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Abstract.
Background: While both cognitive and magnetic resonance imaging (MRI) data has been used to predict progression in
Alzheimer’s disease, heterogeneity between patients makes it challenging to predict the rate of cognitive and functional
decline for individual subjects.
Objective: To investigate prognostic power of MRI-based biomarkers of medial temporal lobe atrophy and macroscopic
tissue change to predict cognitive decline in individual patients in clinical trials of early Alzheimer’s disease.
Methods: Data used in this study included 312 patients with mild cognitive impairment from the ADNI dataset with baseline
MRI, cerebrospinal fluid amyloid-�, cognitive test scores, and a minimum of two-year follow-up information available. We
built a prognostic model using baseline cognitive scores and MRI-based features to determine which subjects remain stable
and which functionally decline over 2 and 3-year follow-up periods.
Results: Combining both sets of features yields 77% accuracy (81% sensitivity and 75% specificity) to predict cognitive
decline at 2 years (74% accuracy at 3 years with 75% sensitivity and 73% specificity). When used to select trial participants,
this tool yields a 3.8-fold decrease in the required sample size for a 2-year study (2.8-fold decrease for a 3-year study) for a
hypothesized 25% treatment effect to reduce cognitive decline.
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Conclusion: When used in clinical trials for cohort enrichment, this tool could accelerate development of new treatments
by significantly increasing statistical power to detect differences in cognitive decline between arms. In addition, detection of
future decline can help clinicians improve patient management strategies that will slow or delay symptom progression.

Keywords: Alzheimer’s disease, cognitive decline, machine learning, magnetic resonance imaging, prognostics, random
forest, sample size, statistical model

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative
disorder characterized by abnormal accumulation of
amyloid-� (A�) and intracellular neurofibrillary tan-
gles in the brain resulting in progressive synaptic
dysfunction, irreversible neuronal loss, and cognitive
deficits [1, 2]. This pathological process gradually
develops over many years, with a long asymptomatic
phase before a clinical diagnosis of AD [3]. Patients
in the early stages of AD dementia are not a mono-
lithic bloc. Some experience decline in their cognitive
abilities at different rates, with some patients pro-
gressing very fast while a large portion of patients
remain stable [4, 5]. This heterogeneity increases the
complexity of treatment development. After numer-
ous failures of candidate drugs for dementia due to
AD, the field has moved toward clinical trials at an
earlier stage (mild cognitive impairment (MCI) with
proven AD biomarkers) [6, 7]. However, even recent
trials in amyloid positive patients with MCI do not
factor the marked inter-individual differences in rates
of progression in subjects with MCI, which can have
a profound effect on the outcome of trials [8]. Recent
clinical trial results have shown that inter-individual
differences in speed of progression can have a major
impact on the achievement of primary aims, and can
leave uncertainty about the true efficacy of putative
treatments [9]. Accurately predicting the progression
rate in individual patients with mild cognitive impair-
ment and mild dementia due to AD would enable
the enrichment of patient populations in clinical trials
by increasing the mean cognitive/functional decline
over the trial duration, and therefore facilitating the
demonstration of the treatment effect (or the absence
of treatment effect). This in turn could lead to poten-
tially faster, more efficient candidate drug testing.

In order to be generalizable to the population after
drug approval, tools to predict future progression in
MCI would have to be based on readily available
measures in clinical practice, such as brain MRI and
cognitive tests. Indeed, AD is associated with a ste-
reotypical pattern of early cerebral atrophy in the
medial temporal lobe limbic regions including ent-
orhinal cortex (EC) and hippocampus (HC) [1]. The

early degeneration in medial temporal lobe lim-
bic structures consistent with early memory deficits
provides the anatomical basis to use MRI-based mea-
sures of atrophy as valid markers of disease state and
progression [10, 11].

We have previously developed Scoring by Non-
local Image Patch Estimator (SNIPE) as a grading
metric to measure AD-related structural alterations in
brain anatomy, with applications to both hippocampal
and entorhinal structures [12]. Based on this non-
local patch-based framework, SNIPE estimates the
structural similarity of a new subject under study to
a number of templates present in a training library
consisting of cognitively normal subjects and patients
with AD. In our previous work, we showed that base-
line SNIPE scores could differentiate patients with
MCI that remain stable versus those that progress
to AD [13], and that baseline SNIPE scores enable
AD prediction in a group of cognitively intact sub-
jects seven years before the clinical diagnosis of
AD dementia [14]. More recently, we demonstrated
that combining MRI features and neurocognitive test
results at baseline could yield 78% accuracy in pre-
diction of conversion from MCI to AD at 2 and 3 years
before diagnosis of AD (and up to 87% accuracy, five
years before diagnosis) [15].

While these results were promising, conversion to
AD as a categorical diagnosis may be too late an event
when testing new neuroprotective therapies. In this
study, we investigated the ability of our models to
predict cognitive and functional decline (as opposed
to categorical change in diagnosis from MCI to mild
dementia) in a cohort of patients with mild AD simi-
lar to those chosen for recent clinical trials [16, 17].
Using only baseline cognitive test results and baseline
MR-driven features, we evaluate the accuracy, sensi-
tivity, and specificity of our model to predict decline
over two- and three-year follow-up periods, durations
commonly used in clinical trials. Functional decline
is defined as an increase in global Clinical Dementia
Rating-Sum of boxes (CDR-SB) score [18]. Finally,
we evaluate the potential use of our proposed tech-
nique as a screening tool for enrichment in clinical
trials targeting patients likely to experience cognitive
decline in near future.
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METHODS

Dataset

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI) database (http://adni.loni.
usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investi-
gator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial MRI, positron
emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI
and early AD.

In this work, we selected subjects with mild AD
from ADNI study for which T1 MRI data and Mon-
treal Cognitive Assessment (MoCA) scores were
available at baseline. All subjects provided informed
consent and the protocol was approved by the institu-
tion review board at all sites. The inclusion of MoCA
limited this study to ADNI2 and ADNI-GO datasets,
since this measurement was not included in ADNI1
dataset. The key inclusion criteria here are similar to
those used for current clinical trials of AD in amnes-
tic MCI cohorts: 1) A CDR-Global Score of 0.5,
2) A Mini-Mental State Examination (MMSE) score
between 24 and 30 (inclusive), and 3) having a posi-
tive amyloid PET scan with a cut-off of 0.79 SUVr for
positivity. Application of these criteria reduced the
number of subjects available at baseline in ADNI2
and ADNI-GO to 312. These subjects were labeled
as either stable or progressive based on a 2-point
increase [19] in their global CDR-SB score from a
total possible of 18 points [18]. Here, we refer to the
stable and progressive mild AD subjects as pMCI and
sMCI, respectively.

Preprocessing

All the selected T1 MR images were preproce-
ssed using a fully automatic pipeline. This pipeline
includes denoising [20], correction of intensity

Table 1
Dataset Information

2 years 3 years
follow-up follow-up

pMCI 55 63
sMCI 155 108
pMCI:sMCI ratio 0.355 0.583
Age at baseline 72.5 ± 6.7 71.9 ± 6.6
% Male 54.3 55.6

inhomogeneity using N3 [21], and intensity nor-
malization. MRI scans were then registered to
pseudo-Talairach stereotaxic space [22, 23] using a
population-specific template [24]. Brain extraction
was then performed using BEaST [25].

MRI features: SNIPE scoring

To automatically segment HC and EC, a multi-
template non-local patch-based method has been
used [26]. This method uses a set of MRI volumes
with manually segmented HC and EC as training
library. The target patch is then weighted based on
how much it resembles each patch in the training
dataset. The final label of the patch (targeted structure
or background) was assigned based on a weighted
average of all similar patches.

The SNIPE grading or scoring of the HC and EC
is then achieved by estimating the patch similarity of
the subject under study to different training popula-
tions: normal controls and patients with AD dementia
[12, 13]. Following the same linear regression method
used in [27], SNIPE scores are corrected for age and
sex based on the normal control population. Visual
quality control was performed on all processed MR
datasets.

Classification

Our feature set contains age, sex, cognitive test
scores including Alzheimer’s Disease Assessment
Scale (ADAS), MoCA, Rey Auditory Verbal Learn-
ing Task (RAVLT), MMSE, and MR-based z-scored
features (SNIPE scores for HC and EC) from baseline
data that are used as input to the classifier.

Since the number of sMCI and pMCI subjects were
not the same, and standard methods may have diffi-
culty with such imbalanced data, we used a balanced
random forest algorithm to train our predictive model
[28]. This method down-samples the majority class
and trains the trees of the random forest based on a
more balanced data set.

We trained our prognostic model using different
combinations of features drawn from baseline visits.
These classifiers were trained either using MRI-
driven SNIPE scores and age, neurocognitive scores
and age, or a combination of both SNIPE and neu-
rocognitive scores plus age, and each model was
validated using 10-fold cross-validation. The classi-
fication performance for both follow-up periods (i.e.,
2 and 3 years) was evaluated based on the measured
sensitivity, specificity, and accuracy.

http://adni.loni.usc.edu
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Power analysis

Following the method used in [29], we estimated
the required sample size to detect a reduction in the
mean annual rate of cognitive decline based on CDR-
SB score. This method assumes that rates of decline
are linear for each subject. We used a two-sided test
and set the standard significance level to 0.05 with a
power of 80%. The required sample size per arm was
estimated using the following formula [30]:

n =
2

(
σ2

s + σ2∈∑
(tj−t̄)2

) (
Z1− a

2
+ Z1−β

)

�2 (1)

Where � and 1-� are the significance level and power
and t̄ represents the mean measure time. σ2

s and
σ2∈∑
(tj−t̄)2 denote the between- and within-subject

variance of the data and can be estimated by fitting
a linear mixed effects model to the data. Here, �

represents the treatment effect. We evaluated differ-
ent values of �, when � = 25% reflects a slowing of
disease-related functional and cognitive decline by
at least 25%, attributed to the tested drug. Note that
the cognitive decline may be due to normal aging
as well as AD-related pathology. Here, we remove
the annualized decline due to normal aging so as
not to overestimate the benefit of enrichment when
computing the treatment effect.

We estimated and compared sample sizes for two
groups of subjects. First, using data from all the mild
AD subjects in the ADNI dataset that fit the selection
criteria above (n = 312), i.e., the unenriched group.
Second, using only the subset of those ADNI MCI
subjects identified as pMCI using baseline data and

the classifier described above (n = 64 for 2 years), i.e.,
the enriched group.

RESULTS

Prediction accuracy, sensitivity, and specificity

To assess how different features affect prediction
accuracy, we trained models with different combi-
nations of features. Table 2 shows the classification
performance in terms of sensitivity, specificity, and
accuracy, for all the models trained in this study, for
2- and 3-year follow up periods. Using hippocam-
pal grading scores in addition to MoCA, ADAS13,
and MMSE, yields the highest accuracy in predict-
ing cognitive decline at 2 years. Comparing results
between the classifier using only the baseline cogni-
tive score and the corresponding classifier with the
added MRI features showed that for both follow up
periods, the accuracy of prediction is increased when
adding MRI features. Results also showed that pMCI
and sMCI groups did not have significantly different
age at baseline for the 2- or 3-year analysis.

Power analysis

Table 3 summarizes the CDR-SB values for the
unenriched and enriched MCI cohorts that met the
inclusion criteria described in the Methods and that
were used to complete the power analysis.

Figure 1 shows the required sample sizes for differ-
ent treatment effects for both unenriched and enriched
MCI cohorts. Using the unenriched group of MCI
subjects, power analysis shows that 1,075 subjects
(764 subjects) per arm are required in a 2-year

Table 2
Classifier performances

2-year follow-up 3-year follow-up

Feature sets (including Age) Sen (%) Spec (%) Acc (%) Sen (%) Spec (%) Acc (%)

MoCA 72.1 ± 2.1 62.6 ± 1.9 65.3 ± 1.5 59.4 ± 2.1 60.7 ± 1.5 60.2 ± 1.2
ADAS13 71.2 ± 2.5 71.3 ± 1.6 71.3 ± 1.3 67.4 ± 0.9 68.3 ± 2.0 68.8 ± 1.4
MoCA, ADAS13 74.8 ± 2.4 74.7 ± 1.2 74.7 ± 1.1 66.4 ± 1.8 70.6 ± 1.7 70.4 ± 1.3
MoCA, ADAS13, MMSE 76.5 ± 1.5 75.7 ± 1.3 75.9 ± 1.0 65.2 ± 1.9 70.4 ± 1.5 70.8 ± 1.2
MoCA, ADAS13, MMSE, RAVLT 76.1 ± 2.1 74.8 ± 1.2 75.2 ± 0.9 66.3 ± 1.8 69.3 ± 1.6 71.0 ± 1.3
HC, EC 76.2 ± 2.1 70.1 ± 1.3 71.7 ± 1.1 75.1 ± 1.9 68.9 ± 1.4 71.0 ± 1.3
HC, ADAS13 78.8 ± 1.3 73.6 ± 1.2 74.7 ± 1.2 75.7 ± 1.6 70.7 ± 1.4 72.6 ± 1.1
HC, MoCA 75.9 ± 2.4 72.4 ± 1.4 73.2 ± 1.2 71.6 ± 2.0 67.3 ± 1.2 69.0 ± 0.9
HC, EC, ADAS13 81.0 ± 2.2 74.2 ± 1.1 75.9 ± 1.1 75.4 ± 1.7 71.6 ± 1.3 73.4 ± 1.1
HC, MoCA, ADAS13 80.4 ± 1.6 74.3 ± 1.1 75.8 ± 0.9 75.4 ± 2.2 70.7 ± 1.2 72.8 ± 1.1
HC, EC, MoCA, ADAS13 80.2 ± 2.1 75.0 ± 0.8 76.7 ± 0.7 74.9 ± 2.4 73.0 ± 1.4 74.0 ± 1.2
HC, MoCA, ADAS13, MMSE 81.3 ± 1.8 74.7 ± 1.1 76.9 ± 0.9 74.4 ± 1.3 71.3 ± 1.4 73.3 ± 1.2
HC, EC, MoCA, ADAS13, MMSE 79.5 ± 1.9 74.6 ± 1.1 75.9 ± 1.0 75.2 ± 1.8 72.3 ± 1.3 73.2 ± 1.2
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Table 3
CDR-SB values

Baseline mean Year 1 mean Year 2 mean Year 3 mean
(std dev) (std dev) (std dev) (std dev)

unenriched MCI 1.631 (0.935) 1.956 (1.457) 2.356 (2.107) 2.866 (2.978)
enriched MCI (2 y) 1.924 (0.875) 2.68 (1.325) 4.084 (2.504) –
enriched MCI (3 y) 1.851 (0.874) 2.559 (1.359) 3.869 (2.639) 5.094 (3.788)

Fig. 1. The required sample size per arm for different treatment
effects. (Note that the 2-year and 3-year pMCI curves almost over-
lap.).

(3-year) trial of therapy with a hypothesized 25%
effect size (80% power and 5% significance level)
to reduce cognitive decline, measured by a two-
point increase in CDR-SB (dotted lines in Fig. 1).
When using the enriched cohort of MCI subjects,
only 279 (273) subjects per arm are require for a
2-year (3-year) trial (solid lines in Fig. 3). These
results demonstrate that enrichment using baseline
HC, MoCA, ADAS13, and MMSE yields a 3.8-fold
decrease in the sample size for a 2-year study (2.8-
fold decrease for a 3-year study).

DISCUSSION

In the present study, we trained models to predict
cognitive decline in patients in the early stages of AD
dementia. We used feature sets consisting of baseline
measures of either cognitive test scores, MRI-based
grading scores, or a combination of both features
for follow-up periods of 2 and 3 years in the ADNI
dataset. The results demonstrate that cognitive test
scores and our MRI-based features contribute differ-
ently to the result of the prediction and combining
cognitive test scores and MRI-based features improve
prediction accuracy (Table 2). Using HC, MoCA,
ADAS13, and MMSE as features yielded the high-
est prediction accuracy of 76.9% with a sensitivity of
81.3% and a specificity of 74.7% at 2 years.

In our previous work, we showed that when pre-
dicting onset of dementia in subjects with mild
cognitive impairment, MRI-based features (SNIPE)

are more sensitive compared to cognitive features,
and even more so with longer follow-up periods,
while cognitive features contribute more to the speci-
ficity of the prediction [15]. Here, we also show
that cognitive features lose sensitivity when it comes
to predicting functional and cognitive decline at 36
months compared to that at 24 months.

While adding MRI features to cognitive scores in-
creases accuracy by 1% for a 2-year trial, and 2%
for a 3-year trial, the sensitivity of the model is more
important than the accuracy for clinical trial enrich-
ment, since we are looking for the maximum number
of true positives, i.e., subjects that will certainly dec-
line. Using MoCA and ADAS13 as features for our
model, we achieved nearly 75% sensitivity for two-
year prediction. By adding the HC SNIPE score to this
feature set, we were able to increase the sensitivity
by 5.6% to 80.4%. At three years, prediction sensi-
tivity of MOCA and ADAS was 66.4%, but adding
HC SNIPE features raises it to 75.4%, i.e., a 9%
increase. As we have previously shown [15], MRI-
driven features help contribute more sensitivity to the
prediction at later follow-up periods. Despite the fact
that predicting subtle cognitive decline is harder than
predicting conversion from MCI to AD, the predictive
accuracy of cognitive decline remains high.

We further estimated the statistical power of our
prognostic model in terms of the sample size required
to detect a treatment effect on the decline of cognitive
abilities. Using a conservative estimate of 25% treat-
ment effect in the power analysis, we found a 3.8-fold
reduction in the number of subjects required for a 2-
year study (and 2.8-fold decrease for 3-year. If we
change this estimate to an optimistic 40% treatment
effect, the resulting power analysis yields a 2.40-fold
reduction for a 3-year trial and a 3.24-fold reduction
for a 2-year trial. This could give a marked clini-
cal advantage, making the enrichment of the target
cohort more precise with a smaller sample size, and
therefore less costly.

Our results compare favorably to previous work.
Lorenzi et al. evaluated a number of biomarkers
to screen in subjects more likely to have cognitive
decline [31]. Without enrichment, their simulations
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required a sample size of 674 MCI patients per arm
to detect a 25% treatment effect (90% power) on cog-
nitive decline measured with CDR-SB in a two-year
trial. Enrichment using either ADAS-COG, cere-
brospinal fluid (CSF) tau, CSF A�42, CSF tau/A�42,
hippocampal volume, CSF p-tau, or [18F]-FDG PET
decreased the number of patients required to 270, 310,
291, 264, 191, 287, and 240, respectively. At 191 sub-
jects per arm, hippocampal volume offered a 3.5-fold
reduction in the number of subjects required in their
study. For direct comparison (25% effect, 90% power,
2-year trial), baseline HC SNIPE, MoCA, ADAS13,
and MMSE enables a 3.8-fold reduction (from 1,439
subjects unenriched to 375 subjects enriched with our
classification tool). Ithapu et al. used deep learning
techniques to evaluate enrichment in a 2-year trial of
cognitive decline [32]. They found that 1,586 subjects
were required to detect a 25% effect (80% power, sig-
nificance of 0.05) without enrichment and that only
281 subjects were required per arm using baseline
[18F]-FDG PET, amyloid florbetapir PET, and struc-
tural MRI. While these results are very similar to ours,
we are agnostic to the source of amyloid positivity.
We can use amyloid results from inexpensive CSF-
derived biomarkers or more expensive PET scans.

Recent work by Wolz et al. evaluated enrichment
in clinical trials in MCI using markers of amyloid
(PET imaging or CSF analysis of beta amyloid) and
neurodegeneration (measured by hippocampal vol-
ume) for a 25% effect size to decrease the rate of
cognitive decline measured with MMSE or ADAS-
Cog13 (with 80% power and significance level 0.05)
[33]. While 908 unenriched subjects per arm were
required for the ADAS-Cog13 outcome measure, this
number could be reduced to 605 using baseline hip-
pocampal volume, to 458 using baseline measures of
amyloid, and 363 (corresponding to a 2.5-fold reduc-
tion) when using both. In a previous study, we have
shown that SNIPE scores are better predictors of cog-
nitive decline compared to volumetric measurements
[34], and as a result, this score would further decrease
the number of subjects needed, when used instead of
volumetric-based measurements.

It is important to note that patient selection in clin-
ical trials is an expensive process. At the beginning of
a trial, one must screen a large number of subjects to
select those that meet eligibility and enrichment cri-
teria. This process currently involves the collection of
several biomarkers (structural MRI, CSF biomarkers,
amyloid/tau PET), but generally do not include pre-
diction measures to identify subjects that are likely
to have cognitive and functional decline. In ADNI,

35% of the MCI subjects showed decline (define by
at least two-point increase in CDR-SB) after 2 years.
This shows the need to screen roughly 3x more MCI
subjects at baseline. With 58% of subjects declining
after 3 years in ADNI, studies need to screen almost
twice as many subjects for 3-year trials. Decreasing
the required sample size to demonstrate a clinical for
effect would lead to massive savings in the follow-
up visits of enrolled patients (but with a higher cost
at enrollment). For example, assume 1000 subjects
are required for a 2-year trial. With enrichment, this
number is reduced to 263. However, 3x more subjects
need to be screened at baseline if the rate of ADNI
decliners is used. This gives a total of 3 × 263 sub-
jects at baseline +263 at year 1 and 263 at year 2, for
a total of 1,315 subject visits (compared to 3,000 sub-
ject visits with no enrichment, a 56% savings). Using
a method to enrich the cohorts and decrease the num-
ber of subjects needed for a trial would therefore have
a significance impact on the budget needed for such
trials.

There are a number of encouraging trials of
lifestyle interventions that have demonstrated ben-
eficial effects in terms of improving cognition and
delaying [35–39]. A reliable tool that can accurately
identify elderly individuals with higher risk of cog-
nitive decline will enable earlier implementation of
such strategies in the more at-risk population, which
will in turn improve the likelihood of slowing down or
preventing cognitive decline, before substantial neu-
rological damage has occurred. In addition, such a
tool may help to improve patient compliance in such
programs.

Our study is not without limitations. It is important
to note that the results here apply only to MCI subjects
that present with an amnestic phenotype. While some
ADNI subjects with posterior cortical atrophy and
sufficient memory decline may have met the inclusion
criteria used here, other atypical MCI groups (e.g.,
limbic predominant, hippocampal sparing, logopenic
progressive aphasia, primary progressive aphasia, or
frontal variant of AD) would have to be tested specif-
ically in the future. With this in mind, the enrichment
potential described here is possible only in trials of
amnestic MCI subjects with inclusion criteria similar
to those indicated above. Trials of MCI subjects with
non-amnestic presentation, or with different inclu-
sion criteria would need to carefully evaluate the use
of such a selection tool as presented here.

Because of the relatively limited size of the dataset,
we used 10-fold cross validation and report the aver-
age accuracy, sensitivity, and specificity across the
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10 folds. This provides a robust estimate of perfor-
mance, but it may be potentially optimistic. Other,
larger independent databases are needed for further
validation. Furthermore, while there is evidence that
cognitive decline may be non-linear over the full
course of the disease [40], we assume only a linear
change over the short 2 and 3 year periods consid-
ered here. The proportion of converters enrolled in the
ADNI may also change as MCI patients are followed
for longer periods. Finally, here we measured against
the decline in the unenriched MCI cohort from ADNI
with specific inclusion criteria which might not nec-
essarily be representative of real population of MCI
subjects seen in trials or in the clinic.

CONCLUSION

In this work, we were able to predict future cog-
nitive and functional decline in the early stages of
AD using a prognostic model that combines cogni-
tive scores and MRI-based biomarkers from a single
baseline visit. These features are easy to measure,
making this method efficient for clinicians to use as
an aid to guide psycho-social interventions for indi-
vidual patients based on their individual short-term
prognosis. Refining clinical trial cohorts to the enroll-
ment of subjects in the early stages of AD with a
higher chance of declining over a shorter period of
time could improve the efficiency of these trials.
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