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Abstract.

Background: Collection of cerebrospinal fluid (CSF) for measurement of amyloid-B (Ap) species is a gold standard in
Alzheimer’s disease (AD) diagnosis, but has risks. Thus, establishing a low-risk blood A test with high AD sensitivity and
specificity is of outmost interest.

Objective: We evaluated the ability of a commercially available plasma Af assay to distinguish AD patients from biomarker-
healthy controls.

Method: In a case-control design, we examined plasma samples from 44 AD patients (A + N+) and 49 controls (A-N-) from
a memory clinic. AD was diagnosed using a combination of neuropsychological examination, CSF biomarker analysis and
brain imaging. Total AB4y and total AB4, in plasma were measured through enzyme-linked immunosorbent assay (ELISA)
technology using ABtest40 and ABtest42 test kits (Araclon Biotech Ltd.). Receiver operating characteristic (ROC) analyses
with outcome AD were performed, and sensitivity and specificity were calculated.
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Results: Plasma A4,,40 was weakly positively correlated with CSF AB4;/49 (Spearman’s rho 0.22; p =0.037). Plasma AB 42,40
alone was not able to statistically significantly distinguish between AD patients and controls (AUC 0.58; 95% CI 0.46, 0.70).
At a cut-point of 0.076 maximizing sensitivity and specificity, plasma AB4;/49 had a sensitivity of 61.2% and a specificity of

63.6%.

Conclusion: In this sample, the high-throughput blood Af3 assay was not able to distinguish well between AD patients and
controls. Whether or not the assay may be useful in large-scale epidemiological settings remains to be seen.
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INTRODUCTION

Alzheimer’s disease (AD) is threatening global
healthcare systems [1] and generates immense eco-
nomic, medical, and societal costs [2]. As its
neuropathological hallmark, AD is characterized by
an accumulation of amyloid-B (AB) peptides in the
brain and AD diagnosis largely depends on an esti-
mation of brain A burden. AR is derived through
cleavage of the amyloid-[3 protein precursor (ABPP),
a transmembrane protein, and aggregates as neuro-
toxic amyloid plaques ultimately impairing synaptic
function [3], though whether or not A3 causes AD or
functions as a ‘bystander’ of AD pathogenesis is yet
to be determined [4, 5].

Brain AR antemortem is quantifiable via radio-
active labelling on positron emission tomography
(PET) [6] and can also be estimated from A3 concen-
trations in cerebrospinal fluid (CSF) as a molecular
biomarker [7]. Amyloid PET and CSF A3 can be
used interchangeably for clinical diagnosis [7, 8] and
are increasingly relied upon in diagnostic frameworks
[9, 10]. Both have also been shown to predict future
cognitive decline [ 11-13]. Nonetheless, amyloid PET
and CSF A are used infrequently in clinical practice
[14]. Amyloid PET is cost-intensive and dependent
on radioactive tracers; lumbar punctures to obtain
CSF can cause minor complications such as back
pain as well as more severe complications such as
spinal hematoma [15], and can lead to psycholog-
ical distress [16]. In contrast, blood collection is
well-tolerated, making measurement of blood A for
estimation of brain A3 burden suitable for large-scale
application in routine diagnostics. For instance, with
sufficient sensitivity and specificity, analysis of blood
A could serve as a first-step screening tool for selec-
tion of patients for more cost-intensive and high-risk
diagnostic measures. Ultimately, blood A analysis
might have a comparable impact on diagnostic pro-
cedures as amyloid PET [6, 17] and CSF A3 analysis
[18, 19], and even more so due to a projected wider
uptake.

However, measuring AP in blood is inherently
difficult [20, 21]. Plasma concentrations of A3 are
around 10-fold lower than in CSF, whereas the
total protein content is 10-fold higher [22], causing
technical difficulties. Sophisticated methods for A3
analysis have been developed in recent years, but
results from the first diagnostic and epidemiological
applications of these methods have been inconsistent.
A number of studies have found an association of
lower plasma A3 concentrations (thought to reflect
a greater brain AP burden) with more severe neu-
ropsychological deficits [23, 24], with an increased
risk of developing AD [25, 26], and with amyloid-
positive PET [8, 27, 28] or amyloid-abnormal CSF
[29, 30] as current gold standards for AD diagno-
sis. Others report results in the opposite direction
[31-34] and null findings, too, are frequent [35-37].
It has been suggested that one reason for this incon-
sistency may lie in between-study differences in the
cognitive profiles of study samples given that plasma
AP levels follow a complex temporal trajectory: con-
centrations increase with age but, potentially due to
brain A aggregation, reduce in symptomatic stages
of AD [22, 32, 38]. The inconsistent research find-
ings may additionally stem from variations in A3
measurement methods. Of note, in-house methods
with limited feasibility for upscaling are frequent [27]
but hinder clinical application which is dependent on
high-throughput methods.

Here, we determined the ability of plasma A
concentration to discriminate between AD patients
and biomarker-healthy, non-diseased controls. We
used a recently established, commercially available
and high-throughput plasma A assay that to our
knowledge has never been evaluated independently
of the manufacturer. We hypothesized that A con-
centration was lower in the plasma of AD patients
than in controls. The ratio of plasma AB4z/40 served
as the main biomarker of interest as it reflects the
more pathological of the amyloid species (AB42) [39]
with individual differences in overall A3 production
(AB40) accounted for.
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MATERIALS AND METHOD
Study design and sample size calculation

In a case-control study design, Af was measured
in plasma samples previously stored at a biobank
for AD patients and biomarker-healthy, non-diseased
controls. With a two-tailed analysis and a power of
80%, 47 observations were required per group (total
N =94) to detect statistically significant group differ-
ences in plasma AP (expected effect size d=0.6).
To account for occasional technical difficulty in
biomarker measurement, we arrived at a target sam-
ple size of N=100. The study complied with the
Declaration of Helsinki.

Study sample

Cases in our study included patients with AD, who
were diagnosed during a visit to a memory clinic in
Berlin, Germany, between 2014 and 2018. Controls
were selected among individuals who presented to the
clinic with memory concerns during the same time
period, but who were otherwise neurobiologically
healthy and consequently did not receive a diagno-
sis of AD or other forms of dementia. The memory
clinic is part of the German Dementia Competence
Network (DCN). AD patients and controls were not
matched.

Clinical examinations

All participants underwent a thorough and iden-
tical clinical examination that included Iumbar
puncture for CSF collection and collection of blood.
Participants were not required to fast. Plasma sam-
ples were stored at a biobank for future analysis. CSF
was collected into polypropylene tubes and frozen at
—80°C according to standard operating procedures
detailed elsewhere [40]. Total tau (t-tau), AB4p, and
AB42 in CSF were measured in Mesoscale Sys-
tem (MSD) immunoassays (Mesoscale Discovery,
Gaithersburg, MD, USA) at a laboratory adjacent to
the clinic site. For t-tau, the MSD MS6000 Phospho-
, Total Tau Kit was used; for AB4o and AB43, the
MSD MS6000 Human (6E10) AR3-Plex Kit was
used [41]. The ratio AB4z/40 was calculated. Consent-
ing participants were genotyped for apolipoprotein
(APOE) status. ‘APOE €4’ was defined as presence
of at least one &4 allele. Participants addition-
ally underwent computed tomography (CT) and/or
magnetic resonance imaging (MRI) on a separate

visit. Neuropsychological testing was mainly based
on the CERAD (Consortium to Establish a Reg-
istry for Alzheimer’s Disease) recommendations.
Tests included the Mini-Mental State Examination
(MMSE) [42], Boston Naming, verbal fluency (cate-
gory), figure copying, and word list recall. The battery
was supplemented by the Clock Drawing test as a
screening tool for dementia and Trail-Making Tests
A and B (TMT-A; TMT-B) as measures of processing
speed and executive function. The Logical Memory
subtest of the Wechsler Memory Scale 4th edition
assessed verbal memory and included immediate and
delayed recall.

Clinical diagnosis of cases and controls

AD was diagnosed according to DSM-V criteria
in a consensus conference involving psychiatrists,
physicians and neuropsychologists from a com-
bination of results from the neuropsychological
examination, CSF biomarker analysis and brain
imaging data. Diagnostic confidence was exception-
ally high compared with non-specialized centers, as
AD patients were selected for enrollment into clin-
ical trials at the memory clinic. AD patients were
thus considered both clinically and neurobiologically
diseased, whereas the control group was considered
biomarker-healthy. Plasma A{3 concentration was
unknown at the time of diagnosis.

AB in plasma

Plasma samples were extracted from the biobank
in 2018 and shipped to an analysis laboratory (Ara-
clon Biotech Ltd., Zaragoza, Spain) for measurement
of total AB4o (referred to as APs4o hereafter) and
total APB4o (referred to as AB4y hereafter) through
enzyme-linked immunosorbent assay (ELISA) tech-
nology using the ABtest40 and ABtest42 test kits
(Araclon Biotech Ltd., Zaragoza, Spain) [43]. The
laboratory was blinded to our research question and to
patient characteristics. Of N =100, the analysis pro-
duced data on ARy for n=97 (n=50 controls; n =47
patients) and on AB42 for n=93 participants (n =49
controls; n=44 patients). Intra-assay coefficient of
variation (CV) was 4.5% for AB4p and 15.8% for
AB4>. Inter-assay CV was 3.7% for AB4g and 5.0%
for AB4>. The ratio AB42/40 was calculated for n =49
controls and n =44 patients, and served as the main
plasma biomarker of interest.
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Table 1

Sociodemographic, clinical, and cognitive characteristics in controls and AD patients

Controls (n=50) AD (n=50)
Age, years, mean £ SD 65.82 +8.96 71.30+7.42 0.001
Female sex, n (%) 26 (52.0%) 25 (50.0%) 0.841
Years of education®, mean &= SD 14.27 +2.98 13.46 +2.96 0.187
>1 APOE &4 allele**, n (%) 11 (26.8%) 33 (71.7%) <0.001
Results from #-tests, Mann-Whitney tests or Xz tests. *total n=94. **total n=87.
Table 2
Correlations of plasma AB with CSF A3 g Ocontrol
CSF AB40 CSF AB42 CSF AB42/40 0307 (JAD
Total sample g
Plasma AB4o 0.10 (0.350) —0.05 (0.637) -0.14 (0.171) § 5
Plasma ABs  0.24 (0.023) 0.26 (0.012)  0.13 (0.220) £ 0,207 N .
Plasma AB4z/40 0.23(0.029)  0.33(0.001)  0.22 (0.037) 2
Controls © 5 o . % °
Plasma ABsy  —0.05 (0.741) —0.07 (0.636) —0.11 (0.482) E *e® e e g
Plasma AR, 0.15(0.332) 0.31(0.043) 0.24(0.112) £ 0,10 ° o %0 "o ]
Plasma AB4z/40 0.15(0.334)  0.34(0.026)  0.29 (0.052) o 008 0 Sl ol
@S oo % 9 g0 o
AD ®o © ° © % o
Plasma AB40 0.22 (0.131) -0.01 (0.953) -0.32(0.025) ° °
Plasma A4 0.27 (0.057)  0.23(0.116) —0.04 (0.761) 0,007 . . . .
Plasma AB42/40 0.26 (0.071)  0.28 (0.053)  0.07 (0.636) 0,03 0,05 008 010 0,13

Spearman’s rho (p-value). CSF; cerebrospinal fluid. n=44 to 97.

Statistical analysis

Differences between AD patients and controls in
terms of sociodemographics, frequency of the APOE
&4 allele and CSF biomarkers were compared using
independent samples #-tests, Mann-Whitney tests or
X2 tests. In the total sample, associations of plasma
AB42, AB4o, and AB42/40 with CSF AB42, AB4o, and
AB42/40 were determined using univariate Spearman
correlation analyses.

Plasma AB42, AB4o, and AB42/40 were compared
between AD patients and controls, and between carri-
ers of the APOE &4 allele (>1 allele) and non-carriers
using Mann-Whitney tests.

The diagnostic accuracy of plasma A9, plasma
AB42, and plasma AP42/40 was determined in
receiver operating characteristic (ROC) analyses to
calculate areas under the curve (AUCs) with the out-
come AD patients versus controls. ROC analyses
were performed separately for age, APOE &4, plasma
ABy4p, plasma AB42, and plasma AP42/40, and for
selected combinations of these predictors. For plasma
AB42/40 as the main biomarker of interest, the opti-
mal cut-off and associated sensitivity, specificity and
Youden’s index [44], as well as positive predictive
value (PPV) and negative predictive value (NPV)
were calculated. Analyses were performed in SPSS
(Version 18, IBM SPSS, Chicago, Illinois) and R.

CSF Abeta42/40

Fig. 1. Plasma AB42/40 plotted against CSF AB43,40 according to
diagnostic group (rho=0.22; p=0.037 across total sample).

RESULTS

Sample characteristics

AD patients were statistically significantly older
and were more likely to have at least one APOE &4
allele compared with controls (Table 1). CSF AB43,
CSF AB42/40, CSF t-tau, and neuropsychological test
results were in line according to diagnostic group
(data not shown).

Associations of plasma AB with CSF biomarkers

In the total sample, plasma A4 was significantly
positively correlated with plasma APg4r (Spear-
man’s rtho 0.46; p <0.001). Plasma A4, and plasma
AB42/40 were each significantly, albeit weakly, pos-
itively correlated with CSF Af40, AB42; plasma
AB42/40 was additionally positively associated with
CSF AB4p/40 (Table 2, Fig. 1). Plasma AB4p was
not significantly correlated with CSF AB49, AB42,
or AB4z/40. When stratified by case-control status,
in controls, plasma AB4> and AB4z/40 Were signifi-
cantly correlated with CSF AB42, whereas none of the
remaining correlations were statistically significant
(Table 2). In AD patients, plasma AB40 was signif-
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Table 3
Plasma A concentration in controls and AD patients
Controls AD Mann-Whitney
Min Max Median Min Max Median P
(interquartile range) (interquartile range)
Plasma AB4p (pg/mL) 129 415 237 (212 - 264) 109 376 237 (216 — 267) 0.809
Plasma AB4> (pg/mL) 5.8 88.2 19.9 (13.2-26.4) 4.8 53.3 17.4 (12.1 -27.1) 0.404
Plasma AB42/40 0.03 0.33 0.08 (0.06 — 0.10) 0.02 0.21 0.07 (0.05 - 0.08) 0.173
n=931t097.
icantly inversely correlated with CSF A42/40, but 1,0
none of the remaining correlations were statistically
significant. A4 and A4, concentrations were over-
all around 30-fold and 26-fold higher in CSF than in 0,87
plasmarespectively (CSF AB49, median 6,727 pg/mL
in controls and 7,345 pg/mL in AD patients; CSF >
AB42, median 677 pg/mL in controls and 310 pg/mL 3 0,67
in AD patients; pl AB40, median 237 pg/mL i =
in patients; plasma Bao me 1an' pg/mL in g — Abetad2/40
controls and 237 pg/mL in AD patients; plasma AB42, S 04 Abetad2/40
. . : (/] ) e—
me.dlan 20 pg/mL in controls and 17 pg/mL in AD +age
patients). Abeta42/40
0,2_. +age
Plasma AB in AD patients and controls +APOE
Plasma A4, plasma AB4;, and plasma AB42/40 0,0 - . : : .

were not significantly different between AD patients 0,0 0,2 0,4 0,6 0,8 1,0
and controls (Table 3; Supplementary Figure 1). 1 - Specificity

In ROC analyses, the area under the curve (AUC)
was 0.51 (95% CI 0.40, 0.63; p=0.809) for plasma
AB40,0.55(95% C10.43, 0.67; p=0.404) for plasma
AB42, and 0.58 (95% CI 0.46, 0.70; p=0.173) for
plasma AB43/40, indicating that the ability to dis-
criminate between AD patients and controls based
solely on these plasma markers is poor. In compari-
son, the AUCs based on age only or based on APOE
&4 only were 0.70 (95% CI 0.59, 0.80; p=0.001)
and 0.73 (95% C10.62, 0.83; p <0.001) respectively.
When plasma AB43/40 as the main biomarker of inter-
est was added to these models, the AUCs did not
change (age and AB42/40, AUC, 0.70; 95% CI 0.59,
0.80; p=0.001; p for difference 0.999; APOE &4 and
AB42/40, AUC, 0.76; 95% CI 0.65, 0.87; p<0.001;
p for difference 0.429). The AUC for a model that
included age and APOE &4 was 0.79 (95% CI 0.69,
0.89; p<0.001). When plasma AB42,40 was added to
this model, the AUC was 0.80 (95% CI 0.70, 0.91;
p<0.001; p for difference 0.879 see Fig. 2 for selected
biomarker combinations). Taken together, these data
show that plasma AB42/40 did not contribute to the
ability to discriminate between AD patients and con-
trols.

Based on the ROC analysis, we determined a cut-
point of 0.076 for a plasma AB42/40 concentration

Fig. 2. ROC curves for plasma AB42/40 alone, plasma AB42/40
with age, and plasma AB4z/40 with age and APOE &4, in n=81
patients with complete data. Outcome is “AD” with reference “con-
trols”. To create a ROC curve above the reference line, AB42/40
was transformed to “1- AB42/40” (blue line).

17.2% false
negative

62.4%
accurate

Fig. 3. Diagnostic accuracy of plasma AB45 /40 at optimal cut-point
(total n=93).

with a maximum in both sensitivity and specificity.
However, at this cut-point, plasma AB42/40 had low
sensitivity (61.2%) and specificity (63.6%; Youden’s
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index 0.25) and correctly identified 28 of the 44 AD
patients and 30 of the 49 controls. Sixteen AD patients
were misclassified as controls (false negatives) and 19
controls were misclassified as AD cases (false posi-
tives). Plasma AB42,4¢ at this cut-point had a positive
predictive value (PPV) of 59.6% and a negative pre-
dictive value (NPV) of 65.2%. We applied further
experimental cut-points to plasma AB42/40 in post-
hoc analyses to reduce the number of false positives,
but all resulted in low diagnostic accuracy (Supple-
mentary Table 1).

Plasma AP in non-carriers and carriers of APOE
&4

Across the full study sample, plasma A 349 (median
238.1 pg/mL versus 228.9 pg/mL; p =0.466), plasma
AB4r (median 21.3pg/mL versus 16.7pg/mL;
p=0.251), and plasma AB42/40 (median 0.08 versus
0.07; p=0.212) were each not statistically different
in non-carriers and in carriers of the APOE ¢4 allele,
respectively.

DISCUSSION

Blood-based biomarkers of AD have the poten-
tial to revolutionize AD diagnostic procedures. Here,
in a unique case-control study with exceptionally
detailed assessments that included a neuropsycho-
logical examination, CSF biomarker analysis and
brain imaging as gold standards in AD diagnosis, we
found that plasma A3 was not able to distinguish AD
patients well from biomarker-healthy, non-diseased
controls. Sensitivity and specificity based on plasma
AB42/40 levels alone were low and not indicative of
a diagnostic test with scope for clinical application.
Only 64% of AD patients were correctly detected
based on plasma AB42/40.

Plasma AB42/40 was only weakly but significantly
correlated with CSF AB42/4¢. This finding is in agree-
ment with several previous investigations [27, 30, 45]
though the strength of this correlation was markedly
smaller in our sample. CSF A itself comes with
measurement difficulties [12, 41], but based on its
established function as a gold-standard in AD diag-
nosis [7], combined with the fact that CSF AP was
measured using the Mesoscale System (MSD) [41],
our finding suggests that plasma A reflected brain
A burden only to some limited extent. In contrast
to several previous studies comparing AD patients
and controls [22, 30], we did not find evidence of

reduced plasma AP in AD patients. Several reasons
may underlie this null result. Firstly, plasma A3 may
in fact be unrelated to AD status. Secondly, due to
the ‘noise’ associated with peripheral production and
clearance of AP [46], effect sizes may have been too
small to detect differences in plasma A3 between
AD cases and controls. Thirdly, measurement error
from varying time lapse before freezing, from varying
storage time of plasma samples, uncontrolled fasting
status and time of day, and/or plasma AP analysis
itself may have affected results. To our knowledge,
we provide the first application of a novel, high-
throughput technique for plasma AP analysis [43]
to a research study that was run independently of the
manufacturer. The assay had previously been used
in four studies [28, 45, 47, 48] of which one [47]
used a subsample of an earlier investigation [45]. In
sum, the studies found correlations of plasma AB42,40
with CSF AB42/40 [45], as well as associations of low
plasma A with presence of [28, 45, 47, 48] and an
increased 3-year accumulation of A burden on PET
[28]. Further, a lower plasma AB42,40 was reported
in patients with mild cognitive impairment (MCI)
compared with cognitively normal individuals; addi-
tionally MCI patients with lower plasma AB42/40
were at increased risk of 2-year conversion to AD
[45]. In two of the four studies sensitivity, specificity
and AUC of plasma AB42/40 for AB-positive PET
were more promising [28, 47] compared with our
own analysis comparing AD patients with controls.
Yet, in one of these studies, when the full cohort was
analyzed rather than a subsample, plasma AB42/40
performed poorly in discriminating MCI from cog-
nitively normal individuals [47], mirroring our own
results. A cross-sectional analysis of people with sub-
jective cognitive decline, too, found low AUC and low
specificity of the compound alone for AB-positive
PET [48]. The final, prospective study on conversion
from MCI to AD only reported a fully adjusted model
that included plasma A3 as well as age, APOE, and
education [45] so that the added benefit of plasma A3
is difficult to evaluate.

The discrepancy of our results from many of the
manufacturer-funded results remains unclear. AD
diagnosis in our study was based on neuropsy-
chological test scores, CSF biomarker analysis and
brain imaging results, and so we are confident that
we have been successful in selecting neurobiolog-
ically diseased AD patients and neurobiologically
healthy controls. That, combined with recent reports
of acceptable diagnostic performance of plasma A3
when measured using different high-throughput tech-
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niques [8, 30], leads us to suggest that the assay
may have failed to produce accurate plasma A3 data.
Technical issues in our study were also indicated by
the fact that plasma A relative to CSF A3 was far
lower than the expected 10-fold difference [22] our
>20-fold difference mirrored that of another investi-
gation which also found no association of plasma A3
with cognitive status [36].

A metabolism s strongly influenced by the APOE
protein. APOE is involved in cholesterol transport
in the brain as well as in A3 production and clear-
ance, and binds to AP in CSF [49]. The APOE gene
occurs in three polymorphisms (g2; £3; €4) of which
the APOE &4 allele is a strong predictor of late-
onset AD [49]. Carriers of APOE &4 have greater
brain AP burden imaged on PET [50, 51] and lower
CSF A compared with non-carriers [51-53]. Several
population-based cohort studies also point to lower
plasma AP in carriers [8, 54], but we and others that
have used the same assay [48] found no such evi-
dence. Effect sizes speak against low statistical power
as the root cause, corroborating plasma A—at least
when measured using the present assay—as a periph-
eral biomarker with little scope for capturing AD-type
neuropathological burden.

Detailed characterization of participants using
genetic, CSF biomarker, and brain imaging data is
a strength of our study, but some limitations must
be considered. Due to small sample size, our analy-
ses were underpowered to detect more subtle group
differences in plasma AP. For instance, we only
had a two-tailed power of around 30% to detect a
small group difference. Nonetheless, the anticipated
large effect had been reasonable given that we had
selected distinct groups of neurobiologically con-
firmed AD patients and biomarker-healthy controls.
A large group difference is also a prerequisite for
implementation of a diagnostic test in clinical set-
tings, which is at the core of plasma A3 research.
Time interval between plasma collection and freez-
ing, fasting status, and time of day had not been fully
standardized and this may have contributed to mea-
surement error. However, recent evidence suggests
that plasma A3 concentration is relatively immune
to these factors [55, 56]. Plasma samples had been
stored for between 7 months and 4 years prior to
extraction from the biobank for A analysis. Though
we are not aware of studies that have assessed an
influence of storage time on plasma Af, we have
no reason to believe it may be less stable compared
with A in frozen CSF for which we have previously
demonstrated long-term stability [41]. Finally, we did

not consider AD staging and included both early-
onset and late-onset AD in our sample (6 AD patients
were <65 years old). All of these factors may have
played a role in generating a large range of plasma
A measurements thus may have contributed to our
null findings. At the same time, with exception of
storage time, they are all part of a real-world setting
which any diagnostic test for AD must be able to
withstand for implementation in the clinic.

In a recent analysis of a mostly cognitively
unimpaired older cohort, baseline plasma AP
measured with immunoprecipitation and liquid
chromatography-mass spectrometry assay predicted
conversion from amyloid-negative to amyloid-
positive PET during a 4-year follow-up. Results
indicated that implementing the plasma A test in
clinical practice would reduce PET scans by 62%
[8]. Further studies in this direction are needed in
spite of the present null findings to fully determine
the diagnostic value of plasma AP and for head-to-
head comparison with other biomarkers of brain A3
burden. For instance, plasma t-tau [57] and plasma
neurofilament light (NFL) [58] have recently been
reported as predictive of AD in three independent
cohorts. Serum NFL has also been shown to be ele-
vated in patients with familial AD [59] and to predict
their rate of cognitive decline [60]. A substantial
proportion of patients with MCI or dementia with
potential AD etiology appears to be misdiagnosed
once followed up with amyloid PET [17], and plasma
biomarkers could be evaluated as follow-up diagnos-
tic tools. For A in particular, different methods for
measuring plasma concentration of the protein should
be compared with one another and with a recently
developed structure-based approach that measures
misfolded AR [61]. The goal should be to standard-
ize analysis methods across labs. Here, we did not
create CSF/plasma A ratios, because AD diagno-
sis was based in part on CSF A so that such ratios
would have led to circular arguments, but future stud-
ies could explore their usefulness (e.g., [36]) as well
as ratios combining several plasma biomarkers (e.g.,
[62]).

Any biomarker of AD needs to offer scope
for large-scale application. Here, we used a
recently established, commercially available, high-
throughput technique and found that plasma Af
correlated weakly with CSF AP and was unable
to distinguish between AD patients and biomarker-
healthy, non-diseased controls. Plasma A at the
cut-point with maximum sensitivity and specificity
identified 38% of our sample incorrectly as false pos-
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itive or false negative. We thus deem its performance
inacceptable. Diagnostic confidence for clinical AD
diagnosis can be considered exceptionally high in our
study because AD diagnosis was based on a com-
bination of detailed diagnostic procedures that are
not routinely applied in clinical practice outside of
specialized memory clinics. Plasma A3 measured
with the present assay can therefore be expected to be
even less adequate in more diverse, ‘real-world’ sam-
ples that include ‘gray zones’ and prodromal stages
of AD. Nonetheless, plasma A3 may well be a use-
ful biomarker of age-related cognitive impairment
in population-based epidemiological research studies
aimed at risk stratification and elucidation of patho-
physiological mechanisms underlying impairment.
The utility of the blood AP assay presented here is
yet to be determined in that context.

Overall, we conclude that as the evidence cur-
rently stands, the plasma A3 concentration assay may
have limited ability to distinguish AD cases from
biomarker-healthy, non-diseased controls. Its evalua-
tion in larger samples and, potentially, a shift of focus
toward other blood-based biomarkers and/or efforts
for technological advancement of plasma A mea-
surement, which has recently gained momentum [30],
are warranted.

ACKNOWLEDGMENTS

This work was funded by the Berlin Institute of
Health (BIH), QUEST Center, Berlin, Germany.

Authors’ disclosures available online (https://
www.j-alz.com/manuscript-disclosures/20-0046r1).

SUPPLEMENTARY MATERIAL

The supplementary material is available in the
electronic version of this article: https://dx.doi.org/
10.3233/JAD-200046.

REFERENCES

[1] Global Burden of Disease 2016 Neurology Collaborators
(2019) Global, regional, and national burden of neurological
disorders, 1990-2016: A systematic analysis for the Global
Burden of Disease Study 2016. Lancet Neurol 18, 459-480.

[2] World Health Organization (2015) The Epidemiology and
Impact of Dementia.

[3] Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP,
Shirendeb U (2010) Amyloid-f and mitochondria in aging
and Alzheimer’s disease: Implications for synaptic damage
and cognitive decline. J Alzheimers Dis 20, S499-S512.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

(16]

Selkoe DJ, Hardy J (2016) The amyloid hypothesis of
Alzheimer’s disease at 25 years. EMBO Mol Med 8, 595-
608.

Ricciarelli R, Fedele E (2017) The amyloid cascade hypoth-
esis in Alzheimer’s disease: It’s time to change our mind.
Curr Neuropharmacol 15, 926-935.

Shea YF, Barker W, Greig-Gusto MT, Loewenstein DA,
Duara R, DeKosky ST (2018) Impact of amyloid PET
imaging in the memory clinic: A systematic review and
meta-analysis. J Alzheimers Dis 64, 323-335.

Blennow K, Zetterberg H (2018) Biomarkers for
Alzheimer’s disease: Current status and prospects for the
future. J Intern Med 284, 643-663.

Schindler SE, Bollinger JG, Ovod V, Mawuenyega KG, Li
Y, Gordon BA, Holtzman DM, Morris JC, Benzinger TLS,
Xiong C, Fagan AM, Bateman RJ (2019) High-precision
plasma beta-amyloid 42/40 predicts current and future brain
amyloidosis. Neurology 93, e1647-e1659.

Jack CR, Jr., Bennett DA, Blennow K, Carrillo MC, Dunn
B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Kar-
lawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin
KP,Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling
R (2018) NIA-AA Research Framework: Toward a biolog-
ical definition of Alzheimer’s disease. Alzheimers Dement
14, 535-562.

Glymour MM, Brickman AM, Kivimaki M, Mayeda ER,
Chene G, Dufouil C, Manly JJ (2018) Will biomarker-
based diagnosis of Alzheimer’s disease maximize scientific
progress? Evaluating proposed diagnostic criteria. Eur
J Epidemiol 33, 607-612.

Quigley H, Colloby SJ, O’Brien JT (2011) PET imaging of
brain amyloid in dementia: A review. Int J Geriatr Psychi-
atry 26, 991-999.

Ritchie C, Smailagic N, Noel-Storr AH, Takwoingi Y,
Flicker L, Mason SE, McShane R (2014) Plasma and cere-
brospinal fluid amyloid beta for the diagnosis of Alzheimer’s
disease dementia and other dementias in people with mild
cognitive impairment (MCI). Cochrane Database Syst Rev,
CDO008782.

Buchhave P, Minthon L, Zetterberg H, Wallin AK, Blennow
K, Hansson O (2012) Cerebrospinal fluid levels of beta-
amyloid 1-42, but not of tau, are fully changed already 5 to
10 years before the onset of Alzheimer dementia. Arch Gen
Psychiatry 69, 98-106.

Bocchetta M, Galluzzi S, Kehoe PG, Aguera E, Bernabei
R, Bullock R, Ceccaldi M, Dartigues JF, de Mendonca A,
Didic M, Eriksdotter M, Felician O, Frolich L, Gertz HJ,
Hallikainen M, Hasselbalch SG, Hausner L, Heuser I, Jessen
F, Jones RW, Kurz A, Lawlor B, Lleo A, Martinez-Lage P,
Mecocci P, Mehrabian S, Monsch A, Nobili F, Nordberg A,
Rikkert MO, Orgogozo JM, Pasquier F, Peters O, Salmon
E, Sanchez-Castellano C, Santana I, Sarazin M, Traykov L,
Tsolaki M, Visser PJ, Wallin AK, Wilcock G, Wilkinson D,
Wolf H, Yener G, Zekry D, Frisoni GB (2015) The use of
biomarkers for the etiologic diagnosis of MCI in Europe:
An EADC survey. Alzheimers Dement 11, 195-206.e191.
Costerus JM, Brouwer MC, van de Beek D (2018) Tech-
nological advances and changing indications for lumbar
puncture in neurological disorders. Lancet Neurol 17, 268-
278.

Duits FH, Martinez-Lage P, Paquet C, Engelborghs S,
Lleo A, Hausner L, Molinuevo JL, Stomrud E, Farotti L,
Ramakers I, Tsolaki M, Skarsgard C, Astrand R, Wallin
A, Vyhnalek M, Holmber-Clausen M, Forlenza OV, Ghezzi
L, Ingelsson M, Hoff EI, Roks G, de Mendonca A, Papma


https://www.j-alz.com/manuscript-disclosures/20-0046r1
https://www.j-alz.com/manuscript-disclosures/20-0046r1
https://dx.doi.org/10.3233/JAD-200046
https://dx.doi.org/10.3233/JAD-200046

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

1. Feinkohl et al. / Plasma Amyloid in Alzheimer’s Disease

IM, Izagirre A, Taga M, Struyfs H, Alcolea DA, Frolich L,
Balasa M, Minthon L, Twisk JWR, Persson S, Zetterberg
H, van der Flier WM, Teunissen CE, Scheltens P, Blennow
K (2016) Performance and complications of lumbar punc-
ture in memory clinics: Results of the multicenter lumbar
puncture feasibility study. Alzheimers Dement 12, 154-163.
Rabinovici GD, Gatsonis C, Apgar C, Chaudhary K, Gareen
I, Hanna L, Hendrix J, Hillner BE, Olson C, Lesman-Segev
OH, Romanoff J, Siegel BA, Whitmer RA, Carrillo MC
(2019) Association of amyloid positron emission tomogra-
phy with subsequent change in clinical management among
medicare beneficiaries with mild cognitive impairment or
dementia. JAMA 321, 1286-1294.

van Maurik IS, Slot RER, Verfaillie SCJ, Zwan MD, Bouw-
man FH, Prins ND, Teunissen CE, Scheltens P, Barkhof F,
Wattjes MP, Molinuevo JL, Rami L, Wolfsgruber S, Peters
0, Jessen F, Berkhof J, van der Flier WM (2019) Person-
alized risk for clinical progression in cognitively normal
subjects-the ABIDE project. Alzheimers Res Ther 11, 33.
Manca C, Rivasseau Jonveaux T, Roch V, Marie PY, Karcher
G, Lamiral Z, Malaplate C, Verger A (2019) Amyloid PETs
are commonly negative in suspected Alzheimer’s disease
with an increase in CSF phosphorylated-tau protein con-
centration but an Abetad2 concentration in the very high
range: A prospective study. J Neurol 266, 1685-1692.
Hampel H, Shen Y, Walsh DM, Aisen P, Shaw LM, Zetter-
berg H, Trojanowski JQ, Blennow K (2010) Biological
markers of amyloid beta-related mechanisms in Alzheimer’s
disease. Exp Neurol 223, 334-346.

Blennow K (2017) A review of fluid biomarkers for
Alzheimer’s disease: Moving from CSF to blood. Neurol
Ther 6, 15-24.

Song F, Poljak A, Valenzuela M, Mayeux R, Smythe GA,
Sachdev PS (2011) Meta-analysis of plasma amyloid-beta
levels in Alzheimer’s disease. J Alzheimers Dis 26, 365-375.
Wang J, Qiao F, Shang S, Li P, Chen C, Dang L, Jiang Y,
Huo K, Deng M, Wang J, Qu Q (2018) Elevation of plasma
amyloid-beta level is more significant in early stage of
cognitive impairment: A population-based cross-sectional
study. J Alzheimers Dis 64, 61-69.

Hilal S, Akoudad S, van Duijn CM, Niessen WJ, Verbeek
MM, Vanderstichele H, Stoops E, Ikram MA, Vernooij MW
(2017) Plasma amyloid-beta levels, cerebral small vessel
disease, and cognition: The Rotterdam Study. J Alzheimers
Dis 60, 977-987.

Hilal S, Wolters FJ, Verbeek MM, Vanderstichele H, Ikram
MK, Stoops E, Ikram MA, Vernooij MW (2018) Plasma
amyloid-beta levels, cerebral atrophy and risk of dementia:
A population-based study. Alzheimers Res Ther 10, 63.
Chouraki V, Beiser A, Younkin L, Preis SR, Weinstein G,
Hansson O, Skoog I, Lambert JC, Au R, Launer L, Wolf
PA, Younkin S, Seshadri S (2015) Plasma amyloid-beta and
risk of Alzheimer’s disease in the Framingham Heart Study.
Alzheimers Dement 11, 249-257.€241.

Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke
J, Dore V, Fowler C, Li QX, Martins R, Rowe C, Tomita
T, Matsuzaki K, Ishii K, Ishii K, Arahata Y, Iwamoto S, Ito
K, Tanaka K, Masters CL, Yanagisawa K (2018) High per-
formance plasma amyloid-beta biomarkers for Alzheimer’s
disease. Nature 554, 249-254.

Fandos N, Perez-Grijalba V, Pesini P, Olmos S, Bossa M,
Villemagne VL, Doecke J, Fowler C, Masters CL, Sarasa
M (2017) Plasma amyloid beta 42/40 ratios as biomarkers
for amyloid beta cerebral deposition in cognitively normal
individuals. Alzheimers Dement (Amst) 8, 179-187.

[29]

[30]

(31]

[32]

(33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

1293

Verberk IMW, Slot RE, Verfaillie SCJ, Heijst H, Prins ND,
van Berckel BNM, Scheltens P, Teunissen CE, van der Flier
WM (2018) Plasma amyloid as prescreener for the earliest
Alzheimer pathological changes. Ann Neurol 84, 648-658.
Palmgqyvist S, Janelidze S, Stomrud E, Zetterberg H, Karl J,
Zink K, Bittner T, Mattsson N, Eichenlaub U, Blennow K,
Hansson O (2019) Performance of fully automated plasma
assays as screening tests for Alzheimer disease-related
beta-amyloid status. JAMA Neurol, doi: 10.1001/jamaneu-
r0l.2019.1632.

Cosentino SA, Stern Y, Sokolov E, Scarmeas N, Manly JJ,
Tang MX, Schupf N, Mayeux RP (2010) Plasma ss-amyloid
and cognitive decline. Arch Neurol 67, 1485-1490.

Schupf N, Tang MX, Fukuyama H, Manly J, Andrews H,
Mehta P, Ravetch J, Mayeux R (2008) Peripheral Abeta
subspecies as risk biomarkers of Alzheimer’s disease. Proc
Natl Acad Sci U S A 105, 14052-14057.

Gronewold J, Todica O, Klafki HW, Seidel UK, Kaltwasser
B, Wiltfang J, Kribben A, Bruck H, Hermann DM (2017)
Association of plasma beta-amyloid with cognitive perfor-
mance and decline in chronic kidney disease. Mol Neurobiol
54, 7194-7203.

Assini A, Cammarata S, Vitali A, Colucci M, Giliberto L,
Borghi R, Inglese ML, Volpe S, Ratto S, Dagna-Bricarelli F,
Baldo C, Argusti A, Odetti P, Piccini A, Tabaton M (2004)
Plasma levels of amyloid beta-protein 42 are increased in
women with mild cognitive impairment. Neurology 63, 828-
831.

Blasko [, Jellinger K, Kemmler G, Krampla W, Jungwirth S,
Wichart I, Tragl KH, Fischer P (2008) Conversion from cog-
nitive health to mild cognitive impairment and Alzheimer’s
disease: Prediction by plasma amyloid beta 42, medial tem-
poral lobe atrophy and homocysteine. Neurobiol Aging 29,
1-11.

Seino Y, Nakamura T, Kawarabayashi T, Hirohata M, Narita
S, Wakasaya Y, Kaito K, Ueda T, Harigaya Y, Shoji M (2019)
Cerebrospinal fluid and plasma biomarkers in neurodegen-
erative diseases. J Alzheimers Dis 68, 395-404.

Lovheim H, Elgh F, Johansson A, Zetterberg H, Blennow
K, Hallmans G, Eriksson S (2017) Plasma concentrations
of free amyloid beta cannot predict the development of
Alzheimer’s disease. Alzheimers Dement 13, 778-782.
Huang Y, Potter R, Sigurdson W, Kasten T, Connors R,
Morris JC, Benzinger T, Mintun M, Ashwood T, Ferm M,
Budd SL, Bateman RJ (2012) beta-amyloid dynamics in
human plasma. Arch Neurol 69, 1591-1597.

Jarrett JT, Berger EP, Lansbury PT, Jr. (1993) The carboxy
terminus of the beta amyloid protein is critical for the seed-
ing of amyloid formation: Implications for the pathogenesis
of Alzheimer’s disease. Biochemistry 32, 4693-4697.
Lewczuk P, Kornhuber J, Wiltfang J (2006) The German
Competence Net Dementias: Standard operating proce-
dures for the neurochemical dementia diagnostics. J Neural
Transm (Vienna) 113, 1075-1080.

Schipke CG, Jessen F, Teipel S, Luckhaus C, Wiltfang J,
Esselmann H, Frolich L, Maier W, Ruther E, Heppner FL,
Prokop S, Heuser I, Peters O (2011) Long-term stability
of Alzheimer’s disease biomarker proteins in cerebrospinal
fluid. J Alzheimers Dis 26, 255-262.

Folstein MF, Folstein SE, McHugh PR (1975) ‘Mini-mental
state’. A practical method for grading the cognitive state of
patients for the clinician. J Psychiatr Res 12, 189-198.
Perez-Grijalba V, Fandos N, Canudas J, Insua D, Casabona
D, Lacosta AM, Montanes M, Pesini P, Sarasa M (2016) Val-
idation of immunoassay-based tools for the comprehensive



1294

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

1. Feinkohl et al. / Plasma Amyloid in Alzheimer’s Disease

quantification of Abetad40 and Abeta4?2 peptides in plasma.
J Alzheimers Dis 54, 751-762.

Youden WJ (1950) Index for rating diagnostic tests. Cancer
3,32-35.

Perez-Grijalba V, Romero J, Pesini P, Sarasa L, Mon-
leon I, San-Jose I, Arbizu J, Martinez-Lage P, Munuera
J, Ruiz A, Tarraga L, Boada M, Sarasa M (2019) Plasma
Abetad42/40 ratio detects early stages of Alzheimer’s disease
and correlates with CSF and neuroimaging biomarkers in
the AB255 Study. J Prev Alzheimers Dis 6, 34-41.

Kurz A, Perneczky R (2011) Amyloid clearance as a treat-
ment target against Alzheimer’s disease. J Alzheimers Dis
24 Suppl 2, 61-73.

Perez-Grijalba V, Arbizu J, Romero J, Prieto E, Pesini P,
Sarasa L, Guillen F, Monleon I, San-Jose I, Martinez-Lage
P, Munuera J, Hernandez I, Buendia M, Sotolongo-Grau
O, Alegret M, Ruiz A, Tarraga L, Boada M, Sarasa M
(2019) Plasma Abeta42/40 ratio alone or combined with
FDG-PET can accurately predict amyloid-PET positivity: A
cross-sectional analysis from the AB255 Study. Alzheimers
Res Ther 11, 96.

de Rojas I, Romero J, Rodriguez-Gomez O, Pesini P,
Sanabria A, Perez-Cordon A, Abdelnour C, Hernandez
I, Rosende-Roca M, Mauleon A, Vargas L, Alegret M,
Espinosa A, Ortega G, Gil S, Guitart M, Gailhajanet A,
Santos-Santos MA, Moreno-Grau S, Sotolongo-Grau O,
Ruiz S, Montrreal L, Martin E, Peleja E, Lomena F, Cam-
pos F, Vivas A, Gomez-Chiari M, Tejero MA, Gimenez J,
Perez-Grijalba V, Marquie GM, Monte-Rubio G, Valero S,
Orellana A, Tarraga L, Sarasa M, Ruiz A, Boada M (2018)
Correlations between plasma and PET beta-amyloid levels
in individuals with subjective cognitive decline: The Funda-
cio ACE Healthy Brain Initiative (FACEHBI). Alzheimers
Res Ther 10, 119.

Bu G (2009) Apolipoprotein E and its receptors in
Alzheimer’s disease: Pathways, pathogenesis and therapy.
Nat Rev Neurosci 10, 333-344.

Gottesman RF, Schneider AL, Zhou Y, Chen X, Green E,
Gupta N, Knopman DS, Mintz A, Rahmim A, Sharrett AR,
Wagenknecht LE, Wong DF, Mosley TH, Jr. (2016) The
ARIC-PET amyloid imaging study: Brain amyloid differ-
ences by age, race, sex, and APOE. Neurology 87, 473-480.
BaM, KongM, Li X, Ng KP, Rosa-Neto P, Gauthier S (2016)
Is ApoE varepsilon 4 a good biomarker for amyloid pathol-
ogy in late onset Alzheimer’s disease? Transl Neurodegener
5, 20.

Sutphen CL, Jasielec MS, Shah AR, Macy EM, Xiong C,
Vlassenko AG, Benzinger TL, Stoops EE, Vanderstichele
HM, Brix B, Darby HD, Vandijck ML, Ladenson JH, Morris
JC, Holtzman DM, Fagan AM (2015) Longitudinal cere-
brospinal fluid biomarker changes in preclinical Alzheimer
disease during middle age. JAMA Neurol 72, 1029-1042.

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

Peskind ER, Li G, Shofer J, Quinn JF, Kaye JA, Clark CM,
Farlow MR, DeCarli C, Raskind MA, Schellenberg GD, Lee
VM, Galasko DR (2006) Age and apolipoprotein E*4 allele
effects on cerebrospinal fluid beta-amyloid 42 in adults with
normal cognition. Arch Neurol 63, 936-939.

Yaffe K, Weston A, Graff-Radford NR, Satterfield S, Simon-
sick EM, Younkin SG, Younkin LH, Kuller L, Ayonayon
HN, Ding J, Harris TB (2011) Association of plasma
beta-amyloid level and cognitive reserve with subsequent
cognitive decline. JAMA 305, 261-266.

Rézga M, Bittner T, Batrla R, Karl J (2019) Preanalytical
sample handling recommendations for Alzheimer’s disease
plasma biomarkers. Alzheimers Dement 11, 291-300.

Lin SY, Lin KJ, Lin PC, Huang CC, Chang CC, Lee YC,
Hsiao IT, Yen TC, Huang WS, Yang BH, Wang PN (2019)
Plasma amyloid assay as a pre-screening tool for amy-
loid positron emission tomography imaging in early stage
Alzheimer’s disease. Alzheimers Res Ther 11, 111.

Pase MP, Beiser AS, Himali JJ, Satizabal CL, Aparicio HJ,
DeCarli C, Chene G, Dufouil C, Seshadri S (2019) Assess-
ment of plasma total tau level as a predictive biomarker
for dementia and related endophenotypes. JAMA Neurol 76,
598-606.

Mattsson N, Cullen NC, Andreasson U, Zetterberg H,
Blennow K (2019) Association between longitudinal
plasma neurofilament light and neurodegeneration in
patients with Alzheimer disease. JAMA Neurol 76,791-799.
Weston PSJ, Poole T, Ryan NS, Nair A, Liang Y, Macpher-
son K, Druyeh R, Malone IB, Ahsan RL, Pemberton H,
Klimova J, Mead S, Blennow K, Rossor MN, Schott JM,
Zetterberg H, Fox NC (2017) Serum neurofilament light in
familial Alzheimer disease: A marker of early neurodegen-
eration. Neurology 89, 2167-2175.

Preische O, Schultz SA, Apel A, Kuhle J, Kaeser SA,
Barro C, Graber S, Kuder-Buletta E, LaFougere C, Laske
C, Voglein J, Levin J, Masters CL, Martins R, Schofield PR,
Rossor MN, Graff-Radford NR, Salloway S, Ghetti B, Ring-
man JM, Noble JM, Chhatwal J, Goate AM, Benzinger TLS,
Morris JC, Bateman RJ, Wang G, Fagan AM, McDade EM,
Gordon BA, Jucker M (2019) Serum neurofilament dynam-
ics predicts neurodegeneration and clinical progression in
presymptomatic Alzheimer’s disease. Nat Med 25,277-283.
Nabers A, Hafermann H, Wiltfang J, Gerwert K (2019)
Abeta and tau structure-based biomarkers for a blood- and
CSF-based two-step recruitment strategy to identify patients
with dementia due to Alzheimer’s disease. Alzheimers
Dement (Amst) 11, 257-263.

Park JC, Han SH, Yi D, Byun MS, Lee JH, Jang S, Ko K,
Jeon SY, Lee YS, Kim YK, Lee DY, Mook-Jung I (2019)
Plasma tau/amyloid-betal-42 ratio predicts brain tau depo-
sition and neurodegeneration in Alzheimer’s disease. Brain
142, 771-786.



