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Abstract.
Background: In animal models and tissue preparations, calcium dyshomeostasis is a biomarker of aging and Alzheimer’s
disease that is associated with synaptic dysfunction, neuritic pruning, and dysregulated cellular processes. It is unclear,
however, whether the onset of calcium dysregulation precedes, is concurrent with, or is the product of pathological cellular
events (e.g., oxidation, amyloid-� production, and neuroinflammation). Further, neuronal calcium dysregulation is not always
present in animal models of amyloidogenesis, questioning its reliability as a disease biomarker.
Objective: Here, we directly tested for the presence of calcium dysregulation in dorsal hippocampal neurons in male and
female 5×FAD mice on a C57BL/6 genetic background using sharp electrodes coupled with Oregon-green Bapta-1 imaging.
We focused on three ages that coincide with the course of amyloid deposition: 1.5, 4, and 10 months old.
Methods: Outcome variables included measures of the afterhyperpolarization, short-term synaptic plasticity, and calcium
kinetics during synaptic activation. Quantitative analyses of spatial learning and memory were also conducted using the
Morris water maze. Main effects of sex, age, and genotype were identified on measures of electrophysiology and calcium
imaging.
Results: Measures of resting Oregon-green Bapta-1 fluorescence showed significant reductions in the 5×FAD group com-
pared to controls. Deficits in spatial memory, along with increases in A� load, were detectable at older ages, allowing us to
test for temporal associations with the onset of calcium dysregulation.
Conclusion: Our results provide evidence that reduced, rather than elevated, neuronal calcium is identified in this 5×FAD
model and suggests that this surprising result may be a novel biomarker of AD.
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INTRODUCTION

The rise in Alzheimer’s disease (AD) cases is pre-
dicted to reach exponential numbers by the year 2050,
yet few, if any, new effective therapeutic drugs are
currently available. Further, the cost of care is bur-
densome for families and healthcare providers [1],
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resulting in an urgent need for the development of new
treatment strategies. While several cellular alterations
have been identified as key contributors to the onset
and progression of AD, including amyloid-� (A�)
deposits, apolipoprotein E status, tau tangles, oxida-
tive stress, neuroinflammation, and synaptic loss [2–
8], it is imperative to look beyond these for new
biomarkers. One target that has received considerable
interest is neuronal calcium dysregulation.

The hypothesis of brain aging and AD has pro-
vided evidence that neuronal calcium is dysregulated
and can negatively impact neuronal health, network
communication, and synaptic plasticity [9–16]. In the
hippocampus, a structure necessary for spatial map-
ping and short-term memory, an altered network
fraught with reduced synaptic plasticity [17–19],
increased pruning [20–23], and recent evidence of
hyperactivity [24, 25] is likely to mediate cognitive
and memory impairments [26–36]. The role that neu-
ronal calcium assumes with respect to these processes
is unclear, as calcium dysregulation may occur when
calcium is elevated or decreased, during states of rest
or during synaptic activation, or as the consequence
of alterations in synaptic communication. Given the
variability in calcium homeostasis measures in nor-
mal aging, it is important to measure calcium in
models of AD as well.

Critical mechanistic insights regarding calcium
dysregulation have been gained in AD animal mod-
els [8, 37–44]; however, few studies have investigated
this AD-associated calcium dysregulation alongside
aging. Initial studies of the associations between A�
and calcium homeostasis, including the impact of cal-
cium on A� production, were mostly conducted in
vitro (i.e., human cell lines or animal cell culture)
(reviewed in [45]). With the exception of a few cul-
ture studies conducted in adult tissues [46–49], most
of this early work used primary neuronal cultures
derived from neonatal pups, which prevented the in-
clusion of the aging component. When investigating
calcium dysregulation and its physiological impact
either directly (using calcium imaging techniques)
or indirectly (using electrophysiological techniques),
nearly all measures were obtained from AD animals
at single timepoints between the ages of 4 weeks and
12 months [23, 50–62]. Although these studies high-
lighted increases in resting or stimulated calcium lev-
els, triggered either synaptically or via the activation
of inositol 1,4,5-trisphosphate or ryanodine recep-
tors, few have specifically investigated the impact
of AD-associated calcium dysregulation during the
progress of aging [63, 64].

Stutzmann and colleagues examined calcium
changes across age (1.5, 6, and 18 months) in three
transgenic mouse models (PS1KI, 3×Tg, and APPS
weTauP301L). While enhanced endoplasmic retic-
ulum (ER) calcium signaling was observed in the
PS1KI and 3×Tg models, presumably due to the
PS1 mutation, this effect was not found to be age-de-
pendent [63]. However, similar to early aging studies
[12, 65, 66], the calcium-mediated afterhyperpolar-
ization (AHP) was larger with aging, but remained
unaltered across genotype. In another study, L-type
voltage-gated calcium channel (L-VGCC) density
was measured across age (1, 6–9, and 12–16 months)
in wild-type (WT) and 3×Tg mice [64]. L-VGCC
density was significantly increased at 12–16 months
in the transgenic mice compared to WT littermates.
Surprisingly, however, no significant increase in these
measures were found across age in WT animals at
12–16 months. This contradicts previous findings in
the F344 rat model of aging, which showed elevations
at 23–26 months of age [67].

The paucity of direct calcium measures in aged
AD animal models is partly due to the identification
of human amyloid-� protein precursor and prese-
nilin (PS) mutations, which increase production of
amyloidogenic proteins from birth, resulting in the
development of a very aggressive phenotype, pre-
cluding studies in older animals. Further, besides
humans and dogs, other animal models do not develop
AD phenotypes (e.g., A� deposition, tau tangles).
Additionally, it has been difficult to draw compar-
isons between pathological aging and AD, as the
former lacks clear biomarkers (i.e., A� plaques, tau
tangles, “leaky channels” of the ER, and enhanced
neuronal death) that differentiate the disease from
normal brain aging. Furthermore, recapitulating these
phenotypes in transgenic animals does not necessar-
ily clarify whether calcium dysregulation impacts AD
pathology or vice versa.

These difficulties, together with recent evidence
that calcium signals appear to decrease in two animal
models of AD [68, 69], highlight the possibility that
methodological differences may mediate these dis-
crepancies. Interestingly, previous work by our group
has shown a significant reduction in L-VGCC density
in 14-month-old 2×Tg mice compared to WT using
the dissociated “zipper” hippocampal slice technique
[68]. Using the same methods, however, a two-fold
increase in L-VGCC density was found in aged F344
rats compared to young animals [67]. In a more re-
cent study, we identified a significant decrease in the
AHP of 2-month-old 5×FAD mice on a C57BL/6
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genetic background compared to WT [69]. Further,
in a 2008 comprehensive review of calcium dysreg-
ulation in AD across 32 studies performed in both
cell lines and mouse models with PS mutations [40],
over 100 measures of calcium were identified. Of
these, 24 showed enhanced calcium release from the
ER while 21 exhibited decreased release. Moreover,
17 measures of plasma membrane calcium influx
were downregulated, two were upregulated, and five
showed no change across genotypes. Thus, while the
field has argued that calcium dysregulation may be
a unifying mechanism that impacts aging and AD in
similar ways, this over-simplification may have hin-
dered, rather than helped, the advancements made on
this topic.

To better characterize these processes in AD ani-
mal models in the context of aging, we tested for
the presence of calcium dysregulation in the 5×FAD
mice on a C57BL/6 genetic background at three dis-
tinct ages using two techniques that have reliably
identified key biomarkers of aging across labora-
tories [12, 70, 71]. This approach allowed us to
address the onset of the calcium dysregulation using
both direct (calcium imaging) and indirect (elec-
trophysiology) measures. Given that aging is the
number one risk factor for AD, we chose to utilize
this 5×FAD mouse model on a congenic C57BL/6
genetic background, as these animals display a slo-
wer development of the AD phenotype [72, 73],
allowing the aging processes to participate in dis-
ease progression. Sharp electrode electrophysiology
and Oregon-green Bapta-1 (OGB-1) calcium imag-
ing were used to measure neuronal physiology and
corresponding calcium changes. Behavioral charac-
terization using the Morris water maze (MWM) and
A� deposition (BTA-1) was quantified to characterize
phenotypic progression. Based on our prior results,
we hypothesized that contrary to what is seen in nor-
mal aging, somatic calcium would be reduced over
time in this 5×FAD transgenic model of amyloido-
genesis.

METHODS

Animals

Young-adult (1.5 months), adult (4 months), and
mid-age (10 months) male and female 5×FAD mice
and their WT littermates were derived at the Uni-
versity of Michigan (Ann Arbor, MI) and shipped
to the University of Kentucky (Lexington, KY) in
several cohorts of 10–20 animals. The 5×FAD mice

[74] were originally obtained from the Mutant Mouse
Regional Resource Facility (MMRC) on a C57BL/6J
background (stock # 034848-JAX). Hemizygous
5×FAD mice were crossed with WT C57BL/6Tac
mice and maintained at the University of Michigan
on this background since late 2012 (20+ genera-
tions). A recent report suggests that 5×FAD mice on
a C57BL/6 background exhibit AD-related pathol-
ogy and cognitive impairments approximately 2–4
months later than the mice originally described by
Oakley and colleagues, which utilized mice on a hy-
brid B6/SJL genetic background [72, 74]. Typically,
a cohort represented animals at a particular age (e.g.,
4.5 weeks, 3.5 months, and 9.5 months). Because only
one animal could be electrophysiologically recorded
per day, data acquisition for each cohort was stag-
gered across 3–5 weeks; thus, the average age of each
cohort was 1.5, 4, and 10 months.

Housing

While at the University of Michigan, the mice were
same-sex housed in groups of three to five, with a 14
h on/10 h off light/dark cycle, an ambient tempera-
ture of 20–22◦C, and ad libitum access to food and
water. Upon transfer to the University of Kentucky,
mice were housed in a quarantined facility for a min-
imum of one week prior to experimentation. Male
mice were housed individually while females were
paired. All animals were maintained on a 12 h on/12 h
off light/dark cycle and fed a Teklad Global 18%
protein rodent diet ad libitum. Routine assessment
of animal health was performed by a veterinarian at
both institutions and animals exhibiting signs of mor-
bidity were excluded from the study. Treatment and
handling of all animals were performed in accordance
with each university’s Institutional Animal Care and
Use Committee guidelines.

Slice preparation

Mice were anesthetized using aerosolized isoflu-
rane (5%) followed by rapid decapitation. Brains
were quickly removed and incubated in ice cold low
calcium, high magnesium artificial cerebrospinal
fluid (ACSF) [in mM]: 114 NaCl, 3 KCl, 10 Glucose,
1.25 KH2PO4, 26 NaHCO3, 0.096 CaCl2 anhydrous,
and 7.98 MgCl2 anhydrous. Three-hundred and fifty
�m thick slices from the dorsal hippocampus were
obtained using a Vibratome® 3000 (TPI; St. Louis,
MO) and incubated for at least 2 h at 32◦C in a hum-
idified (95% O2–5% CO2) interface-type chamber in
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normal calcium ACSF [in mM]: 114 NaCl, 3 KCl,
10 Glucose, 1.25 KH2PO4, 26 NaHCO3, 2 CaCl2
anhydrous, and 2 MgCl2 anhydrous. Slices were then
placed in a recording chamber (RC-22C; Warner In-
struments, Co., Hamden, CT) heated to 32◦C with a
TC2Bip/HPRE2 in-line heating system (Cell Micro
Controls; Norfolk, VA) and perfused with a continu-
ous flow of oxygenated, normal ACSF at a rate of
1.5 mL/min. Slices were then visualized under a
Nikon Eclipse E600FN microscope.

Electrophysiology

Sharp electrodes (∼80–120 M�) were pulled from
1.0 mm diameter borosilicate glass capillaries (World
Precision Instruments, Inc.; Sarasota, FL) on a Sut-
ter Instruments P80 pipette puller (Novato, CA).
Electrode tips were first backfilled with a bolus of
1.25 mM OGB-1, pH 7.4 (ThermoFisher Scientific,
Catalog number: O6806; Waltham, MA), while the
rest of the electrode was filled with a 1 M potassium
methyl sulfate (KMeSO4) in 10 mM HEPES. A bipo-
lar stimulating electrode was placed on the Shaffer
collaterals and the recording electrode was slowly
guided through stratum pyramidale of area CA1. An
SD9K stimulator (Astro Med Inc., Grass Instruments;
Warwick, RI) was used to synaptically stimulate the
tissue slice. Responses were obtained through an
AxoClamp-2B amplifier (Molecular Devices LLC.;
San Jose, CA) and digitized at ∼5–10 KHz using
a Digidata® 1550B (Molecular Devices LLC.; San
Jose, CA). Data was processed using pClamp 10.7
software (Molecular Devices LLC.; San Jose, CA).

Afterhyperpolarization

For measures of post-synaptic activation, cells
were held at –65 mV. Action potential (AP) thresh-
old was set to –55 mV, and 4 AP bursts were evoked
(depolarizing 150 ms current injection) to generate
the calcium-dependent AHP every 30 s for five min.
Three measures of the AHP were quantified inclu-
ding the medium AHP (mAHP), slow AHP (sAHP),
and AHP duration. The mAHP was defined as the
peak hyperpolarization observed immediately after
the end of the current injection. The sAHP was mea-
sured as the change in amplitude (compared to base-
line) 800 ms post-current injection. Quantification of
the AHP duration was defined as the time between
peak amplitude of the AHP and the return to baseline.
Here, we report data from 11 neurons (♂ = 6, ♀ = 5)/7
mice (♂ = 4, ♀ = 3) (1.5 months), 14 neurons (♂ = 6,

♀ = 8)/10 mice (♂ = 5, ♀ = 5) (4 months), and 13 neu-
rons (♂ = 9, ♀ = 4)/9 mice (♂ = 7, ♀ = 2) (10 months)
in the WT dataset, and 21 neurons (♂ = 14, ♀ = 7)/11
mice (♂ = 6, ♀ = 5) (1.5 months), 19 neurons (♂ = 12,
♀ = 7)/13 mice (♂ = 8, ♀ = 5) (4 months), and 15 neu-
rons (♂ = 8, ♀ = 7)/10 mice (♂ = 5, ♀ = 5) (10 months)
in the 5×FAD dataset.

Input/output

For measures obtained during synaptic activation,
cells were held at –70 mV and stimulated every 10 s.
Data reported were derived from 11 neurons (♂ = 6,
♀ = 5)/7 mice (♂ = 4, ♀ = 3) (1.5 months), 13 neurons
(♂ = 5, ♀ = 8)/10 mice (♂ = 5, ♀ = 5) (4 months), and
10 neurons (♂ = 7, ♀ = 3)/7 mice (♂ = 5, ♀ = 2) (10
months) for the WT dataset, and 19 neurons (♂ = 13,
♀ = 6)/11 mice (♂ = 6, ♀ = 5) (1.5 months), 16 neu-
rons (♂ = 10, ♀ = 6)/12 mice (♂ = 8, ♀ = 4) (4 months),
and 12 neurons (♂ = 8, ♀ = 4)/9 mice (♂ = 5, ♀ = 4)
(10 months) in the 5×FAD dataset. Excitatory post-
synaptic potential (EPSP) amplitudes determined
from an increasing series of activation voltages were
plotted to generate I/O curves and used to determine
the threshold for an AP.

Repeated synaptic stimulation

Stimulation intensity during repeated synaptic
stimulation (RSS; 10 s, 7 Hz) was set at the thresh-
old for an AP. Outcome measures included synaptic
hyperpolarization and potentiation of EPSPs in rela-
tion to measures of the first EPSP (baseline) in the
train. Synaptic hyperpolarization was tabulated as the
mean peak hyperpolarization amplitudes following
the 6th through 9th EPSPs. The growth of the EPSP
during the train was measured early (EPSPs 6 through
9) and late (last 4 EPSPs).

Calcium imaging

All cells were imaged after measures of input re-
sistance, AHP, and I/O slopes were taken. Data repo-
rted were taken from 8 neurons (♂ = 5, ♀ = 3)/5 mice
(♂ = 3, ♀ = 2) (1.5 months), 7 neurons (♂ = 3, ♀ = 4)/6
mice (♂ = 3, ♀ = 3) (4 months), and 7 neurons (♂ = 5,
♀ = 2)/5 mice (♂ = 4, ♀ = 1) (10 months) for the WT
dataset, and 13 neurons (♂ = 8, ♀ = 5)/10 mice (♂ = 6,
♀ = 4) (1.5 months), 9 neurons (♂ = 6, ♀ = 3)/8 mice
(♂ = 5, ♀ = 3) (4 months), and 8 neurons (♂ = 5, ♀ =
3)/6 mice (♂ = 3, ♀ = 3) (10 months) were included
for the 5×FAD dataset. Cells were visualized under
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a 40× objective using a filter cube (Ex: 470/40 nm;
Em: 525/50; Dichroic 495 nm; Chroma Technol-
ogy Corp.; Bellows Falls, VT). Imaging Workbench
(INDEC BioSystems; Los Altos, CA) was used to
quantify outcome measures. A Lambda DG-4 (Sut-
ter Instruments; Novato, CA) was used as a source to
activate the fluorophore with exposures in the range
of 250–800 ms depending on the depth of the cell
imaged. A photometrics camera (Teledyne Photomet-
rics; Tucson, AZ) was used to image calcium flu-
orescence and kinetics. Two regions of interest (ROI)
were created: one around the cell body and another
of similar size in tissue adjacent to the imaged cell.
Background subtraction and normalization to base-
line were used to quantify changes in fluorescence
(% �F/F). For quantification of resting fluorescence,
values were averaged before RSS and normalized to
the depth of the recorded cell. Outcome measures also
included rise time, peak amplitude, decay time, and
area-under-the-curve (AUC) during RSS, and were
derived using Clampfit (Molecular Devices LLC.;
San Jose, CA) and SigmaPlot software (Systat Soft-
ware, Inc.; San Jose, CA).

Morris water maze

Water maze experiments were performed at the
University of Michigan as previously described
[75–77] utilizing male and female 5×FAD mice and
non-carrier littermates (WT) as controls. Three age
groups were examined; 1.5 month (5×FAD: ♂ = 5,
♀ = 2; WT: ♂ = 2, ♀ = 5), 4 month (5×FAD: ♂ = 4, ♀ =
4; WT: ♂ = 4, ♀ = 3), and 10 month (5×FAD: ♂ = 17,
♀ = 19; WT: ♂ = 28, ♀ = 11). A larger cohort of 10-
month animals was used to provide sufficient power
to detect differences that we anticipated would be
modest between genotypes at this time point. The
MWM was composed of a round white acrylic pool
that was 1.2 m in diameter. The pool was filled with
water that was made opaque using nontoxic, white
tempera paint and heated to 28◦C. A round platform
made of clear acrylic (10 cm in diameter) was sub-
merged just below the surface of the water, ∼20 cm
from the edge of the pool in the northeast quadrant.
Mice were tracked using a digital camera mounted
above the pool in combination with Actimetrics
Water Maze (V4) software. Mice were trained to
find the hidden platform during 4 trials a day. Before
each trial, mice were individually placed on the plat-
form for 10 s. At the start of the trial, mice were
released into the maze, facing the wall at predefined
pseudo-random locations, and the time taken to reach

the platform was recorded. For all trials, mice were
given 60 s to find the platform, and, if unsuccessful,
were then guided to the platform. Previous experience
indicated that older mice (regardless of genotype)
require additional training to perform above chance.
Therefore, young mice (1.5-month and 4-month) re-
ceived 9 days of training and the older mice (10-
month) received a total of 12 days of training. Mice
were tested for their long-term memory for platform
location during several probe tests throughout train-
ing. All mice received probe trials on days 4, 7, and
10 (24 h after the last training trial). Aged mice (10-
month) received an additional probe trial on day 13
(24 h after the last training trial). For the probe trials,
the platform was removed from the pool, and each
mouse was allowed to swim for 60 s, starting at a
point directly opposite to the trained platform loca-
tion. To control for motivation, swimming ability, and
sensory perception (elements required for spatial re-
cognition), mice were run in the visible-platform
version of the water maze on the day following the
final probe trial. In this version, a distinct local cue (a
flag) was fixed to the center of the hidden platform.
Mice were given four visible-platform trials with a
maximum of 60 s per trial.

Tissue section for amyloid-β and BTA-1 Staining

Male and female 5×FAD mouse brains were har-
vested for A� plaque staining at 3 time points; 1.5-
month (n = 15 sections from 3 mice; ♂ = 5, ♀ = 10),
4-month (n = 16 sections from 3 mice; ♂ = 16, ♀ = 0),
and 10-month (n = 11 sections from 2 mice; ♂ = 5, ♀ =-
6). Mice were anesthetized using aerosolized isoflu-
rane, then cardiac-perfused with 1× PBS followed by
4% paraformaldehyde. Brains were removed, further
fixed in 4% paraformaldehyde overnight at 4◦C, and
then placed in a 30% sucrose solution at 4◦C until they
sank (2–3 days). Brains were then embedded in opti-
mal cutting temperature (OCT) compound (Fisher;
Maltham, MA) and frozen at –80◦C. Once frozen, the
embedded brains were sliced coronally at 40 �m on a
cryostat (Leica; Buffalo Grove, IL) and immediately
mounted on Superfrost Plus slides (Fisher). Once
mounted, sections were washed three times with 1×
PBS to remove any residual OCT followed by incu-
bation in 10 �M BTA-1 (Sigma-Aldrich; St. Louis,
MO) for 30 min. Sections were then washed for an
additional three times with 1× PBS before being
cover-slipped using VectaMount® Aqueous Mount-
ing Media (Vector Laboratories; Burlingame, CA).
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Amyloid-β imaging

Images were collected from two subregions of the
hippocampus: the CA1 and dentate gyrus (DG) sub-
fields. Images were obtained using an upright laser
scanning confocal microscope (Olympus; Center
Valley, PA) equipped with 4× and 20× air objec-
tives. For each region, single images (1024× 1024
pixels) were captured every 5 �m for a total of 15 �m
total depth. BTA-1 staining was visualized using a
405 nm laser. Imaging acquisition settings (voltage
(HV), gain, and offset) in the Olympus FluoView
software were consistent across samples to allow for
comparison. A� images were processed using ImageJ
software (FIJI) and quantified using maximum pro-
jections of images at a depth of 15 �m. The images
were then background subtracted with a 50-pixel
rolling-ball radius, manually thresholded, and con-
verted into binary masks of BTA-1 positive ROIs.
ROIs were then used to count individual A� plaques
in the raw image. This value was then divided by the
volume of the image to give a result of plaque density
in number/� m3. Images are presented in grayscale.

Cell health and exclusion criteria

Only neurons that fit the following criteria were
included in the electrophysiological and calcium im-
aging analyses: input resistance ≥30 M�, holding
current ≤–350 pA, and AP peak ≥–2 mV. These
values are reported in Table 1. Additionally, if the
number of APs during RSS were >2 SD from the
mean, the cell was considered an outlier and removed
from the analysis.

Data quantification and statistics

The statistical significance of electrophysiologi-
cal and imaging measures was calculated using Sig-
maPlot. Using three-way ANOVA, we report on main
effects of age, sex, or genotype, as well as interaction
terms using the Holm-Sidak multiple comparisons
test. For behavioral analysis, significance was tested
using a 2-factor repeated measures ANOVA, unpaired
t-tests, and single factor t-tests. Sex differences were
not investigated for behavior. All A� imaging data
was analyzed and displayed using GraphPad Prism 8
and A� deposition between 4-month and 10-month
mice was compared using a 2-tailed unpaired t-test.
The 1.5-month mice were excluded from analysis
due to the absence of any observable plaques. Sig-
nificance for all data was set at p < 0.05. Data are
represented as means± standard error of the mean
(SEM).

RESULTS

The following results were derived from 93 cells
recorded in 61 animals and from 52 imaged cells.
We compared several measures of neuronal health
and numbers of APs triggered during imaging pro-
tocols to confirm that the results reported here were
all derived from healthy dorsal CA1 pyramidal neu-
rons (Table 1). For behavioral analysis, 55 WT and
51 5×FAD mice were used. Tissue sections from
eight 5×FAD mice were stained and analyzed for A�
deposits. Table 2 illustrates the impact of training as
compared to genotype on MWM outcome measures.

Table 1
Measures of Neuronal Health and Cellular Activation

Genotype Age Holding Input AP # of APs
(months) Current (pA) Resistance (M�) Amplitude (mV) During Imaging

WT Male 1.5 –125± 65.1 91.3± 15.2 4.5± 2.3 70.2± 3.0
4 –241.7± 16.6 48.7± 2.6 7.7± 1.5 70± 0.6
10 –143.3± 31.6 63.3± 3.9 8.7± 1.8 66.8± 4.5

5×FAD Male 1.5 –76.4± 27.5 71.4± 4.8 9.2± 1.6 68.1± 2.2
4 –208.3± 22.8 43.3± 2.1 8.8± 1.3 70± 0.7
10 –156.3± 36.1 61.0± 4.7 7.8± 1.9 73.8± 1.2

WT Female 1.5 –120± 48.1 76.5± 10.7 10± 2.1 68.7± 0.3
4 –120± 27.6 54.6± 4.6 9.1± 1.8 66.8± 4.3
10 –105± 33.8 85.1± 12.2 8.8± 1.9 70.0± 0

5×FAD Female 1.5 –201.4± 28.1 61.5± 7.7 5.6± 2.5 68.2± 3.2
4 –185.7± 17.6 58.7± 6.0 2.9± 2.2 70.3± 0.3

10 –84.3± 40.1 80.0± 4.9 6.5± 1.6 70.7± 0.3
Significance – p < 0.02 p < 0.001 n.s. n.s.

Neuronal health was compared across genotype, sex, and age. The amplitude of action potentials (AP) during AHP data acquisition and
the number of APs during RSS while imaging were recorded. Holding current and input resistance reflect cell membrane “leakiness” and
integrity. Holding current and input resistance at 4 months were both significantly elevated (p < 0.05). No changes were detected between
groups on measures of AP amplitude or number of APs during imaging (p > 0.05).
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Table 2
Results and Statistical Analyses of Behavioral Data

Measure Age (months) F-value p Significance

Latency to Platform Effect of Training 1.5 F(8,88) = 11.26 p < 0.0001 Yes
4 F(8,96) = 4.896 p < 0.0001 Yes

10 F(12,876) = 68.14 p < 0.0001 Yes
Effect of Genotype 1.5 F(1,11) = 2.395 p = 0.15 No

4 F(1,12) = 0.008 p = 0.929 No
10 F(1,73) = 10.53 p = 0.0018 Yes

Time spent in target quadrant Effect of Training 1.5 F(2,22) = 12.21 p = 0.0003 Yes
4 F(2,24) = 0.666 p = 0.523 No

10 F(3,228) = 24.33 p < 0.0001 Yes
Effect of Genotype 1.5 F(1,11) = 0.006 p = 0.938 No

4 F(1,12) = 0.198 p = 0.663 No
10 F(1,76) = 12.03 p = 0.0009 Yes

Swim Speed Effect of Genotype 1.5 F(5,6) = 1.179 p = 0.022 Yes
4 F(6,7) = 4.374 p = 0.404 No
10 F(36,36) = 2.266 p = 0.8725 No

Latency to platform, time spent in the target quadrant, and swim speed were compared across genotype and age. Training significantly
reduced the latency to platform across age (p < 0.0001); however, on measures of time spent in target quadrant, this was only seen in 1.5-
and 10-month-old animals (p < 0.001). Compared to WT littermates, 5×FAD mice showed significant behavioral deficits by 10 months of
age (p < 0.0018) and spent significantly less time in the target quadrant (p = 0.0009). Genotype significantly influenced swim speed at 1.5
months (p = 0.022), but not at 4 or 10 months.

Afterhyperpolarization

To determine if an age, sex, or genotype effect on
the calcium-dependent AHP was present, we mea-
sured the mAHP and the sAHP amplitude, as well as
the AHP duration (Fig. 1). These measures revealed
that the amplitude of the mAHP (F2,92 = 9.99, p <
0.001; three-way ANOVA; Fig. 1B) was significantly
reduced in both WT and 5×FAD mice from 6 weeks
to 4 months of age. Interestingly, from 4 to 10 months,
the mAHP significantly increased to levels indist-
inguishable from those seen at 6 weeks. Similar re-
sults were seen on measures of the sAHP amplitude
(F2,92 = 11.00, p < 0.001; three-way ANOVA) and the
AHP duration (F2,92 = 10.70, p < 0.001; three-way
ANOVA; Fig. 1C). The “U” shaped aging effect seen
in Fig. 1 is intriguing, and may reflect on the inclusion
of the 1.5-month age group. In fact, most studies of
aging use 3–4 months old animals as the “young” age
group. Still, one prior study using patch electrodes
describes a significant increase between 1.5 months
and 1.5 years in similar WT and transgenic animals,
but no significant genotype effect was reported at any
ages [63]. Of interest, analysis of the sAHP amplitude
here revealed a significant sex by genotype interac-
tion term (F1,92 = 5.47, p = 0.02), where a reduction
was noted in female 5×FAD compared to WT (p <
0.05), but not in males. Further, when analyzing
the AHP duration (Fig. 1D), an age by sex interac-
tion term was noted (F2,92 = 3.30, p = 0.04); again,
this aging effect was only significant in females
(p < 0.05). These results highlight the importance

of investigating sex differences in animal models of
AD.

Synaptic activation

We quantified neuronal excitability during synap-
tic activation using measures of EPSP amplitudes and
I/O slopes (Fig. 2A, B). In alignment with the age-
dependent changes in the AHP presented in Fig. 1
where a “U” shaped curve was noted, analysis of the
excitability data (I/O slopes) reveals inverse relation-
ships with age, as highlighted by greater excitability
at 4 months. Indeed, a main effect of age was detected
(F2,80 = 8.02, p < 0.001; three-way ANOVA). Further,
an age by sex by genotype interaction was also iden-
tified (F2,80 = 5.13, p < 0.008), albeit only at 1.5 and
4 months of age (p < 0.05 for both). Once again, this
effect was more pronounced in female 5×FAD mice
than in males.

We then obtained measures of RSS at 7 Hz, includ-
ing synaptic hyperpolarization (Fig. 3A–C) as well
as short-term EPSP facilitation (Fig. 3A, B, D, E).
While synaptic hyperpolarization has been shown
to decrease with age in the F344 rats model of
aging [71], no age or genotype effect was identi-
fied in the 5×FAD mice and at the ages tested here
(Fig. 3C). However, while investigating changes in
EPSP facilitation during RSS (both early and late,
Fig. 3D, E), we noticed a significant increase in the
late phases of EPSP facilitation as a function of age
in the 5×FAD model (F2,76 = 4.11, p = 0.02; three-
way ANOVA). This result is surprising, given prior
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Fig. 1. AHP Measures in WT and 5×FAD Mice Across Age and Sex. A) Example of an AHP following post-synaptic depolarization with
4 APs. B) A main effect of aging (p < 0.05) on the mAHP was observed within each genotype and across sex. C, D) Similar findings were
observed on the sAHP (800 ms) amplitude measures, as well as on the AHP duration. Hashes (#) represent significance in aging at p < 0.05.

literature reporting on depressed EPSP facilitation
with aging [78–81].

Calcium imaging

Age-, sex-, and genotype-sensitive changes in cal-
cium kinetics and overall somatic levels were derived
from OGB-1 fluorescence before, during, and after
RSS (Fig. 4). Cells were synaptically-stimulated at
7 Hz for 10 s and changes in fluorescence were nor-
malized to resting fluorescence (% �F/F) just prior
to stimulation. Results show that neither age, sex,
nor genotype altered measures of calcium kinetics
based on rise time or decay time constants (Fig. 4D,
E). However, measures of peak amplitude and AUC
(Fig. 4C, F) highlighted a significant main effect of
age and sex. Measures of peak amplitude and AUC

revealed a main effect of age highlighted mostly by
differences between the 1.5- and 4-month-old groups
(F1,51 = 3.71, p = 0.03; F1,51 = 3.54, p = 0.04, respec-
tively; three-way ANOVA). The same measures also
showed an overall main effect of sex, as highlighted
by reductions in fluorescence intensity during RSS
in females compared to males (peak: F1,51 = 6.52,
p = 0.02; AUC: F1,51 = 6.14, p = 0.02).

A main effect of genotype on mean resting fluo-
rescence (F1,49 = 8.62, p < 0.01; three-way ANOVA)
was seen with reductions in calcium-dependent fluo-
rescence in the 5×FAD compared to WT in both sexes
(Fig. 5). Because OGB-1 fluorescence values depend
on calcium levels, duration of exposure to the indica-
tor, and the depth of the cell recorded, we normalized
mean resting fluorescence to the depth of each cell.
While a significant main effect of age on measures



A.O. Ghoweri et al. / Neuronal Calcium in the 5×FAD Model 1427

Fig. 2. Extracellular Synaptic Activation. A) Example of EPSPs recorded below and at threshold of an AP. Inset shows input/output (I/O)
plot fit from EPSP amplitudes with increasing stimulation intensity. B) Synaptic excitability derived from I/O measures (slopes) reveal a
significant main effect of aging across genotypes and sex. Hashes (#) represent significance in aging at p < 0.05.

of recorded depth (F2,49 = 3.80, p = 0.03; three-way
ANOVA) was noted, this was mostly mediated by
an increase in depth in 4-month-old animals and
was independent of genotype, and therefore unlikely
to have contributed to the overall genotype effect
(Fig. 5).

Behavior

We explored the impact of age on hippocampal-
dependent learning and memory using the MWM
task [82]. Analysis of latency to find the hidden plat-
form during training revealed a significant reduction
across training days at 1.5 months (F8,88 = 11.26,
p < 0.0001; two-way repeated measures ANOVA), 4
months (F8,96 = 4.896, p < 0.0001; two-way repeated
measures ANOVA), and 10 months (F12,876 = 68.14,
p < 0.0001; two-way repeated measures ANOVA). As
expected, there were no differences between 5×FAD
and WT mice in latency to platform in either the 1.5-
month or 4-month groups (Fig. 6A1–B1). However,
there was a significant reduction in latency observed
in the 10-month group (F1,73 = 10.53, p = 0.0018;
two-way repeated measures ANOVA) (Fig. 6C1),
indicating that the 5×FAD mice have a deficit in their
ability to learn the platform location across training
days.

By the final probe trial, 5×FAD mice and their WT
littermates in all groups had spent a significant per-
centage of time in the target quadrant compared to
chance (p < 0.05, single factor t-test). As expected,

there was no effect of genotype in either the 1.5-
or 4-month groups across probe trials (p = 0.605,
p = 0.938, respectively; two-way repeated measures
ANOVA) (Fig. 6A2-B2). However, the 10-month
5×FAD mice spent significantly less time across
probe trials searching in the quadrant where the plat-
form was previously located in comparison to their
WT littermates (F1,76 = 12.03, p = 0.0009; two-way
repeated measures ANOVA) (Fig. 6C2), indicating a
memory deficit for platform location. No significant
difference in swim speed between 5×FAD and WT
mice (p = 0.217; unpaired t-test) was noted, establish-
ing that this deficit was not due to alterations in either
motor function or motivation. Additionally, a non-
spatial version of the water maze was performed in
which the escape platform was clearly marked. The
5×FAD and WT mice exhibited similar escape laten-
cies (p = 0.7114; unpaired t-test), suggesting that the
memory deficit we observed in the 10-month 5×FAD
mice was not due to a nonspecific performance issue.
Similarly, no significant differences were observed
in performance during the visible platform in the
1.5-month and 4-month mice (p = 0.33 and p = 0.054,
respectively). With respect to potential sex differ-
ences across groups, we did not observe a statistically
significant effect of sex on any of the behavioral
performance variables analyzed. Finally, we did not
observe a correlation between MWM performance,
calcium dynamics, and sex. Taken together, these data
indicate that learning and memory deficits are present
in 5×FAD mice by 10 months of age.
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Fig. 3. Repeated Synaptic Stimulation (RSS). A) Example of RSS showing EPSP potentiation and synaptic hyperpolarization. Cells were
repeatedly stimulated at 7 Hz for 10 s. B) Upward arrows illustrate growth in EPSP amplitude during RSS and downward arrows show
increased amplitude in the synaptic hyperpolarization. APs are truncated for illustration in A and B. C) Synaptic hyperpolarization measured
during RSS was not altered across aging or genotypes. D, E) EPSP facilitation taken during the first (early) and last (late) periods of RSS.
A main effect of age was noted on measures of late EPSP facilitation displaying an increase in the older group, independent of sex. Hashes
(#) represent significance in aging at p < 0.05.
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Fig. 4. Changes in OGB-1 Fluorescence During 10 s RSS. A) Example of an imaged OGB-1 loaded neuron. B). Normalized fluorescence
change across time (% �F/F) before, during, and after RSS. C) Peak amplitude measures show both a significant effect of age and sex. D,
E) No significant differences were found in measures of rise or decay time constants. F) AUC shows significant effects of both age and sex.
Hashes (#) represent significance in aging and asterisks (∗) represent sex differences at p < 0.05.
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Fig. 5. Resting Fluorescence Before RSS. Mean resting fluores-
cence was normalized to the depth of each recorded cell. Significant
genotype effect was detected, highlighting reduced fluorescence in
the 5×FAD animals compared to WT. Ampersands (&) indicate
significance for genotype at p < 0.05.

Amyloid-β deposition

To measure the deposition of A� plaques with
age, sections from 5×FAD mice at 3 time points
(1.5, 4, and 10 months) were stained with BTA-1
and imaged using confocal microscopy. The plaques
density (# of plaques/� m3) within two hippocampal
regions (CA1 and DG) was quantified (Fig. 7). The
results show a significant increase in plaque density
in the 10-month mice compared to the 4-month mice
in both the CA1 region (p < 0.0001; unpaired t-test)
and DG (p < 0.0001; unpaired t-test). These data show
an age-dependent progressive increase in A� plaque
deposition in both the CA1 region and DG.

DISCUSSION

This study examined the relationship between
neuronal calcium-mediated variables and aging in
5×FAD mice on a C57BL/6 genetic background. We
conducted this series of experiments using electro-
physiological and imaging techniques to report on
changes in calcium measures in brain aging. These
experiments were conducted to test the hypothesis
that, contrary to what is seen in normal aging, mea-
sures of calcium-mediated processes are reduced in
the 5×FAD transgenic model of amyloidogenesis.
We based this on prior reports showing that L-VGCC
density and the AHP are reduced in two different
models of AD [68, 69]. In the current study, we
show that changes in calcium-mediated potentials
and levels were identified across early age, sex, and

genotype. Briefly, reductions in calcium-mediated
processes appear to be more robust in females com-
pared to males in this animal model of AD (Fig. 4).
While surprising, these results underscore a sig-
nificant lack of alignment between normal aging
processes and those initiated in pathological aging,
suggesting that not only is AD not an accelerated
form of aging, but that when considering calcium
dysregulation, these processes may actually diverge.
Here, several discrepancies from the canonical cal-
cium hypothesis of brain aging and dementia were
noted, including 1) the presence of a reduced AHP at
4 months compared to 1.5 and 10 months, 2) the pres-
ence of significant reductions in OGB-1 fluorescence
(peak amplitude and AUC) in females irrespective
of genotype, and 3) reduced resting fluorescence in
5×FAD mice compared to WT.

Onset of calcium dysregulation

The amyloidogenic 5×FAD model mimics human
AD at an accelerated pace and presents with amy-
loid deposition by 1.5 to 2 months, cognitive deficits
and synaptic impairment by 4 months, and neuronal
loss by 6 months of age [74]. While this transgenic
design is extremely well-suited for studies of specific
phenotypes (e.g., A� deposition, behavior, calcium
dysregulation, oxidative stress), the aging compo-
nent is seldom considered in the experimental design,
likely due to the reduced lifespan of these animals.
Using 5×FAD mice on a C57BL/6 genetic back-
ground, we sought to incorporate components of
aging within the context of AD. Compared to the orig-
inal report [74], 5×FAD mice on a C57BL/6 genetic
background presents with behavioral deficits start-
ing at 10 months versus 3 months of age (Fig. 6).
With respect to the aging effect identified, our results
are surprising, as a significant reduction in the AHP
at 4 months of age (Fig. 1) was combined with an
increase in excitability (Fig. 2) and a lack of change
in short-term synaptic plasticity (Fig. 3) or OGB-1
fluorescence (Fig. 4). It should be noted, however, that
relatively similar results in response to age were pre-
viously reported in the F344 rat model of aging, where
calcium dysregulation (measured through either the
AHP or calcium levels) did not manifest until 12
months of age [83]. One limitation of our study may
be that we did not investigate animals at later time
points. Also, very few prior studies have investigated
the calcium-dependent AHP at 1.5 months of age ex
vivo (i.e., slices), suggesting more analyses around
this age are warranted [63]. The “U” shape curve
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Fig. 6. Morris Water Maze Data. Mice were trained using 4 trials per day for 9 days (1.5- and 4-month-old animals; A1-B1.) or 12 days
(10-month-old animals; C1.) days on the hidden platform task. Memory performance was assessed using probe trials on days 4, 7, 10 [∧]
(all age groups; A2-C2.) and 13 (10-month; C2.). By the final probe, all groups spent significantly more time (>25%) in the target quadrant.
1.5- and 4-month mice exhibited a significant decline in the latency to find the hidden platform across training days, but no differences were
seen between genotypes (A1-B1.). There were no significant differences between genotypes during probe trials (A2-B2.). 10-month-old 5×
FAD and WT mice exhibited a significant decline in latency to find the hidden platform across training days; however, 5× FAD mice had a
longer latency to reach the platform compared to the WT mice (C1.). During probe trials, 5×FAD mice spent significantly less time in the
target quadrant than WT littermates (C2.), indicating a memory deficit. Asterisks (∗), daggers (†), and double daggers (‡) represent significant
values at p < 0.05.
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Fig. 7. Amyloid-� (A�) plaque deposits in the hippocampus of 5×FAD mice. Coronal sections (40 �m) of the dorsal hippocampus (AP, -2.0
bregma) from 1.5, 4, and 10-month-old 5×FAD mice were stained with the amyloid imaging agent BTA-1. A1-C1) Representative images of
the hippocampus of 5×FAD mice demonstrating the observed age-dependent increase in A� plaque accumulation and the regions of interest
(ROI) in CA1 and dentate gyrus (DG) that were used to quantify A� plaque density. A2,3-C2,3) Representative maximum intensity projection
images (20× air; 635 �m× 635 �m× 15 �m, �z = 5 �m) of A� plaque deposits in CA1 and DG from 1.5, 4, and 10-month-old 5×FAD
mice. Arrows in panel C3 point to BTA-1 stained A� plaques. D, E) A� plaque density (plaque #/� m3) was quantified in the CA1 region
and DG from 20× images using the Analyze Particles plug-in in FIJI. Significant differences in A� plaque density were found between
4-month-old and 10-month-old 5×FAD mice. Analysis of the 1.5-month-old mice were not included because no plaques were observed.
Hippocampal layers; CA1: stratum oriens (SO), stratum pyramidale (SP), stratum radiatum (SR), stratum lacunosum-moleculare (SLM)
and DG: molecular layer (ML), granule cell layer (GCL) and the hilus (H). Scale bar: 4× images = 200 �m, 20× images = 50 �m. Asterisks
(∗) represent significance determined by a 2-tailed unpaired t-test with p < 0.05. Dorsal (D)←→Ventral (V).

(a reduction at 4 months) presented in Fig. 1 is
reminiscent of prior work in the retina measuring
L-VGCC calcium flux in vivo using manganese-en-
hanced MRI [84–86]. In disease models with progres-
sion of the neurodegenerative events ranging from
days to weeks and months (ischemic reperfusion,
retinitis pigmentosa, or even diabetes, respectively),
Berkowitz and colleagues find significant prodromal
reductions in calcium influx in response to initial
stressors; over time, manganese uptake/ L-type cal-
cium channel function appears to return to seemingly
normal levels. Whether our “U” shape curve reflects
on a combination of developmental/maturation pro-
cesses or aging changes, or on initially competent
calcium handling processes that ultimately fail at lat-
ter stages, requires further investigations.

Based on the increase in the A� load (Fig. 7) and
the time course of progression, it seems clear that
calcium dysregulation does not parallel A� in-
creases. Our current results cannot confirm that amy-
loid deposits in the dorsal hippocampus alter either

neuronal physiology or calcium kinetics; however,
independent of age, a reduction in resting calcium
fluorescence was seen in the 5×FAD compared to the
WT (Fig. 5). Therefore, in this model, no evidence of
enhanced calcium dysregulation was seen using sharp
electrode recording techniques, and instead, possible
reductions in calcium processes were noted.

Differences in techniques

Two prior studies have investigated differences
between sharp electrode recording techniques and
whole-cell recordings using patch electrodes [87,
88]. Aside from clear differences in recording sta-
bility and duration (AHPs can be recorded for hours
in the same cell under sharp electrode conditions),
input resistance and leak conductance, and the use
of supplemented nucleotides, calcium buffers, and
potassium salts, it is clear that under whole-cell re-
cording conditions, a large amount of APs are needed
to elicit a significant AHP [55, 63, 66, 88, 89]. Here,
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as previously reported in numerous studies of aging,
we quantified the AHP following a series of 4 APs and
observed that the calcium-dependent potentials were
smaller than those recorded from rat neurons [12,
90]. Typically, the mAHP amplitude in young mice
is approximately ∼1.4 mV [68, 69], while the AHP
(recorded with the same number of APs) from rat neu-
rons is ∼2.8 mV [68, 71, 83, 91]. This difference in
technique is important when comparing measures of
calcium biomarkers across animal models of aging
and AD and may underlie the current novel results
while using sharp electrode physiology. Neverthe-
less, this does not necessarily negate previous work
using calcium imaging techniques in combination
with patch-clamp electrophysiology, where several
underlying mechanisms have been identified in the
context of aging and AD [23, 51, 53–55, 58, 59,
61, 63, 64, 92, 93]. In fact, recent studies have pre-
sented compelling evidence that calcium-dependent
neuronal measures of hyperactivity are present in the
amyloidogenic brain.

Alternative calcium-dependent biomarkers in
AD: hyperactivity

Several recent studies show that a new calcium-
dependent biomarker of AD, previously unseen in in
vitro studies, may be neuronal hyperactivity. Using in
vivo multiphoton imaging, these studies have shown
that, depending on the proximity to A� plaques, a sig-
nificant increase in hyperactivity in several neuronal
fields in the amyloidogenic brain is seen [24, 94–99].
Moreover, hyperactivity in astrocytes adjacent to A�
plaques has also been reported [100, 101], in some
cases with concomitant increases in spontaneous
vasoconstriction [102]. One suggested mechanism
for increased neuronal hyperactivity in AD may be
the reduction in glutamate reuptake via a reduction
of glutamate transporters in the microenvironments
surrounding A� plaques [96, 99]. Alternatively, this
hyperexcitability could develop in response to failing
Ca2+ buffering mechanisms, similar to those seen in
basal forebrain neurons in aged animals [103–105].
Together, these alterations highlight the presence of
increased hyperactivity in neuronal circuits of AD
which would likely translate into altered network
communication during encoding.

As one may suspect, this increase in hyperex-
citability could reflect on the presence of an epi-
leptic-like phenotype in some models of AD [106–
111]. Age-dependent susceptibility to epilepsy has
been well documented in the literature, with marked

increases of epilepsy development reported in the
elderly [112–116]. Epilepsy has long been charac-
terized as a disease of neuronal hyperexcitability
and abnormal firing with dysregulated calcium as
a key contributor [117–123]. It is becoming evi-
dent that there is clear overlap between the profiles
of these two diseases. A recent study performed in
a rat model of epileptogenesis used bioinformatics
to identify regulatory proteins in the hippocampal
and parahippocampal brain regions that overlap in
AD and epilepsy [25]. Among the shared dysregu-
lated proteins of these diseases, 63 were identified
to be involved with both mitochondrial function and
calcium homeostasis. At the least, these alterations
certainly highlight AD as a disease of synaptic dys-
function that propagates intracellular dysregulation.
Thus, it is clear that further characterization of this
novel calcium-dependent biomarker of AD is needed.

While previous work in the field of neuronal ex-
citability in aging has mostly remarked on reduced
synaptic excitability, especially with respect to the
larger AHP, but also reduced synaptic connectivity
[12, 55, 66, 124–128], our results showing an age-
dependent reduction in the AHP (at 4 months), eleva-
tions in I/O slope, and reductions in resting calcium
align relatively well with a potential phenotype of
hyperexcitability. As expected, reductions in cal-
cium and calcium-mediated cellular events (i.e.,
AHP) seem likely to engage hyperactivity processes,
increase network communication, and, perhaps,
reduce the threshold for epileptogenesis in this animal
model of AD.

Conclusions

While our study does not identify increases in cal-
cium dysregulation in the 5×FAD animals compared
to WT littermates across age, it does highlight the
possibility that calcium-related processes in aging
may be significantly different than those seen in
AD. Further, studies investigating older animals (i.e.,
>12 months of age) are needed to test whether A�
accumulation induces calcium dysregulation. It
appears that neuronal hyperactivity may be a reli-
able reporter of calcium dysregulation in AD; as
such, further in vivo investigations are needed to iden-
tify new therapeutic strategies targeting anti-epileptic
processes. In fact, both basic research studies and
clinical trials have already been initiated to explore
the efficacy of anti-epileptic drugs in the context of
AD, with potentially promising results having been
reported [129–135]. Additional investigations will
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be needed as we further elucidate the precipitating
factors involved with these two disease states.
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