± 0.166, p = 0.008) and frontal
cortex (Beta = –0.361 ± 0.174, p = 0.039; Supple-
mentary Table 9). As haplotype � only exhibited
a significant AD-protective effect among APOE33
participants in AD cohorts of European descent, we
conducted an association analysis in the brain tis-
sues of APOE33 donors. We found that haplotype
� was significantly associated with decreased SPI1
transcript level in the cortex tissues from APOE33
donors in the GTEx dataset (Beta = –0.693 ± 0.223,
p = 0.002; Fig. 2a; Supplementary Table 10) and in the
frontal cortex tissues from the BRAINEAC database
(Beta = –0.146 ± 0.071, p = 0.042; European descent;
Supplementary Table 11). Together, these findings
suggest that haplotype � plays a regulatory role in
SPI1 gene expression in the brain tissues of APOE33
donors of European descent. Meanwhile, haplotype
� was associated with increased SPI1 transcript level
in the cerebellum, which is usually unaffected in
AD (Beta = 0.258 ± 0.109, p = 0.019; Supplementary
Table 9) [40].

To examine whether haplotype � affects SPI1
gene expression in specific brain cell types, we
analyzed a previously reported single-nucleus RNA
sequencing (snRNA-seq) dataset of the human frontal
cortex [41]. SPI1 transcripts were mainly expressed
by microglia (Supplementary Figure 1a), suggest-
ing the association between haplotype � and SPI1
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Fig. 2. Effects of SPI1 haplotypes on the regulation of SPI1 transcript level. a–c) Associations between SPI1 haplotypes and SPI1 transcript
level in (a) the cortex, (b) monocytes, and (c) macrophages from APOE33 donors. Rectangles and error bars denote the effect size and standard
error, respectively. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. d) Epigenetic modification of the SNP-harboring region for the SPI1 haplotypes’ tag
SNPs. Panels from top to bottom are the gene structure and coordinates of SPI1. Boxes and lines denote exons and introns, respectively. Red
and yellow bars represent candidate cis-regulatory elements (ccREs) with high H3K4me3 and H3K27ac signals, respectively. Signals of
DNase sequencing (DNase-seq), H3K4me3 chromatin immunoprecipitation sequencing (ChIP-seq), and H3K27ac ChIP-seq in the cerebral
cortex. Signals of single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) in the cerebral cortex. Signals
of DNase-seq, H3K4me3 ChIP-seq, and H3K27ac ChIP-seq in blood mononuclear cells. Please refer to Supplementary Figure 2 for all
available biological replicates. Astro, astrocyte. ExN, excitatory neuron; InN, Inhibitory neuron; Micro, microglia; Oligo, oligodendrocyte;
OPC, oligodendrocyte progenitor cell.

transcript level in the brain was primarily con-
tributed by microglia. As altered brain SPI1 transcript
level can represent changes of microglia number or
microglial SPI1 gene expression, we performed a
cell-type deconvolution analysis of GTEx brain tis-
sues by CIBERSORTx using brain snRNA-seq data

as the reference [42]. Interestingly, after controlling
for the proportion of microglia in the cortex tissues
from APOE33 donors, we found that haplotype �
was still associated with decreased SPI1 transcript
level (Beta = –0.468 ± 0.180, p = 0.010; Supplemen-
tary Table 10); indeed, haplotype � did not seem
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to affect microglia number in the cortex tissues
from APOE33 donors (p = 0.233; Supplementary
Figure 1b). These results collectively suggest that
haplotype � could modulate SPI1 gene expression
in the cerebral cortex.

As blood plays a key role in the peripheral
immune system and expresses the highest level of
SPI1 transcript as compared to other tissues (median
TPM = 934.7; Supplementary Table 8), we examined
the association between the SPI1 haplotypes and SPI1
transcript level in the blood. Interestingly, only haplo-
type � was associated with lower SPI1 transcript level
in the whole blood (Beta = –0.119 ± 0.060, p = 0.047;
Supplementary Table 9). We conducted a subsequent
analysis of monocytes and macrophages probed
from the Cardiogenics study that was conducted
in European [20] (n = 758 and 599 monocytes and
macrophages, respectively) and found that haplotype
� was strongly associated with decreased SPI1 gene
expression in monocytes and macrophages from both
all donors and only APOE33 donors (p < 2×10–9;
Fig. 2b, c; Supplementary Table 12). Hence, these
results suggest that haplotype � modulates SPI1 gene
expression in the blood, specifically in monocytes and
macrophages.

Non-coding variants may regulate gene expres-
sion by altering binding with miRNAs or altering
epigenetic landscapes. To explore the underlying
regulatory mechanisms of haplotypes � and �,
we examined the putative regulatory functions of
their tag SNPs (i.e., rs1057233, rs3740688, and
rs78245530). Interestingly, we found that rs1057233
and rs78245530 reside in the candidate cis-regulatory
element of SPI1 as revealed by the SCREEN database
(Fig. 2d) [34]. Moreover, rs1057233 resides in the
3’-UTR of SPI1, which is a target binding site of
miRNAs [43]. Accordingly, we queried the miR-
NASNP database and found that rs1057233 may alter
the binding affinity of the 3’-UTR of SPI1 with
multiple miRNAs (Supplementary Table 13) [44].
Among those miRNAs, we identified hsa-miR–569,
whose binding with the 3’-UTR of SPI1 is report-
edly affected by rs1057233 [43]. To further dissect
the regulatory roles of rs1057233- and rs78245530-
harboring regions in the brain and blood tissues,
we queried the epigenetic profiles from the EpiMap
database [35]. In the cerebral cortex, rs1057233- and
rs78245530-harboring regions exhibited enhancer
activity (indicated by the low H3K4me3 signal and
high H3K27ac signal [45]) (Fig. 2d). We further
queried scATAC-seq data in the cortex and found
that only the rs78245530-harboring region exhibited

high DNA accessibility, specifically in microglia
(Fig. 2d) [36]. Meanwhile, in mononuclear cells,
the rs78245530-harboring region also exhibited chro-
matin accessibility (indicated by the DNase-seq
signal) and enhancer activity (indicated by the low
H3K4me3 signal and high H3K27ac signal) (Fig. 2d;
Supplementary Figure 2). Therefore, these results
suggest that haplotypes � and � could modulate
SPI1 gene expression by altering miRNA binding
or the regulatory activities of the tag SNP-harboring
regions.

Association between SPI1 haplotypes and
biological pathways

Given that haplotype � is associated with bet-
ter cognitive performance in APOE33 participants
of European descent (Fig. 1d), it may modulate
brain functions. Accordingly, we examined the genes
and/or pathways potentially modulated by haplo-
type � using the transcriptomic data of cortex
tissues obtained from APOE33 donors in the GTEx
dataset. Interestingly, we found that haplotype � was
associated with the brain expression level of spe-
cific genes involved in innate immunity response
(e.g., TGFB1, MYD88, and PTPRC) and neuronal
functions (e.g., CHRNB2, DLG4, and CDK5), sug-
gesting that haplotype � has a regulatory effect on
these pathways (Fig. 3a). Specifically, the downreg-
ulated genes are involved in “cell adhesion” (false
discovery rate [FDR] = 3.2×10–20) and “phago-
cytosis” (FDR = 2.1×10–14; Fig. 3b), while the
upregulated genes are involved in “synaptic signal-
ing” (FDR = 4.2×10–28) and “learning or memory”
(FDR = 1.8×10–16; Fig. 3b). Protein–protein inter-
action (PPI) network analysis revealed strong
interactions among dysregulated genes (PPI enrich-
ment p < 1×10–16; Fig. 3c), which again confirmed
the possible regulatory role of haplotype � in
the aforementioned pathways. Meanwhile, we also
examined the association between haplotype � and
transcriptomic changes in the cerebral cortex and
monocytes. We found that haplotype � was associated
with decreased gene expression of immune response
pathways, including “Fc-� receptor signaling” in
the cerebral cortex (FDR = 0.002; Supplementary
Figure 3a, b) and “pattern cognition receptor sig-
naling” in monocytes (FDR = 0.049; Supplementary
Figure 3c, d). These results collectively suggest that
SPI1 haplotypes exert AD-protective effect by mod-
ulating immune and neuronal functions.
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Fig. 3. Associations between haplotype � and transcriptomic changes in the cerebral cortex in APOE33 donors. a) Volcano plot showing
the associations between haplotype � and cortical gene expression. b) Gene Ontology analysis of genes modulated by haplotype � in the
cerebral cortex. c) Protein–protein interaction network of genes involved in immune and neuronal functions. Nodes and edges denote genes
and their interactions. Node shapes represent the ontology of corresponding genes. Node colors denote the effect size of haplotype � on
transcript level.

DISCUSSION

Here, we conducted the first genetic analysis
of SPI1 haplotypes tagged by three previously
reported SPI1 SNPs (i.e., rs1057233, rs3740688,
and rs78245530) that are associated with AD in
both populations of Chinese and European descent.
Corroborating previous observations found in pop-
ulations of European descent, we demonstrated that
the rs3740688 g-allele exerts an AD-protective effect
in the Chinese population. Interestingly, we identified
that AD-protective SPI1 haplotypes � and � can mod-
ulate SPI1 gene expression. Specifically, haplotype �
is associated with decreased SPI1 gene expression in
blood monocytes and macrophages, while haplotype
� is associated with decreased SPI1 gene expression
in the cerebral cortex. Moreover, GO analysis shows
that the AD-protective haplotype � is associated with
transcriptomic changes involved in immune and neu-
ronal functions in the cerebral cortex, suggesting that
haplotype � regulates these pathways in the brain tis-
sues. Therefore, our results identified AD-protective

SPI1 haplotypes and reveal their possible roles in
AD pathogenesis, suggesting SPI1 as a target for AD
intervention.

Compared to SNP-based studies, haplotype anal-
ysis can increase the statistical power of genetic
analysis and identify key disease-associated SNPs or
haplotypes [46]. For example, a genome-wide haplo-
type association analysis in populations of European
descent identified new AD risk haplotypes in the
FRMD4A locus [47]. Meanwhile, a haplotype anal-
ysis in the APOE locus identified risk haplotypes
that are independent of the APOE �4 allele [48].
In the SPI1 locus, a common haplotype tagged by
SNP rs1057233 (denoted as SPI1 haplotype � in
this study) was shown to protect against AD risk
[5]. Here, we identified another SPI1 haplotype,
haplotype �, that exerts an AD-protective effect inde-
pendent of haplotype �. Interestingly, as haplotype
� exhibits different frequencies in different ethnic
populations (frequency > 0.106 in European descent;
frequency = 0.027 in Chinese), it may have an ethnic-
specific effect on AD risk. Thus, haplotype analysis
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may not only expand our understanding of the disease
risk of known disease-associated loci, but conducting
such haplotype analysis in a genome-wide manner is a
critical step in uncovering the genetic basis of human
diseases.

GWAS studies reveal that most disease-associated
variants are non-coding variants. Non-coding DNA
comprise most of the human genome (> 98%) and
are vital in the regulation of gene expression [49].
For example, a genome-wide fine-mapping study
revealed that 27 of 36 AD risk loci colocalized with
expression quantitative trait loci in multiple tissues
[50]. Interestingly, our analysis shows that the non-
coding variants of SPI1 could modulate SPI1 gene
expression in a tissue-specific manner—haplotype �
decreases blood SPI1 gene expression, while hap-
lotype � decreases brain SPI1 gene expression.
Moreover, our study indicates that haplotypes � and
� may exert distinct regulatory mechanisms on gene
expression through altering miRNA binding and the
epigenetic landscape, respectively. Thus, to dissect
the pathological mechanisms of disease-associated
genes, it is important to conduct fine-mapping analy-
ses of non-coding variants of those genes and examine
their roles in the gene expression regulation.

Given that SPI1 encodes a transcription factor
(i.e., PU.1) that regulates the expression of immune-
related genes [7], SPI1 dysregulation may alter
the expression of those genes and thus modulate
immune function. For example, manipulation of SPI1
gene expression can change the gene expression
of microglia and modify phagocytic activity [5].
Accordingly, the AD-protective SPI1 haplotype �
is associated with lower brain transcript level of
immune-related genes, including microglial activa-
tion signatures (e.g., TGFB1, MYD88, and PTPRC;
Fig. 3a). Notably, we also observed that haplotype
� is associated with higher brain transcript level of
key genes involved in neuronal functions, including
CDK5, DLG4, and CHRIN2B (Fig. 3a). For instance,
CDK5 is essential for synaptic plasticity and neurode-
generation [51]. Hence, further studies are required
to understand the role of SPI1 in the central nervous
system, especially in microglial and neuronal func-
tions, to help dissect the mechanisms underlying AD
pathogenesis.

This study investigated the role of SPI1 haplotypes
(tagged by known AD-protective SNPs) in modulat-
ing AD risk in populations of Chinese and European
descent. However, further analyses—including those
that examine a larger cohort to assess the associa-
tion between the identified SPI1 haplotypes and AD

as well as validate the modulatory effects of the
SPI1 haplotypes on disease-associated phenotypes
(including age of onset and cognitive performance)
in additional independent cohorts—will help confirm
the observations of this study. Moreover, while the
epigenetic profiles of specific SPI1 genetic variant-
harboring regions provide insights into the functions
of those regions, functional studies may help eluci-
date the mechanisms by which the SPI1 haplotypes
modulate SPI1 gene expression and hence alter AD-
associated functions of microglia [52, 53].
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Lathrop M, Trégouët DA, Williams J, Amouyel P (2013)
Genome-wide haplotype association study identifies the
FRMD4A gene as a risk locus for Alzheimer’s disease. Mol
Psychiatry 18, 461-470.

[48] Zhou X, Chen Y, Mok KY, Kwok TCY, Mok VCT, Guo Q, Ip
FC, Chen Y, Mullapudi N, Giusti-Rodrı́guez P, Sullivan PF,
Hardy J, Fu AKY, Li Y, Ip NY (2019) Non-coding variability
at the APOE locus contributes to the Alzheimer’s risk. Nat
Commun 10, 3310.

[49] Craig Venter J, Adams MD, Myers EW, Li PW, Mural RJ,
Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et
al. (2001) The sequence of the human genome. Science 291,
1304-1351.

[50] Schwartzentruber J, Cooper S, Liu JZ, Barrio-Hernandez I,
Bello E, Kumasaka N, Young AMH, Franklin RJM, John-
son T, Estrada K, Gaffney DJ, Beltrao P, Bassett A (2021)
Genome-wide meta-analysis, fine-mapping and integrative
prioritization implicate new Alzheimer’s disease risk genes.
Nat Genet 53, 392-402.

[51] Cheung ZH, Ip NY (2012) Cdk5: A multifaceted kinase in
neurodegenerative diseases. Trends Cell Biol 22, 169-175.

[52] Lau SF, Chen C, Fu WY, Qu JY, Cheung TH, Fu AKY,
Ip NY (2020) IL-33-PU.1 Transcriptome reprogramming
drives functional state transition and clearance activity of
microglia in Alzheimer’s disease. Cell Rep 31, 107530.

[53] Pimenova AA, Herbinet M, Gupta I, Machlovi SI, Bowles
KR, Marcora E, Goate AM (2021) Alzheimer’s-associated
PU.1 expression levels regulate microglial inflammatory
response. Neurobiol Dis 148, 105217.


