Neuronal Cell Cycle Re-Entry Enhances Neuropathological Features in AppNLF Knock-In Mice

Tomás Barrettaa, Katherine A. Stangisa, Takashi Saitob, Takaomi Saidoc and Kevin H.J. Parka,d,e,f

aNeuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
bDepartment of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
cRIKEN Center for Brain Sciences, Saitama, Japan
dDepartment of Psychology, Central Michigan University, Mount Pleasant, MI, USA
eBiochemistry, Cellular & Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI, USA
fMichigan Alzheimer's Disease Research Center, University of Michigan, Ann Arbor, MI, USA

Handling Associate Editor: Benedict Albensi

Accepted 28 May 2021
Pre-press 28 June 2021

Abstract

Background: Aberrant cell cycle re-entry is a well-documented process occurring early in Alzheimer’s disease (AD). This is an early feature of the disease and may contribute to disease pathogenesis.

Objective: To assess the effect of forced neuronal cell cycle re-entry in mice expressing humanized Aβ, we crossed our neuronal cell cycle re-entry mouse model with AppNLF knock-in (KI) mice.

Methods: Our neuronal cell cycle re-entry (NCCR) mouse model is bitransgenic mice heterozygous for both Camk2a-tTA and TRE-SV40T. The NCCR mice were crossed with AppNLF KI mice to generate NCCR-AppNLF animals. Using this tet-off system, we triggered NCCR in our animals via neuronal expression of SV40T starting at 1 month of age. The animals were examined at the following time points: 9, 12, and 18 months of age. Various neuropathological features in our mice were evaluated by image analysis and stereology on brain sections stained using either immunofluorescence or immunohistochemistry.

Results: We show that neuronal cell cycle re-entry in humanized Aβ plaque producing AppNLF KI mice results in the development of additional AD-related pathologies, namely, pathological tau, neuroinflammation, brain leukocyte infiltration, DNA damage response, and neurodegeneration.

Conclusion: Our findings show that neuronal cell cycle re-entry enhances AD-related neuropathological features in AppNLF mice and highlight our unique AD mouse model for studying the pathogenic role of aberrant cell cycle re-entry in AD.

Keywords: Alzheimer’s disease, amyloid-β, brain leukocyte infiltration, cell cycle, DNA damage response, neuroinflammation, tau

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease resulting in memory loss and cognitive decline, and is the most common form of dementia. The main pathological hallmarks of AD are...
amloid-β (Aβ) plaques, neurofibrillary tau tangles (NFT), and neuronal loss. Although the majority of
the AD cases are sporadic, approximately 1-2% of the
AD cases are caused by genetic mutations in amyloid
precursor protein (APP) and presenilin (PSEN1 and
PSEN2). This discovery led to the development of
numerous transgenic mouse models harboring one or
more of the familial AD (FAD) mutations [1]. These
models produce substantial Aβ deposition demon-
strating the pathological significance of Aβ plaque
formation in the disease. However, these animals do
not display tau pathologies reminiscent of AD and do
not demonstrate substantial neuronal loss [2], sug-
gesting that Aβ alone may be insufficient for AD
pathogenesis.

Another potential contributing factor in AD is
ectopic cell cycle activation as suggested by the evi-
dence of aberrant neuronal cell cycle re-entry in AD
patients and AD mouse models [3–21]. Between 5
and 10% of the cells show cell cycle marker labeling
in the hippocampus, locus coeruleus, and dorsal raphe
nucleus of postmortem AD brain samples, whereas
little staining is observed in control brains [14, 21].
Additionally, cell cycle protein expression and DNA
synthesis appear to correlate with neuronal degen-
eration in AD. Human autopsy samples show that
areas vulnerable to neuronal loss in AD patients
express cell cycle proteins, whereas areas that do
not experience neuronal death are negative for cell
cycle markers [14, 22]. Furthermore, forced cell cycle
re-entry in postmitotic neurons leads to neurodegen-
eration and cell death [23]. Multiple laboratories have
reported neurodegeneration as a result of neuronal
cell cycle induction [14, 16, 24–26]. More recently,
genome wide association studies (GWAS) highlight
the potential cell cycle related genes that are asso-
ciated with AD. Specifically, KAT8, BHMG1, and
ANKRD3I are all involved in the control of cell cycle
progression or regulation, and have been implicated
by GWAS studies as being mechanistically involved
in AD [27–30]. A network analysis using epigenetic
and transcriptomic datasets from AD brains identified
major hub genes associated with molecular pathways
involved in cell cycle re-entry and inflammation [31].
Thus, several lines of evidence support a role for
aberrant cell cycle re-entry as a pathogenic factor in
human AD.

The relationship between neuronal cell cycle re-en-
try and various AD pathologies has been demon-
strated in various models. Connections have been
made between neuronal cell cycle re-entry and Aβ
pathology [25, 32], tau dysfunction [25, 33–35],
neuroinflammation [24, 26, 36, 37], and neuronal
loss [24, 25, 33]. Of these models, our Simian Virus
40 Large T (SV40T)-mediated neuronal cell cycle
re-entry model is the only one shown to simul-
taneously display the greatest number of pathologies
associated with AD [24, 26].

Our mice were designed to conditionally express
SV40T to force cell cycle re-entry in mature neurons
using the Tet-off system for evaluating the role of
neuronal cell cycle re-entry in AD [25]. SV40T is a
powerful oncoprotein that activates the cell cycle by
inhibiting the retinoblastoma protein (pRb)- and p53-
mediated tumor suppressor pathways [38]. pRb is
hyperphosphorylated and p53 is dysregulated in AD
[39–44]. Phosphorylated pRb is also associated with
tau pathology in various tauopathies [45]. Expression
of SV40T in either Purkinje cells or rod photore-
ceptors results in degeneration [46–48]. Others have
shown in culture that forced cell cycle re-entry in pri-
mary neurons through expression of SV40T results
in hyperploidy, which is also observed in AD brains
[20, 49].

The expression of SV40T is under the regulation of
tetracycline response element in these mice (TRE-
SV40T or “Tag” mice). The expression of SV40T is
targeted to excitatory forebrain neurons by crossing
the Tag mice with Camk2a-tTA Tg mice that express
tetracycline-controlled transactivator (tTA) under the
control of the CamKinase IIα (Camk2a) promoter
(Camk2a-tTA, or “OFF” mice) [50]. Mice express-
ing both “Tag” and “OFF” undergo neuronal cell
cycle re-entry once doxycycline is removed from the
diet, typically at one month of age [25, 37]. And this
neuronal cell cycle re-entry is abolished when the
animals are put back on dox diet to suppress SV40T
expression [37]. Our work using the Tag (het)/OFF
(het) bi-transgenic mice (hereafter referred to as neu-
chargen's model) showed that forced ectopic neuronal cell cycle activation induces
a number of pathological features that mirror mul-
tiple pathological hallmarks of AD: Aβ and tau
pathologies from endogenous mouse proteins, glio-
sis, neuroinflammation, brain leukocyte infiltration,
and neurodegeneration [25, 37].

To investigate the pathogenic role of neuronal cell
cycle re-entry in mice expressing humanized Aβ
plaques from endogenous amyloid-β protein precu-
sor (AβPP), we crossed our unique NCCR mouse
model with AppNLf KI mice. AppNLf KI mice pos-
 sess FAD-linked Swedish and Iberian mutations to
enhance Aβ production [51]. Furthermore, the Aβ
domain in the mouse AβPP is humanized [51]. The
mouse Aβ is less amyloidogenic compared to its human counterpart, and this is likely to be due to three amino acid substitutions in the Aβ [51–56]. These mice produce robust humanized Aβ plaques but do not demonstrate other late-stage AD pathologies such as neuronal loss and tau hyperphosphorylation [51].

Here we report that forced neuronal cell cycle re-entry in App^{NLFI} KI mice enhances late-stage AD pathologies. We show that neuronal cell cycle re-entry results in the appearance of PHF-1 phospho-tau lesions formed from endogenous wildtype mouse tau. And the cortical appearance of PHF-1 phospho-tau lesions are correlated with severe cortical atrophy in NCCR-App^{NLFI} mice. Additionally, our newly generated AD-relevant NCCR mouse model progressively displays many of the pathological features observed in AD, including ectopic neuronal cell cycle re-entry, human Aβ plaques, early neuroinflammation, and neurodegeneration. Hence, our findings suggest that NCCR-App^{NLFI} mice are a promising AD model for gaining new insights into putative pathogenic role of aberrant cell cycle re-entry in AD.

MATERIALS AND METHODS

Animals

All mice were maintained on a C57BL/6N (B6N) genetic background. App^{NLFI} mice were supplied by Saito Lab and have been previously described [51]. Camk2a-tTA (OFF) mice were obtained from the Jackson Laboratory (Bar Harbor, ME). TRE-SV40T (TAg) mice were maintained in house having been previously generated and characterized [25]. All these lines were backcrossed with B6N mice (n = 8 generations) to generate B6N congenic lines for each prior to generating the following animals. App^{NLFI} KI mice were crossed with both Camk2a-tTA and TRE-SV40T to generate Camk2a-tTA: App^{NLFI} (homo) [OFF(het)/App^{NLFI}] and TRE-SV40T:App^{NLFI} (homo) [TAG(het)/App^{NLFI}] lines that are both homozygous for App^{NLFI} KI, TAg(het)/App^{NLFI} mice were bred with OFF(het)/App^{NLFI} mice to generate TAG(het)/OFF(het)/App^{NLFI} (NCCR-App^{NLFI}) mouse model. Breeding pairs were maintained on doxycycline (dox) diet to ensure no SV40T expression in offspring in utero and until weaning. Following weaning at 21 days, offspring was also maintained on dox diet until 1 month of age, at which time they were switched to standard diet (std diet) to induce cell cycle re-entry in postmitotic neurons via SV40T expression. App^{NLFI} litter mate mice were used as controls in this study since our study showed that TAg(het) animals do not show SV40T expression [37]. We confirmed this is the case for TAg(het)/App^{NLF} mice (unpublished data). We also confirmed that OFF(het)/App^{NLF} mice do not show neuroinflammation typical of TAg(het)/OFF(het)/App^{NLF} (NCCR-App^{NLF}) animals (unpublished data). We also did not observe cortical atrophy in the OFF(het)/App^{NLF} mice, and this is likely due to their B6 background and continuous exposure to dox in utero and until postnatal 1 month of age [57]. Both males and females were used in the study, with their data combined in our analysis (9 months, n = 4/sex/genotype; 12 months, n = 4/sex/genotype; 18 months, NCCR-App^{NLF}, n = 2 females; App^{NLF}, n = 2 males). No sex difference was observed at 9 months and 12 months of ages for either genotype. All animals were group housed in individually ventilated cages and maintained on a 12-h light cycle with access to food and water ad libitum. PCR analysis was performed on genomic DNA isolated from tail tissue collected at the time of weaning and again at the animal’s endpoint.

All animal protocols were approved by the Institutional Animal Care and Use Committee at Central Michigan University.

Antibodies

The following antibodies were used in this study: PCNA (1:1000) and SV40T (1:500) (PC10 and Pab 101, respectively, Santa Cruz Biotechnology, Dallas, TX, USA); C-terminal human Aβ₄₂ (C42; 1:1000) (IBL-America, Minneapolis, MN); 6E10 (1:1000) (Biolegend, San Diego, CA, USA); GFAP (1:1000) (MAB360, Millipore, Billerica, MA, USA); Iba1 (1:1000) (178846, Rad, Hercules, CA, USA); CD68 (1:1000) (MCAA1957GA, Bio-Rad, Hercules, CA, USA); Iba1 (1:1000) (178846, Abcam, Cambridge, MA, USA); MHCII (1:1000) (#556999, BD Biosciences, San Jose, CA, USA); CD45 (1:1000) (YW62.3, Thermo Fisher Scientific, Waltham, MA, USA); PHF-1 antibody (1:2500) (generously provided by Dr. Peter Davies, The Feinstein Institute for Medical Research, Manhasset, NY); γH2AX phospho-Ser139 (1:4000) (11174, Abcam, Cambridge, MA, USA); NeuroTrace® Nissl stain (LifeTechnologies/Thermo Fisher Scientific, Waltham, MA, USA); Fluro-Jade C (Histo-Chem Inc., Arkansas, USA). Secondary antibodies used: Alexa fluor conjugated goat-anti mouse 594, goat-anti rabbit 488, goat-anti rabbit 594, and goat-anti rat 594 (Thermo Fisher Scientific, Waltham, MA, USA).
Immunofluorescence

Immunofluorescence staining was performed as previously described [58]. Briefly, mice were anesthetized, perfused using 4% paraformaldehyde, followed by overnight storage in 4% paraformaldehyde then storage in 1X phosphate buffer saline (1X PBS) until sectioning. Thirty-micron thick, coronal sections were cut using a vibrating microtome (Leica VT1000 S, Leica Biosystems, Buffalo Grove, IL, USA) and stored at −20°C until staining. Sections were rinsed three times in 1X TBS for 15 min. This was followed by permeabilization in a 3% H₂O₂/0.3% Triton-x100/1X TBS solution for 30 min at RT. Following a rinse three times in 1X TBS for 5 min, the sections were blocked in 5% NGS/1% BSA/TBS blocking solution for 1 h. Sections were then incubated in the primary antibody in the blocking solution overnight at 4°C on a shaker. The following day the sections were rinsed, followed by incubation with the appropriate secondary antibodies conjugated with Alexa Fluor 488 or 594 (1:500, Life Technology/Thermo Fisher Scientific, Waltham, MA). Following a rinse, the sections were incubated in Hoechst (1:5000 in 1X tris buffer saline (1X TBS), Thermo Fisher Scientific, Waltham, MA), rinsed again, then mounted on Superfrost Plus microscope slides (Thermo Fisher Scientific, Waltham, MA) and cover-slipped using Fluromount G. Some antibodies required antigen retrieval prior to the above protocol. When staining using C42, sections were first incubated in 90% formic acid at room temperature for 5 min, then rinsed once for 5 min in distilled water before staining as described above. When staining for SV40T and PCNA, sections were first incubated in 10 mM Sodium Citrate, pH 6.0, in a 95°C water bath for 10 min, then allowed to cool at room temperature for 20 min after which immunofluorescence staining procedure proceeded as described above. Images were taken on a Zeiss AxiosCam M2 microscope (Carl Zeiss Inc., Thornwood, NY) and digitized using the ZEN software (Carl Zeiss Inc., Thornwood, NY). Confocal images were captured using a Nikon Eclipse Ti inverted microscope on a Nikon A1R confocal, using NIS-Elements software (version 5.20.00, Nikon, Melville, NY, USA).

Stereological analysis

Aβ plaque load and cortical area measurements were quantified using unbiased stereology. The plaque load was measured on four matched coronal sections per animal, ranging from anteroposterior position Bregma −1.06 to −3.16 mm [59]. Cortical plaque load was measured by identifying the area covered by C42 stained extracellular plaques using the Area Fractionator Probe within the Stereo Investigator software (MicroBrightField, Williston, VT, USA), similar to that described previously [58]. The parameters used were as follows: counting frame 250 × 250 μm, sampling grid 400 × 400 μm, and grid point spacing of 50 μm. The area of the cortex was also quantified using the Cavalieri Estimator Probe within the procedures outlined above.

The Optical Fractionator Probe was used for cell quantification. To quantify the proportion of neuronal cells expressing SV40T or PCNA, one region matched section per animal was analyzed. To quantify CD45+/Iba1−, CD45+/Iba1+, and PHF1 cells, three region matched coronal sections per animal ranging from anteroposterior position Bregma 1.06 to −3.16 mm were analyzed [59]. Both the cortex and hippocampus were assessed using the following parameters: for CD45 quantification: counting frame 400 × 400 μm, sampling grid 800 × 800 μm; for PHF1 quantification: counting frame 200 × 200 μm, sampling grid 400 × 400 μm. Results were reported as estimated cell population per mm³. Each section analyzed was used as a data point, as done previously [58].

ImageJ analysis

ImageJ was used to quantify cortical area fraction covered by GFAP signal. This analysis was performed on the same four matched coronal sections used for cortical Aβ plaque load quantification. To do so, images were converted to 8-bit grey scale, and threshold was appropriately adjusted to minimize artifact and background. Threshold intensity was adjusted similarly for all sections across groups and ages. These images were then made binary. The whole cortex of each section image was outlined, and area fraction of the cortex occupied by GFAP was quantified.

Immunohistochemistry

Sections were rinsed three times in 1X TBS for 15 min. This was followed by permeabilization in a 3% H₂O₂/0.3% Triton-x100/1X TBS solution for 30 min at RT. Following a rinse three times in 1X TBS for 5 min, the sections were blocked in 5% NGS/1% BSA/TBS blocking solution for 1 h. Sections were then incubated in 90% formic acid at room temperature for 5 min, then rinsed once for 5 min in distilled water before staining as described above. When staining for SV40T and PCNA, sections were first incubated in 10 mM Sodium Citrate, pH 6.0, in a 95°C water bath for 10 min, then allowed to cool at room temperature for 20 min after which immunofluorescence staining procedure proceeded as described above. Images were taken on a Zeiss AxiosCam M2 microscope (Carl Zeiss Inc., Thornwood, NY) and digitized using the ZEN software (Carl Zeiss Inc., Thornwood, NY). Confocal images were captured using a Nikon Eclipse Ti inverted microscope on a Nikon A1R confocal, using NIS-Elements software (version 5.20.00, Nikon, Melville, NY, USA).
were then incubated in the primary antibody in the blocking solution overnight at 4°C on a shaker. The following day, the sections were rinsed in 0.015% Triton-x100/1X TBS solution followed by two rinses in 1X TBS for 15 min at RT. The sections were then incubated with goat anti-mouse biotin conjugated secondary antibody (1:500; Southern Biotechnology, Birmingham, AL, USA) for 2 h at RT. Next, sections were rinsed one time in 0.015% Triton-x100/1X TBS solution followed by two rinses in 1X TBS for 15 min. Sections were then incubated in VECTASTAIN® Elite® ABC HRP solution (Vector Laboratories, Burlingame, CA, USA) for 1 h. Following four rinses in 1X TBS for 10 min, sections were incubated in Pierce™ DAB Substrate solution (Thermo Fisher Scientific, Waltham, MA), which was prepared following manufacturer instructions. Tissue incubation times varied depending on the antibody reaction and background development. Finally, tissue was rinsed twice in 1X TBS for 10 min, mounted on Superfrost Plus microscope slides (Thermo Fisher Scientific, Waltham, MA), and left to air dry overnight. The next day, slides were incubated in xylenes for 2 min and cover-slipped using Permount (Thermo Fisher Scientific, Waltham, MA). Brightfield images were captured on a Zeiss AxioCam M2 microscope (Carl Zeiss Inc., Thornwood, NY) using a 63X objective and digitized using the ZEN software (Carl Zeiss Inc., Thornwood, NY).

Nissl staining

Sections were permeabilized using 0.3% Triton-x100 in TBS for 30 min at RT. Next, the sections were rinsed three times in 1X TBS for 10 min each, followed by incubation in NeuroTrace® Nissl solution (1:500 dilution) for 20 min in the dark. Following three subsequent rinses in 1X TBS for 10 min the sections were mounted on Superfrost Plus microscope slides (Thermo Fisher Scientific, Waltham, MA) and cover-slipped using Fluoromount G.

TUNEL staining

Sections were permeabilized using 0.3% Triton-x100 in TBS for 45 min at RT, rinsed 3 times in PBS, then mounted on Superfrost Plus microscope slides (Thermo Fisher Scientific, Waltham, MA). TUNEL reaction mixture was prepared following manufacturer instructions (#11684795910, Millipore, Billerica, MA, USA). Next, 50 µl of solution was put on each sample and the slide was left to incubate in a humidified atmosphere for 60 min at 37°C in the dark. Following this, the slides were rinsed 3 times in 1X PBS then cover-slipped.

Fluro-Jade C staining

Sections were mounted on Superfrost Plus microscope slides (Thermo Fisher Scientific, Waltham, MA) and then let dry at 50°C for 1 h. The slide was allowed to return to room temperature before being immersed in basic alcohol (1% NaOH in 80% ethanol) for 5 min, followed by 2 min in 70% alcohol. Next, the slides were rinsed once in distilled water and left to dry at 45°C for 10 min before being left to return to room temperature. Next, the slides were immersed in KMnO4 for 15 min, followed by 4 rinses in distilled water for 1 min. Following this, 0.0002% Fluro-Jade C solution was made using manufacturer’s instructions, and slides were immersed in this solution for 20 min in the dark. The slides were rinsed in distilled water 4 times for 1 min and then left to dry, at room temperature, in the dark overnight. The following day the slides were cleared 3 times in xylenes for 1 min and cover-slipped using DPX mounting medium. The number of Fluro-Jade C cells was then quantified similar to that previously described [60]. Briefly, Fluro-Jade positive somas were manually counted within a 20X objective field of view consistent across animals. This was done for two sections per animal and reported as cells per mm².

DAPI fluorescence intensity analysis

Zeiss ZEN (blue edition, 2.6) software (Carl Zeiss, Jena, Germany) was utilized to measure the fluorescence intensities of DAPI signal in individual cell nuclei. This analysis was performed on brain sections immunolabeled with either SV40T/NeuN/DAPI or PCNA/NeuN/DAPI. DAPI fluorescence intensities were measured for SV40T+/NeuN+ and SV40T-/NeuN+ cells, or PCNA+/NeuN+ and PCNA-/NeuN+ cells in the same sections. Only cells which were in focus and not overlapping other cells were measured. The whole nucleus of the cell was outlined, and the mean intensity of DAPI fluorescence signal was quantified.

Statistical analysis

The two-ANOVA was used on data sets, followed by a post-hoc Tukey’s multiple comparisons test. For DAPI intensity data, two-tailed Mann-Whitney U test.
was used since the variance between the two groups were statistically different. All statistical tests were performed using Prism 9 for Mac OS (GraphPad Software Inc., San Diego, CA, USA). Statistical significance was set at \(p < 0.05 \). The sample size for each test is reported in the figure legend.

RESULTS

SV40T induced neuronal cell cycle re-entry enhances PHF-1 phospho-tau lesion and neurodegeneration in App\(^{NL\text{F}}\) mice

To examine the effect of forced neuronal cell cycle induction on mice expressing humanized A\(\beta\) plaques from endogenous A\(\beta\)PP), we crossed our NCCR mice with App\(^{NL\text{F}}\) KI mice to generate NCCR-App\(^{NL\text{F}}\) homozygous KI mice. As anticipated, conditional expression of SV40T is restricted to neuronal population in our NCCR-App\(^{NL\text{F}}\) KI mice. Our double immunofluorescence labeling in the cortex showed SV40T and NeuN co-labeling, demonstrating SV40T expression restricted to neurons in NCCR-App\(^{NL\text{F}}\) mice (Fig. 1A). Neuronal cell cycle re-entry in these animals was confirmed using proliferating cell nuclear antigen (PCNA) antibody. PCNA and NeuN double immunofluorescence labeling shows co-labeling in NCCR-App\(^{NL\text{F}}\) mice, while no such co-staining was observed in App\(^{NL\text{F}}\) mice (Fig. 1B). Quantification of brain samples from 12-month-old NCCR-App\(^{NL\text{F}}\) animals showed that approximately 1\% and 2\% of NeuN-positive cortical neurons are co-labeled for SV40T and PCNA, respectively (Fig. 1C). The proportion of neurons showing the cell cycle marker in NCCR-App\(^{NL\text{F}}\) animals is comparable to that observed in the post-mortem AD brains [14, 21]. However, the absence of PCNA labeled NeuN-positive neurons in the App\(^{NL\text{F}}\) mice is in disagreement with findings demonstrating that A\(\beta\) is sufficient for inducing neuronal cell cycle re-entry (Fig. 1C) [61, 62].

It has been shown that SV40T expression in primary cortical neurons in culture induces hyperploidy [49]. We measured DAPI intensities in SV40T+/NeuN+ and PCNA+/NeuN+ cells and compared them to DAPI intensities measured in SV40 T-NeuN+ and PCNA-/NeuN+ cells in the cortex for NCCR-App\(^{NL\text{F}}\) animals, respectively, from same brain sections immunolabeled with either SV40T/NeuN/DAPI or PCNA/NeuN/DAPI corresponding to the three different ages examined (Supplementary Figure 1). DAPI intensities were increased in SV40T+/NeuN+ cells (Supplementary Figure 1A; +47.7\%, two-tailed Mann-Whitney U, \(p = 0.0004 \)) and PCNA+/NeuN+ cells (Supplementary Figure 1B; +43.8\%, two-tailed Mann-Whitney U, \(p = 0.0263 \)) compared to SV40T-/NeuN+ and PCNA-/NeuN+ cells, respectively. The PCNA expression in the NCCR animals are mediated by SV40T expression [37]. Similar amount of increase in DAPI intensities from independently stained targets suggest increased nuclear DNA content with neuronal cell cycle re-entry.

A\(\beta\) deposition is a key pathological hallmark of AD. App\(^{NL\text{F}}\) mice display progressive A\(\beta\) plaque formation beginning around 6 months of age [51]. As anticipated, we observed a progressive increase in humanized A\(\beta\) plaque deposition in NCCR-App\(^{NL\text{F}}\) and App\(^{NL\text{F}}\) mice using the 6E10 A\(\beta\) antibody (aa 1–17) (Supplementary Figure 2). A\(\beta\) plaques between these two types of animals were qualitatively similar (Fig. 2A). To investigate the effect of neuronal cell cycle re-entry on A\(\beta\) plaque formation in an AD mouse model, we quantified the cortical A\(\beta\) plaque load detected using a C-terminal A\(\beta\)\(_{12}\) antibody in brain sections from 9-, 12-, and 18-month-old NCCR-App\(^{NL\text{F}}\) mice (Fig. 2B). A significant age effect was observed (Fig. 2C, two-way ANOVA, F (2, 140) = 3,437, \(p < 0.0001 \)) while the genotype effect did not reach significance (Fig. 2C, two-way ANOVA, F (1, 140) = 3,637, \(p = 0.0586 \)). The data suggests that the NCCR does not enhance A\(\beta\) plaque deposition in the App\(^{NL\text{F}}\) animals.

Tau pathology is a key pathological hallmark of AD [63, 64]. NCCR mice display endogenous tau pathology in the absence of tau mutations [25, 37]. PHF-1 antibody is a common marker for pathological tau phosphorylated at Ser 396/404 that is observed early in disease [65–68]. NCCR-App\(^{NL\text{F}}\) mice showed a substantial increase in PHF-1 phospho-tau lesions in the hippocampus and cortex at 18 months of age (Supplementary Figure 3A). At 12 months of age, we observed some PHF-1 phospho-tau lesions in the hippocampus of NCCR-App\(^{NL\text{F}}\) mice (Supplementary Figure 3B) but not much in the cortex (Fig. 3A). Using unbiased stereology, we quantified the number of PHF-1 phospho-tau lesioned cells in cortical sections of 12- and 18-month-old NCCR-App\(^{NL\text{F}}\) and App\(^{NL\text{F}}\) mice (Fig. 3A). Comparisons of the number of PHF-1 phospho-tau lesioned cells showed a significant age effect (two-way ANOVA, F (1, 32) = 15.06, \(p = 0.0005 \)), genotype effect (two-way ANOVA, F (1, 32) = 21.97, \(p < 0.0001 \)), and interaction effect.
Fig. 1. SV40T expression induces cell cycle re-entry in App^{NLF} KI mice. A) Representative images from the primary somatosensory areas of the cortex stained with SV40T (red), NeuN (green), and DAPI (blue). Expression of SV40T is restricted to neurons in 9, 12, and 18-month-old NCCR-App^{NLF} mice, as seen by co-localization of SV40T with NeuN and DAPI. No SV40T staining was detected in App^{NLF} animals. B) Representative cortical images of PCNA (red), NeuN (green), and DAPI (blue). NCCR-App^{NLF} mice display neuronal cell cycle reentry at 9, 12, and 18 months of age, shown through co-localization of PCNA, NeuN, and DAPI. No neuronal PCNA staining was detected in App^{NLF} animals. C) Quantification of percentage of cortical NeuN-positive neurons expressing SV40T (left) and PCNA (right). N = 5 animals per group. Scale bar 10 μm.
Fig. 2. Aβ plaque load in App^{NLF} KI mice is not altered by neuronal cell cycle re-entry. A) DAB stained Immunohistochemical (6E10 antibody) image showing Aβ deposition in the primary somatosensory areas of cortex in App^{NLF} KI and NCCR-App^{NLF} KI mice. Scale bar 100 μm. B) Representative immunofluorescence images of C-terminal Aβ₄₂ antibody-positive Aβ plaque staining in the primary somatosensory areas of cortex in App^{NLF} and NCCR-App^{NLF} mice at 9, 12, and 18 months of age used for Aβ plaque load analysis. Insert is a magnified image of the region inside the white square. Cortical areas covered by C-terminal Aβ₄₂ positive extracellular signals were quantified in four matched coronal brain sections from each perfusion fixed animals using the Area Fraction Fractionator probe (Stereoinvestigator, MBF). Scale bar 200 μm. C) Two-way ANOVA showed significant age effect (F (2, 140) = 3437, p < 0.0001) but no difference between genotypes (F (1, 140) = 3.637, p = 0.0586), 9 months: n = 8/group; 12 months: n = 8-9/group; 18 months: n = 2/group. Bars represent mean ± SEM.
Progressive increase in GFAP immunoreactivity was observed in both NCCR-AppNL mice and AppNL animals (Fig. 4A, B). Analysis of grayscale images of GFAP immunofluorescence labeled brain sections from 9-, 12-, and 18-month-old NCCR-AppNL and AppNL animals (Fig. 4C) showed significant age effect (two-way ANOVA, F (2, 105) = 196, p < 0.0001), genotype effect (two-way ANOVA, F(1, 105) = 359.3, p < 0.0001), and interaction effect (two-way ANOVA, F (2, 105) = 24.68, p < 0.0001) in the percentage of cortical area covered by the GFAP signal (Fig. 4D). Post-hoc pairwise comparisons showed that cortical area covered by GFAP signal increases with age in the NCCR- AppNL mice but not in the AppNL mice (Fig. 4D). Furthermore, cortical GFAP immunoreactivity was increased in the NCCR- AppNL animals compared to age-matched AppNL animals at all ages examined (Fig. 4D).

We previously showed that SV40T-mediated neuronal cell cycle induction in wild type mice also induces microglial activation [37]. CD45 is highly expressed in activated proinflammatory microglia that are identified as CD45+/Iba1+ cells [76, 77]. CD45 immunolabeling was noticeably observed in the NCCR-AppNL animals at all ages (Fig. 5A). Quantification of CD45 and Iba1 co-labeled cells in the cortex of 9-, 12-, and 18-month-old NCCR-AppNL and AppNL mice (Fig. 5B, arrowheads) showed significant age effect (two-way ANOVA, F(2, 53) = 35.74, p < 0.0001), genotype effect (two-way ANOVA, F(1, 53) = 38.11, p < 0.0001), and interaction effect (two-way ANOVA, F (2, 53) = 35.87, p < 0.00019) (Fig. 5C). Post-hoc pairwise comparisons showed a significant increase in the number of CD45-positive microglia in 12- and 18-month-old NCCR-AppNL mice compared to age-matched AppNL mice (Fig. 5C).

CD45 is also a pan-leukocyte marker indicative of infiltrating leukocytes as indicated by CD45-positive/Iba1-negative labeled cells in the brain [78–80]. Increased number of Iba1-negative cells showing donut-shaped CD45 staining in our NCCR- AppNL suggests an increase in infiltrating leukocytes in these mice (Fig. 5B, arrows). Quantification of CD45-positive/Iba1-negative cells in 9-, 12-, and 18-month-old NCCR-AppNL and AppNL animals showed a significant genotype effect (Fig. 5D, two-way ANOVA, F (1, 53) = 39.34, p < 0.0001). Post-hoc pairwise comparison shows significantly elevated levels of brain leukocyte infiltration in the cortex of 9- and 12-month-old NCCR-AppNL mice compared to age-matched AppNL mice, while at 18-month-old samples did not reach significance (Fig. 5D).
Fig. 3. Aged NCCR-App^{NLF} mice show increased cortical tau lesions and atrophy. A) Representative cortical images of PHF-1 immunolabeled DAB stained sections from primary somatosensory areas. At 12 months of age, no discernible PHF-1 phospho-tau lesions was observed in the cortex of either genotypes. On the other hand, at 18 months of age, increase in PHF-1 phospho-tau lesions (arrows) were detected in the cortex (CTX) of NCCR-App^{NLF} animals compared to 18-month-old App^{NLF} mice. B) Quantification of cortical cells with PHF-1 phospho-tau accumulation show statistically significant increase at 18 months of age for NCCR-App^{NLF} animals. Two-way ANOVA shows significant age effect (F(1, 32) = 15.06, p = 0.0005), genotype effect (F(1, 31) = 21.97, p < 0.0001), and interaction effect (F(1, 31) = 15.58, p = 0.0004). Tukey’s multiple comparison test demonstrates statistically significant increase in 18-month-old NCCR-App^{NLF} animals compared to other groups. The following numbers of animals were examined; at 12 months of age: NCCR-App^{NLF}, n = 4; App^{NLF}, n = 4; at 18 months of age: NCCR-App^{NLF}, n = 2; App^{NLF}, n = 2. Four matched coronal sections were measured across the animals and each data point represents a measure from each section. C) Fluorescent Nissl (NeuroTrace) showing anatomically matched coronal sections (white arrows) from 9-, 12-, and 18-month-old App^{NLF} and NCCR-App^{NLF} animals. The NeuroTrace stained image shows cortical thinning (yellow dashed lines) in the 18-month-old NCCR-App^{NLF} mice. D) Measurements of cortical areas as shown by blue dashed lines in (C) was analyzed using Stereo Investigator. Two-way ANOVA showed significant age effect (F(2, 140) = 6.69, p = 0.0017), genotype effect (F(1, 140) = 53.13, p < 0.0001), and interaction effect (F(2, 140) = 5.164, p = 0.0068). Tukey’s multiple comparison test shows an age-dependent loss of cortical area in the NCCR-App^{NLF} but not in the App^{NLF} animals. NCCR-App^{NLF} cortical areas are smaller than age-matched App^{NLF} animals at all ages compared. Furthermore, the statistically significant decrease in the cortical area is observed in NCCR-App^{NLF} animals at 18 months of age compared to either 9 or 12 months of age (#9 months versus $18 months, p < 0.0001; #12 months versus $18 months, p = 0.0002). Following numbers of animals were examined; 9 months: n = 8/genotype; 12 months: n = 8/genotype; 18 months: n = 2/genotype. Four matched coronal sections were measured across the animals. Each data point represents a measure from each section.
Fig. 4. Neuronal cell cycle re-entry increases astrocytosis in App^{NLF} mice. A) Representative fluorescently labeled images of cortical areas (primary somatosensory region) stained using GFAP antibody. B) Magnification of white inset in (A) demonstrating astrocyte specific GFAP-labeling. C) Grayscale images of GFAP immunofluorescence labeled whole cortical regions in brain sections from 9-, 12-, and 18-month-old NCCR-App^{NLF} and App^{NLF} animals were evaluated using Image J. D) Two-way ANOVA shows significant age effect (F(2, 105) = 196, p < 0.0001), genotype effect (F(1, 105) = 359.3, p < 0.0001), and interaction effect (F(2, 105) = 24.68, p < 0.0001). GFAP immunoreactive cortical area is greater in the NCCR-App^{NLF} animals compared to age-matched App^{NLF} animals at all ages. Furthermore, NCCR-AppNLF animals show progressive increase with age (Tukey’s multiple comparison test, 9 months versus 12 months, p < 0.0001; 9 months versus 18 months, p < 0.0001; 12 months versus 18 months, p < 0.0001). Following numbers of animals were examined; at 9 months of age: NCCR-App^{NLF}, n = 4; App^{NLF}, n = 4-; at 12 months of age: NCCR-App^{NLF}, n = 4; App^{NLF}, n = 4; at 18 months of age: NCCR-App^{NLF}, n = 2; App^{NLF}, n = 2. Four matched coronal sections were measured per animal. Each data point represents a measure from each section.

Pan-nuclear γH2AX signal is selectively observed in NCCR-App^{NLF} mice

Neuronal DNA damage is increased in many neurodegenerative diseases and has been suggested to contribute to the neuronal loss [81–84]. A commonly used marker for DNA damage is γH2AX, which stains for phosphorylation of the histone variant H2AX at serine 139. It appears in two distinct staining morphologies, which have been suggested to have differing causes and consequences. Focal γH2AX staining is associated with DNA double strand breaks (DSBs) [83]. Pan-nuclear γH2AX staining is also observed following UV-exposure, and though recently it has been suggested not to be associated with DSBs [83], numerous studies suggest it is associated with a pre-apoptotic state due to replicative stress [85–89]. Additionally, γH2AX has previously been used to identify early neuronal DNA damage in human AD patients and mouse models of AD [83].
Fig. 5. Neuronal cell cycle re-entry increases neuroinflammation in AppNL\textsubscript{F} mice. A) Representative fluorescently labeled cortical images (primary somatosensory region) showing Iba1 (green), CD45 (red), and DAPI (blue) showing increased CD45 labeling in the NCCR-AppNL\textsubscript{F} animals at 9, 12, and 18 months of age. B) Higher magnification images of CD45 (red), Iba1 (green), and DAPI (blue) immunofluorescent labeled brain sections from NCCR-AppNL\textsubscript{F} and AppNL\textsubscript{F} animals. Leukocytes were identified by donut-shaped CD45 stains not co-localized with Iba1 labeling in the cortex (arrows). Activated microglia were identified by Iba1 stained cells co-labeled with CD45 (arrowheads). C) Two-way ANOVA showed significant age effect ($F(2, 53) = 35.74, p < 0.0001$), genotype effect ($F(1, 53) = 38.11, p < 0.0001$), and interaction effect ($F(2, 53) = 7.052, p < 0.0019$) on CD45-positive microglia counts. Number of CD45/Iba1 co-labeled cells were increased in NCCR-AppNL\textsubscript{F} mice compared to AppNL\textsubscript{F} mice at 12 and 18 months of age, suggesting enhanced neuroinflammation (Tukey’s multiple comparison test). D) Two-way ANOVA showed significant genotype effect ($F(1, 53) = 39.34, p < 0.0001$) on CD45-positive, Iba1-negative cells. Brain leukocyte infiltration is observed in 9-, 12-, and 18-month-old NCCR-AppNL\textsubscript{F} animals (Tukey’s multiple comparison test). The following numbers of animals were examined: 9 months: $n = 4/$genotype; 12 months: $n = 4/$genotype; 18 months: $n = 2/$genotype. Four matched coronal sections were measured across the animals. Each data point represents a measure from each section.

Analysis of γH2AX staining in the cortical sections showed that focal γH2AX staining is not statistically different between NCCR-AppNL\textsubscript{F} and AppNL\textsubscript{F} animals at any of the time points examined (data not shown). On the other hand, pan-nuclear γH2AX staining was primarily observed in 9-, 12-, and 18-month-old NCCR-AppNL\textsubscript{F} animals (Fig. 6A). Quantification of pan-nuclear γH2AX staining showed that pan-nuclear γH2AX signal is mainly present in NCCR-AppNL\textsubscript{F} animals and is observed in both NeuN-positive and NeuN-negative cells at all time points (Fig. 6A-C). Additionally, pan-nuclear γH2AX labeling was more frequently observed in NeuN+cells compared NeuN- cells (Fig. 6C).

This increase in pan-nuclear γH2AX staining is induced by neuronal expression of SV40T. Examination of brain samples from 3-month-old NCCR mice...
Fig. 6. Pan-nuclear γH2AX signal is selectively observed in NCCR-App^{NL/FL} animals. A) Immunofluorescence staining for γH2AX, a marker for DNA damage response, in cortex shows pan-nuclear labeling that is restricted to NCCR-App^{NL/FL} animals at 9, 12, and 18 months of age (arrows, primary somatosensory areas shown). B) Magnified image showing γH2AX labeled NeuN+ and NeuN- cells (arrowhead and arrow, respectively). C) Quantification of pan-nuclear γH2AX labeling shows that pan-nuclear γH2AX signal is present in both NeuN+ and NeuN- cells in NCCR-App^{NL/FL} animal-specific manner. Pan-nuclear γH2AX labeling was observed more frequently in NeuN+ cells compared to NeuN- cells. N = 2 animals per genotype/age were evaluated. Four matched coronal sections were measured across the animals. Each data point represents a mean from each section. D) SV40T expression modulates pan-nuclear γH2AX signal. Representative images of SV40T (red), γH2AX (green), and DAPI (blue) staining in CA1 of NCCR mice. Panel “a” shows 3-month-old NCCR mice maintained on regular diet for 2 months displaying increased pan-nuclear γH2AX staining. When NCCR mice are put back on dox diet to halt SV40T expression (panel “b”, pulsed) or continuously maintained on dox diet thus never having expressed SV40T (panel “c”, always on dox), no pan-nuclear γH2AX labeling is detected, demonstrating its modulation by SV40T expression. TAg (TRE-SV40T) animals were used as controls. A complex relationship between neuronal SV40T expression and pan-nuclear γH2AX expression is demonstrated by the staining data. In addition to co-labeling of SV40T and γH2AX (Fig. 6D,a; arrowhead), there are instances of γH2AX labeling in the absence of SV40T (Fig. 6D,a; asterisks) and SV40T labeling in the absence of γH2AX signal (Fig. 6D,a; arrow). Therefore, the effect of neuronal SV40T expression on pan-nuclear γH2AX signal can be non-cell autonomous, but at the same time, the cell-autonomous response to SV40T expression can also be variable. Scale bar 20 μm
that are maintained on regular diet for two months showed pan-nuclear γH2AX staining (Fig. 6D,a). On the other hand, brain samples from 3-month-old NCCR animals that were either put back on dox diet at 2 months of age thus turning off SV40T expression (Fig. 6D,b) or continuously maintained on dox diet for continual suppression of SV40T (Fig. 6D,c) did not show γH2AX staining. However, the staining data demonstrates a complex relationship between neuronal SV40T expression and pan-nuclear γH2AX expression. In addition to co-labeling of SV40T and γH2AX (Fig. 6D,a; arrowhead), there are instances of γH2AX labeling in the absence of SV40T (Fig. 6D,a; asterisks) and SV40T labeling in the absence of γH2AX signal (Fig. 6D,a; arrow). This suggests that the effect of neuronal SV40T expression on pan-nuclear γH2AX signal can be non-cell autonomous but at the same time, the cell-autonomous response to SV40T expression can also be variable. Further study is needed for understanding the relationship between neuronal SV40T expression and the appearance of pan-nuclear γH2AX.

Given the increased staining for γH2AX, a marker for DNA damage response, we performed terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining for the presence of DNA fragmentation which typically occurs during the latter stages of apoptosis. We did not observe TUNEL signal in our NCCR-App^{NLF} mice in any of the age groups (Supplementary Figure 4A). We also did not detect any caspase-3 signal in either genotypes at any of the ages (data not shown). This result is in line with in vitro work which showed that cell death following induction of SV40T expression in neurons is non-apoptotic and does not produce TUNEL staining [49]. Furthermore, it has been shown that pan-nuclear γH2AX is not associated with DNA fragmentation [83]. However, we did observe significantly increased Fluoro-Jade C labeling in the NCCR-App^{NLF} animals compared to App^{NLF} animals at 9, 12, and 18 months of age (Supplementary Figure 5A, B). Constellation of punctate Fluoro-Jade C labeling suggests neuropil degeneration in the NCCR-App^{NLF} animals (Supplementary Figure 5B).

DISCUSSION

We have shown previously that our neuronal cell cycle re-entry (NCCR) mouse model display in a progressive manner a number of pathological features associated with AD: endogenously generated Aβ and tau pathologies, neuroinflammation, peripheral immune cell infiltration, and neurodegeneration [25, 37]. Though significant, the pathologies observed in these mice are relatively mild, likely due to the differences in mouse and human AD related proteins. For example, AβPP is a well conserved protein between mouse and human. However, a difference in 3 of the amino acids within the Aβ domain makes mouse Aβ less prone to aggregation than its human counterpart [53, 55, 56, 59]. To increase the AD-relevance of our NCCR mice, we crossed these mice with App^{NLF} KI mice that produce humanized Aβ plaques from endogenous levels of AβPP that harbor humanized Aβ domains.

NCCR-App^{NLF} mice demonstrated SV40T induced neuronal cell cycle re-entry. Although past studies have reported that Aβ can induce neuronal cell cycle re-entry [61, 62], we did not detect any neuronal PCNA expression in the App^{NLF} animals. Evaluation of 12-month-old NCCR-App^{NLF} mice showed that between 1–3% of the cortical neurons express SV40T and PCNA, suggesting that a small proportion of neurons are in a state of cell cycle activation in the NCCR-App^{NLF} mice. The proportion of neurons showing the cell cycle marker in NCCR-App^{NLF} animals is comparable to that observed in the postmortem AD brains where it has been shown that approximately 5% of neurons are undergoing cell cycle re-entry at any one time [14, 21]. It has been demonstrated that SV40T expression induces neuronal tetraploidy [49]. The proportion of neuronal SV40T expression is similar to the proportion of tetraploidy neurons observed in AD brains [10, 13]. Evaluation of DAPI fluorescence intensities showed increases in SV40T+/NeuN+ and PC NA+/NeuN+ cells compared to SV40T-/NeuN+ and PCNA-/Neun+cells, respectively, suggesting increased nuclear DNA content with neuronal cell cycle re-entry in the NCCR-App^{NLF} animals. Our findings suggest that a small proportion of neurons undergoing cell cycle re-entry can induce many of the late-stage AD pathologies. This is further suggested by the non-cell autonomous modulatory effect of SV40T expression on pan-nuclear γH2AX signal shown in Fig. 6C.a.

Although the Aβ plaque load was not significantly altered, tau dysfunction seems to be enhanced in the NCCR-App^{NLF} mice compared to the App^{NLF} mice as demonstrated by an increase in the number of cells with PHF-1 phospho-tau lesions. This finding is in agreement with our past studies using the NCCR mice [25, 37] and demonstrates that SV40T
induced neuronal cell cycle re-entry can promote tau lesions generated from endogenous mouse tau in the absence of tau mutations in the App^{NLF} mice. Cell cycle protein expression precedes neurofibrillary tangle formation in AD brains [8, 91]. It is suggested that with ectopic neuronal cell cycle activation, tau is phosphorylated by numerous cyclin dependent kinases [25, 33–35]. However, our current findings also point to other potential pathophysiological processes involved in the generation of tau lesions in the NCCR-App^{NLF} animals. The appearance of PHF-1 phospho-tau lesions in the NCCR-App^{NLF} mice is also preceded by neuroinflammation, and brain leukocyte infiltration in addition to neuronal cell cycle activation. The confluence of these pathophysiological features suggests that the interaction between these changes could contribute to the development of tau lesions that postcedes Aβ plaque deposition.

The presence of chronic neuroinflammation could play a role in the development of PHF-1 phospho-tau lesions in the NCCR-App^{NLF} animals. It has been shown that mutant tau transgenic mouse model deficient in NLRP3 inflammasome activation in microglia reduces tau hyperphosphorylation and aggregation [92]. Additionally, depletion of microglia mitigates tau propagation and neurotoxicity in mice [93]. The presence of early gliosis and neuroinflammation preceding the tau pathology, including brain leukocyte infiltration, in the NCCR-App^{NLF} mice warrants future investigation in their role in the formation of tau pathology in the context of secondary tauopathies such as AD. Brain expression levels of CD68 and MHCII are higher in AD [94–99] and we previously showed that microglial activation in NCCR mice through co-staining of Iba1 with either MHCII or CD68, two other markers of pro-inflammatory microglia [37, 77, 100, 101]. These findings suggest that chronic neuronal cell cycle activation induced by SV40T expression increases the presence of proinflammatory microglia in NCCR-App^{NLF} mice. Further study is needed to determine the relationship between SV40T-mediated neuronal cell cycle activation and the increase in neuroinflammation.

Qualitative assessment of the neuroinflammation pathology in the NCCR animals shows increased response in the somatosensory/motor regions of the cortex, suggesting regional sensitivity or vulnerability. Further evaluation is needed to identify the physiological properties that give rise to the regional difference, which could help better understand the pathophysiological process underlying regional vulnerability in AD.

The neurodegeneration in NCCR-App^{NLF} mice is also enhanced compared to App^{NLF} mice at 9, 12, and 18 months of age examined as demonstrated by increased cortical atrophy and Fluoro-Jade C staining. This increase in neurodegenerative phenotype could result from the convergence of various pathological features in the NCCR-App^{NLF} animals. Neuronal cell cycle on its own can result in neurodegeneration [26, 33, 102]. Elevated cell cycle related proteins are observed in neurons of brain areas susceptible to degeneration in AD [14, 22, 103, 104]. Likewise, other neuronal cell cycle re-entry models also display neurodegeneration [24, 26, 33]. SV40T expression in cultured cortical neurons increased cell death susceptibility [49]. This study found that cell death following SV40T expression is non-apoptotic and similar to our findings, SV40T expressing cells were negative for TUNEL staining [49]. Interestingly, the presence of apoptotic cell death in human AD samples is rare, and it is believed that neuronal cell cycle re-entry results in delayed cell death, which may also partially explain the progressive neurodegeneration in NCCR-App^{NLF} mice as demonstrated by increased Fluoro-Jade C stain [3, 49, 105]. Additionally, chronic neuroinflammation has been shown to occur in AD and may contribute to AD associated neurodegeneration [71, 106–108].

Further enhancement of neurodegeneration in the 18-month-old NCCR-App^{NLF} mice compared to 9- and 12-month-old NCCR-App^{NLF} mice suggests that the increase in PHF-1 phospho-tau lesions

![Image](https://example.com/image.png)

Fig. 7. A diagram showing a comparison of late-stage pathological features observed in NCCR-App^{NLF} and App^{NLF} mice. Induction of neuronal cell cycle re-entry results in additional AD-related pathological features that are not present in App^{NLF} mice.
observed in these mice at 18 months of age could also contribute and exacerbate neurodegeneration. A positron emission tomography (PET) imaging study showed that the presence of both Aβ and tau is the best predictor of degeneration, suggesting that both Aβ and tau interact to affect neurodegeneration in AD, and tau pathology is believed to be essential to the Aβ induced neurotoxicity [109, 110]. And it has been suggested that neuroinflammation can aggravate tau pathologies and neurodegeneration, potentially linking the three main key pathological hallmarks of AD; Aβ plaques, neurofibrillary tangles, and neurodegeneration [111].

AD is a complex disorder with assorted pathological changes that manifest during an abnormal aging process that is mainly characterized by Aβ plaques, neurofibrillary tangles, neuroinflammation, and neuronal loss. The commonly used AD mouse models represent the FAD pathogenic mechanisms affecting 1-2% of the AD cases while 95% of the AD cases are sporadic with no underlying genetic cause. Our neuronal cell cycle re-entry (NCCR) mice represent an alternative AD mouse model for ectopic neuronal cell cycle activation in AD. In summary, SV40T-mediated neuronal cell cycle re-entry in AppNL/F FAD mouse model results in the progressive development of Aβ and tau pathologies, gliosis, neuroinflammation, brain leukocyte infiltration and neurodegeneration with cortical atrophy (Fig. 7). Significantly, the PHF-1 phospho-tau lesions generated from endogenous tau occurs in the absence of tau mutations. The simultaneous display of the many key pathological features associated with AD in the NCCR-AppNL/F mice highlights their value as an alternative AD mouse model. By understanding how SV40T induced neuronal cell cycle re-entry generates comprehensive AD-like pathologies, we will gain new insights into pathogenic mechanisms of AD. Furthermore, our NCCR-AppNL/F mice represent an alternative to the numerous existing FAD mouse models.

ACKNOWLEDGMENTS

We would like to thank Carol Stevens for help with mouse colony management. This work was supported by NIH R03AG060144 grant (KP).

Authors’ disclosures available online (https://www.j-alz.com/manuscript-disclosures/21-0091r3).

SUPPLEMENTARY MATERIAL

The supplementary material is available in the electronic version of this article: https://dx.doi.org/10.3233/JAD-210091.

REFERENCES

