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Abstract. Alzheimer’s disease (AD) is the most common cause of dementia and understanding its pathogenesis should
lead to improved therapeutic and diagnostic methods. Although several groups have developed transgenic mouse models
overexpressing the human amyloid-f3 precursor protein (APP) gene with AD mutations, with and without presenilin mutations,
as well as APP gene knock-in mouse models, these animals display amyloid pathology but do not show neurofibrillary tangles
or neuronal loss. This presumably is due to differences between the etiology of the aged-related human disease and the mouse
models. Here we report the generation of two transgenic cynomolgus monkeys overexpressing the human gene for APP with
Swedish, Artic, and Iberian mutations, and demonstrated expression of gene tagged green fluorescent protein marker in the
placenta, amnion, hair follicles, and peripheral blood. We believe that these nonhuman primate models will be very useful to
study the pathogenesis of dementia and AD. However, generated Tg monkeys still have some limitations. We employed the
CAG promoter, which will promote gene expression in a non-tissue specific manner. Moreover, we used transgenic models but
not knock-in models. Thus, the inserted transgene destroys endogenous gene(s) and may affect the phenotype(s). Nevertheless,
it will be of great interest to determine whether these Tg monkeys will develop tauopathy and neurodegeneration similar to
human AD.
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treatments for AD and related dementias, it is first
necessary to understand the pathogenesis of AD, and
then it will be possible to develop diagnostic meth-
ods and therapeutics for this disease. To accomplish
this, animal models that accurately reflect the clin-
ical and pathological features of the human disease
are needed.

The neuropathological hallmarks of AD are senile
plaques and neurofibrillary tangles [3]. The main
components of senile plaques and neurofibrillary
tangles are amyloid-f3 peptide (A3) and hyperphos-
phorylated tau protein [3]. The first genetic mutations
causing hereditary early-onset (familial) AD were
discovered in the amyloid-3 precursor protein (APP)
gene [4]. In addition to this gene, mutations in prese-
nilin 1 (PS-1) [5] and presenilin 2 (PS-2) genes [6, 7]
were identified as causes of familial AD. Mutations in
any of these three genes resulted in increased produc-
tion of AR [8]. The “amyloid hypothesis” resulting
from these genetic findings proposes that the depo-
sition of toxic A must be the primary event in AD
pathology [8, 9].

Experimental animal models of AD are critical to
clarify its pathogenesis and to assess the potential
of novel therapeutic and diagnostic agents. Several
groups have developed A3 plaque-developing trans-
genic (Tg) mouse models by overexpressing the
human APP gene with different mutations, includ-
ing some with presenilin mutations (for reviews,
see [10, 11]). A knock-in mouse model has now
been generated [12] in which expression of human-
ized mutated APP resulted in mice that overproduce
pathogenic AP without overexpressing ABPP or its
subfragments [12]. These AD model mice have con-
tributed to understand AD pathology and develop
novel diagnostic and therapeutic methods for AD
[11]. Interestingly, however, these models display
amyloid pathology but not neurofibrillary tangles
or neuronal loss [10, 11]. It remains unknown why
mouse models of AD show only amyloid pathology
but fail to exhibit tau pathology or neuronal loss.
There are several explanations for the discrepancy
between human AD and mouse models. First, the
lifespan of mice is too short to generate tau pathology
[11]. The other possible reason is species differences
between rodents and humans [11]. For example,
there are several differences in amino acid sequences
between the human and mouse Ap. Primate models
of AD should help resolve these discrepancies.

The cynomolgus monkey (Macaca fascicularis), a
nonhuman primate, belongs to the Old World group
of monkeys and is closer to humans in terms of

its anatomy and genomic conservation than New
World monkeys, including the common marmoset
(Callithrix jacchus). Cynomolgus monkeys have an
advantage for research purposes over other macaque
species because they breed year-round rather than
seasonally, a feature of rhesus monkeys (Macaca
mulatta). Therefore, they have been used widely
for modeling human disorders, including Parkinson’s
disease [13].

Here we report that Tg cynomolgus monkey blasto-
cysts produced by intracytoplasmic sperm injection
(ICSI) were vitrified and thawed at high efficiency
and resulted in live births. Using these reproductive
techniques, we have succeeded in generating two Tg
cynomolgus monkeys overexpressing the APP gene
containing Swedish mutations (K595 N/M596 L), the
Artic mutation (E618 G) and the Iberian mutation
(I641F).

MATERIALS AND METHODS

Animals

All experimental procedures were approved by the
Animal Care and Use Committee of Shiga University
of Medical Science and were carried out in accor-
dance with approved guidelines (Approval number:
2016-10-1, 2019-10-1). Oocytes were collected from
14 sexually mature female cynomolgus monkeys,
aged 4-13 years and weighing 2.5-3.9 kg. Eighty-one
sexually mature females aged 4 years old and weigh-
ing 2.0-3.8 kg, were used as recipients. Semen was
collected from three sexually mature male monkeys,
aged 9-18 years and weighing 4.5-7.0kg, by penile
electroejaculation as described [14]. Temperature and
humidity in the animal rooms were maintained at
25 £2°C and 50 &£ 5%, respectively. The light cycle
was regulated at 12 h light and 12 h dark. In the morn-
ing, each monkey was fed 20 g/kg of body weight
of commercial pellet monkey chow (CMK-1; CLEA
Japan), supplemented with 20-50 g of sweet potatoes
or bananas in the afternoon. Water was available ad
libitum.

Lentiviral vector construction

Three pathogenic mutations for the gene causing
familial AD, which result in amino acid substitutions
of K595 N/M596 L (known as the Swedish mutation),
E618 G (the Arctic mutation), and 164 1F (the Iberian
mutation), were introduced in cDNA for the neuronal
splicing isoform of human APP (NM_201414.2)
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using site-directed mutagenesis. Additionally, DNA
fragments for FLAG epitope tag (DYKDDDDK)
and P2A peptide were inserted downstream of the
signal sequence and the stop codon of APP, respec-
tively, by polymerase chain reaction (PCR)-based
mutagenesis. To construct pCSII-CAG-FLAG-APP-
P2A-GFP, fragments of the CAG promoter derived
from pCAGGS (provided by Dr. Hitoshi Niwa,
Kumamoto University), a FLAG-APP-P2A fragment
and green fluorescent protein (GFP) cDNA were
inserted in the multiple cloning sites of pCSII-EF-
MCS-IRES2-Venus plasmids.

Lentiviral vector package and transduction

Lentiviral transduction was performed as
described [14]. In brief, viral particles were obtained
through cationic dPEI (PEI Max MW 25,000
kDa; Polysciences Inc., Warrington, PA, USA)
transfection in 293FT cells, and with packaging
plasmids VSVG, RSV-Rev, and HIVgp plasmids.
Viral supernatants were harvested after 48 h of trans-
fection. The supernatant then was passed through a
PVDF filter (pore size 0.22 um) and concentrated
by ultracentrifugation (50,000g for 2h at 4°C).
The pellet was suspended in Connaught Medical
Research Laboratories (CMRL) Medium-1066
(Thermo Fisher Scientific, Waltham, MA, USA)
and centrifuged on a 20% (w/v) sucrose cushion.
After the viral pellet had been resuspended in
CMRL medium, the infectious unit (IU) value was
determined using Lenti-X™ p24 Rapid Titer kits
(Takara Bio, Shiga, Japan).

Lentiviral infection of 293FT cells

The 293FT cells were plated at 5 x 103 cells on
30 mm dishes, and then infected with lentiviral par-
ticles at concentrations of 1, 10 or 100 IU; 48 h later
the cells were collected.

Production of transgenic (Tg) cynomolgus
monkeys

Oocyte collection, virus injection into embryos,
ICSI, embryo transfer, pregnancy detection and
observation of EGFP fluorescence in Tg offspring
were carried out as described [15]. The oocytes were
collected by laparoscopy. The ten oocyte donors
underwent superovulation for the first time and four
oocyte donors underwent superovulation for the sec-
ond time [16]. Each received subcutaneous infusions

of human follicle-stimulating hormone (hFSH; 15
IU/kg, Asuka Pharmaceutical, Tokyo, Japan) via a
micro-infusion pump (iPRECIO SMP-200; Prime-
tech Corp, Tokyo, Japan) at 7 wl/h for 10 days.
On day 10, the animals received an intramuscular
injection of human chorionic gonadotropin (Pubero-
gen; Nippon Zenyaku Kogyo, Fukushima, Japan),
and oocytes were aspirated laparoscopically after
40h with the monkeys under general anesthesia.
The collected oocytes were immediately assessed
for nuclear maturity under an inverted microscope.
Those in which the first polar body was extruded
were selected and matured in m-TALP medium, a
modified Tyrode’s solution containing HEPES, and
injected with lentiviruses: ICSI was performed 3—4 h
after virus injection. The fertilized oocytes were cul-
tured in CMRL Medium-1066 containing 20% (v/v)
fetal bovine serum (FBS) at 38°C in 5% CO; and 5%
0;. When embryos had developed to blastocysts, one
or two were transferred into each female recipient.

Vitrification and thawing of blastocysts

Vitrification and thawing of blastocysts were
performed according to the instructions of the Vit-
rification and Thawing kits (VT601-TOP/602-KIT;
Kitazato, Shizuoka, Japan). Briefly, one to three blas-
tocysts were transferred to equilibration solution for
15 min. The blastocysts were then transferred into vit-
rification solution for 1 min and subsequently placed
on a Cryotop freezing device (Kitazato). The blasto-
cysts were stored under liquid nitrogen (—196°C).

For thawing, the Cryotop was immersed in thawing
solution for 1 min. Then blastocysts were then trans-
ferred to diluent solution for 3 min. Each was washed
twice in washing solution for 6 min and cultured in
CMRL medium-1066 containing 20% (v/v) FBS for
12 h. A blastocyst was regarded as having survived if
the blastocoele re-expanded.

Immunocytochemistry

Blastocysts were fixed in 4% paraformalde-
hyde (PFA) at room temperature (RT) for 30 min
and treated with blocking solution (Blocking One;
Nacalai Tesque, Kyoto, Japan) including 0.1% Tri-
ton X-100 for 30 min at RT, and then incubated with
a mouse anti-CDX2 antibody (MU392A-UC; Bio-
Genex, Fremont, CA, USA, 1:500) overnight at 4°C
in the blocking solution. After three washes in Block-
ing One solution in phosphate-buffered saline (PBS),
the blastocysts were incubated with anti-mouse Alex-
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aFluor 647-conjugated antibodies for 1 h at RT. After
three washes in blocking solution in PBS, the blas-
tocysts were incubated with rabbit anti-GFP Alexa
Fluor 488-conjugated antibodies in blocking solution
with Hoechst or DAPI for 1 h at RT. Hair roots were
fixed in 4% PFA at RT for 30 min, and treated with
Blocking One solution containing 0.1% TritonX-100
for 30min at RT, and then incubated with rabbit
anti-GFP AlexaFluor 488-conjugated antibodies in
blocking solution with Hoechst for 1 h at RT. Images
were taken using a Leica TCS SP8 confocal micro-
scope (Leica Microsystems, Wetzlar, Germany).

For detecting cell surface APP, HeLa cells were
transiently transfected with pCSII-CAG-GFP or
pCAII-CAG-FLAG-APP-P2A-GFP using Lipofec-
tamine 2000 (Thermo Fisher, Waltham, MA, USA)
according to the manufacturer’s instructions. On the
next day, the cells were fixed with 4% PFA for 10 min
at RT and treated with 3% normal goat serum in
PBS for 30 min at RT to minimize nonspecific reac-
tions. Then, the cells were stained with a mouse
anti-FLAG antibody (M2, Sigma-Aldrich, St. Louis,
MO, USA) at 1: 10000 for 60 min without permeabi-
lization with Triton X-100, followed by visualization
with an Alexa 594 conjugated goat anti-mouse sec-
ondary antibody (Thermo Fisher Scientific, 1:400).
After staining, the cells were imaged using a Leica
TCS SP8 confocal microscope.

Immunohistochemistry

Organs from aborted fetuses were fixed using 4%
PFA in 100 mM phosphate buffer saline (PBS; pH
7.4) for 7 days, and then stored in 15% sucrose in
PBS at4°C. They were embedded in OCT compound
(Sakura Finetek, Tokyo Japan) and frozen in the lig-
uid nitrogen. Frozen sections were cut at a thickness
of 10 pm at—20°C. The sections were reacted with rat
anti-GFP (GF090 R; Nacalai Tesque, 1 :500), rabbit
anti-GFP (MBL, 1:500) or mouse anti-NeuN (A60;
Merck Millipore, Burlington, MA, USA, 1:1000)
antibodies overnight at 4°C. Then, the sections were
further visualized with Alexa 488-conjugated anti-
rat IgG, anti-rabbit-IgG or Alexa 594-conjugated
anti-mouse IgG secondary antibodies (Thermo Fisher
Scientific) for 1 h at RT, and observed using confocal
microscopy as above.

Genomic PCR

Genomic DNA was extracted from umbilical
cords, placentas and cerebral cortexes using lysis

buffer (10mM Tris-HC1 (pH 8.0), 100 mM NaCl,
50mM EDTA, 0.5% SDS, and 0.5mg/ml pro-
teinase K). The lysate was treated with phenol and
phenol—chloroform and precipitated with ethanol.
PCR was carried out using BioTag™ DNA poly-
merase (Bioline, London, UK). PCR amplification
was performed with the following profile: one cycle
at 94°C for 4 min, 35 cycles at 94°C for 30s, 60°C
for 30 s, and 72°C for 30 s and one cycle at 72°C for
7 min.

Reverse transcription (RT)-PCR

Total RNA was extracted from cells or tis-
sues using RNeasy Mini kits (Qiagen, Hilden,
Germany) or NucleoSpin RNA Plus (Macherey-
Nagel, Duren, Germany). For reverse transcription,
ReverTra Ace (Toyobo, Osaka, Japan), Super-
script III (Thermo Fisher Scientific) and oligo
(dT) 20 primers were used. PCR was carried
out using BioTag™ DNA polymerase (Bio-
line) and the following primers: GFP forward
5’-AAGTCGTGCTGCTTCATGTG-3’ and reverse
5'-ACGTAAACGGCCACAAGTTC-3'; glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) forward
5'-ATTCCACCCATGGCAAGTTC-3’ and reverse
5'-ATCGCCCCACTTGATTTTGG-3'.

Western blot analysis

Western blotting was carried out as described [15],
with some modifications. Briefly, 1 mm? blocks of
tissues were incubated in RIPA buffer (50 mM Tris-
HCIL, 150mM NaCl, 0.5% sodium deoxycholate,
1% NP40, and 0.1% SDS) with protease and phos-
phatase inhibitors for 10 min at 4°C. Samples were
diluted in sample buffer (Sample Buffer Solution,
198-13282, Wako, Osaka, Japan) at a final con-
centration of 10 wg/pul and stored at —20°C before
assessment. After denaturing by boiling at 95°C
for S5min, 2.5 pl aliquots of samples separated by
SDS-PAGE on 10% polyacrylamide gel at 250 V
for 80 min and then transferred onto a PVDF mem-
brane (Merck Millipore). The membrane was blocked
using Blocking One solution, and then incubated with
the following antibodies: rabbit anti-GFP (1 : 4,000),
mouse anti-actin (C4; Santa Cruz Biotechnology,
Dallas, TX, USA; 1:1000), rabbit anti-C-terminal
APP (A8714; Merck Millipore 1:10,000), mouse
anti-N-terminal APP (MAB348; Merck Millipore,
1:1,000), mouse anti-FLAG (M2; Sigma-Aldrich,
1:4,000), rabbit anti-FLAG (D6W5B, CST, Danvers,
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MA, USA) or rabbit horseradish peroxidase (HRP)-
conjugated anti-fB-actin (PM053-7: MBL, Nagoya,
Japan, 1:4,000) overnight at 4°C in Blocking One
solution. After three washes in Tween20-PBS (T-
PBS), the membrane were incubated with appropriate
secondary HRP-labeled anti-rabbit immunoglobulin
G (Invitrogen, 1:2,000) or HRP-labeled anti-
mouse immunoglobulin G (Abcam, Cambridge, UK,
1:2,000), in Blocking One solution for 1h at RT.
After one wash of 15 min and five washes of 5 min
each with T-PBS, peroxidase activity was visual-
ized using the Chemi-Lumi One system (Nacalai
Tesque) according to the manufacturer’s instruc-
tions.

Flow cytometry analysis

Samples of 0.5 ml blood were collected from the
femoral vein using a 27-gauge needle and centrifuged
at 1,730 g for 5min to remove whole blood cells.
Hemolysis was performed with Lysing buffer (BD
Biosciences, Franklin Lakes, NJ, USA) to collect
mononuclear cells. These were washed with PBS and
suspended in PBS+2% (v/v) FBS. The pellet was
incubated with mouse Alexa Fluor 647-conjugated
anti-human CD20 (302318: BioLegend, San Diego,
CA, USA; 1:10), mouse phycoerythrin-conjugated
anti-human CD3 (552127: BD Biosciences,1 : 10),
and allophycocyanin-conjugated anti-mouse/human
CD11b (101212: BioLegend, 1: 100) antibodies for
1h on ice. Samples were washed with PBS and
resuspended in 300 w1 PBS containing 0.1 mg/ml pro-
pidium iodide. Fluorescence-activated cell sorting
(FACS) analysis was then performed using a FAC-
SCalibur instrument (BD Biosciences).

Brain tissue preparation of aborted monkeys

Frozen brain samples were first homogenized on
ice in Tris-buffered saline (TBS; 25 mM Tris-HCI,
150 mM NaCl, pH 7.5) (1 mL/150 mg wet weight)
containing protease inhibitor cocktail (Roche Diag-
nostics, Mannheim, Germany), sonicated, and then
centrifuged in a TLA110 rotor (Beckman Coulter,
Brea, CA, USA) at 104,300 x g for 60 min at 4°C.
The supernatant from each sample was collected as
a TBS-soluble fraction, and each pellet was then
re-suspended in 70% formic acid (FA) in water, son-
icated, and centrifuged at 104,300 x g for 60 minutes
at 4°C. The supernatant was recovered and neutral-
ized with a 20-fold dilution in 1 M Tris base. Protein
concentration of each sample was determined by the

Protein Assay Bicinchoninate kit (Nacalai tesque,
Kyoto, Japan).

Enzyme-linked immunosorbent assay (ELISA)

The levels of AB4o and AB4, were measured using
commercially available ELISA kits for human AB49
(FUJIFILM Wako Pure Chemical, Osaka, Japan;
code no. 298-64601) and human A4, (FUJIFILM
Wako Pure Chemical; code no. 298-64401) according
to the manufacturer’s instructions

Immunohistochemical examinations of brains
from aborted monkeys

Paraffin embedded brain tissues from the aborted
monkeys and an AD patient were sliced at a thickness
of 6 wm. For detection of A3 plaques and phosphory-
lated tau, the sections were treated with 100% formic
acid for 1 min at RT and 0.3% H»>O; for 10 min
at RT, respectively, after deparaffinization. The sec-
tions were reacted with anti-A3 (4G10, Biolegend,
1:1000) or phosphorylated tau (ATS8, Invitrogen,
1:1000) antibodies overnight at 4 C followed by
detection of bound antibodies with HRP-conjugated
anti-mouse IgG. Immunoreactivity signals were visu-
alized by incubation in diaminobenzidine substrate.
To visualize nuclei, sections were counterstained with
0.1% cresyl violet.

Statistical analysis

Statistical comparisons of all data were carried out
using unpaired Student’s ¢ tests and multiple one-way
analysis of variance (ANOVA) using GraphPad Prism
8 software (https://www.graphpad.com/scientific-
software/prism/); p<0.05 was considered statisti-
cally significant.

RESULTS

To generate Tg cynomolgus monkeys carrying the
gene for APP with familial mutations, the CAG
promoter was used because our previous work indi-
cated it is the most effective for overexpressing a
transgene in neural cells of cynomolgus monkeys
or neural cells derived from cynomolgus monkey
embryonic stem cells, with minimal silencing [14,
15]. We designed the A PP lentiviral construct carry-
ing familial mutations to facilitate amyloid formation
(Fig. 1A), linked to P2A-GFP to provide a surro-
gate marker for APP expression (Fig. 1B). When
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Fig. 1. Generation of the APP-P2A-GFP lentiviral vector. A) Design of the APP mutations. The Swedish, Arctic and Iberian mutations were
introduced into the human APP gene. B) Schematic representation of the lentiviral vector used for generation of APP Tg monkeys. LTR,
long terminal repeat; S, signal peptide sequence; FLAG, FLAG epitope tag sequence; P2A, self-cleaving 2A peptide sequence; GFP, green
fluorescent protein; WPRE, woodchuck hepatitis posttranscriptional regulatory element. C) Localization of FLAG-tagged APP protein. Scale
bars =10 wm. D) Fluorescent images of 293FT cells 48 h after transduction with an APP-P2A-GFP lentivirus. Insets in each panel show
brightfield images. Scale bars = 100 um. E) APP protein expression in the lentivirus-infected 293FT cells and culture supernatants. APP (C),

APP-C terminal.

we introduced the construct into HeLa cells tran-
siently, anti-FLAG antibody clearly detected the
signal in plasma membrane and inside the cell
(Fig. 1C), indicating that the FLAG-tagged APP
protein had been processed successfully. GFP fluores-
cence was observed successfully in lentivirus infected
cells (Fig. 1D). Western blot analysis indicted that
APP protein was detected by antibodies against
the C-terminal region of A PP or its FLAG-epitope
(Fig. 1E). FLAG-APP was also detected in the super-
natant of the cells, indicating that APP-P2A-GFP was
processed as a secreted protein (Fig. 1E).

To generate Tg cynomolgus monkeys, we
injected APP-P2A-GFP-expressing lentiviruses into
the perivitelline space of oocytes to facilitate infec-
tion followed by ICSI. At 7 days after the injection,
GFP expression was observed throughout the blasto-
cyst stage (Fig. 2A). Confocal microscopy showed
GFP in most—if not all— blastomeres (Fig. 2B).
We injected 447 oocytes and transferred 63 blasto-
cysts to recipient female monkeys, but because of the
limited number of recipients, we needed to vitrify
the remainder. Previously, no cynomolgus monkeys

have been produced from cryopreserved blastocysts,
while the use of cryopreserved embryos at earlier
stages has succeeded [18, 19]. When cryopreserved
blastocysts were thawed, 26 out of 54 vitrified APP-
lentivirus injected blastocysts expanded successfully
(48.1%), while some of them showed retarded growth
(Fig. 2 C), suggesting that vitrification and thawing
caused some damage (Fig. 2D). When the normal
looking expanded blastocysts were transferred into
recipient monkeys, two out of 18 gave birth success-
fully, indicating that the vitrified—thawed cynomolgus
monkey blastocyst can survive to term (Fig. 2B,
Table 1). We also noticed that the implantation
rate of APP-lentivirus injected blastocysts tended to
be lower than that of wild-type (WT) blastocysts,
although this difference was not statistically signif-
icant (Fig. 2E). To improve the pregnancy rate of
APP-lentivirus injected blastocysts, we transferred
pairs of blastocysts to recipient females and found
that the rate of implantation increased to 30%, though
this change was not statistically significant (Fig. 2E).

In humans and marmosets, oocytes can be col-
lected repeatedly through ovarian stimulation by
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Fig. 2. Generation of APP-GFP Tg cynomolgus monkeys. A) Images of cynomolgus monkey blastocysts 7 days after infection with the
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Table 1
In vitro and in vivo development of embryos after lentivirus injection
Group APP-lentivirus injected APP-lentivirus injected WT
(Fresh) (Vitrified/thawed) (Fresh)

1 embryo/ 2 embryos/ 1 embryo/ 2 embryos/ 1 embryo/

surrogate surrogate surrogate surrogate surrogate
No. of MII oocyte used for ICSI 518 134
No. of 2 cell stage 323 (62.4) 104 (77.6)
No. of blastocyst (% per 2 cell) 177 (54.8) 65 (62.5)
No. of blastocyst vitrified 82 -
No. of blastocyst thawed - - 54 -
No. of post-thawed blastocyst expanded - - 26 (48.1) -
ETs 29 46 8 10 22
No. of surrogates 29 23 8 5 22
No. of pregnancies at 30 days after ICSI 5(17.2) 7 (30.4) 1(12.5) 1(20) 6(27.3)
Twin - 2 - 1 -
Spontaneous miscarriage 2 6 0 3
Live birth 3 3 1 1 3
GFP+offspring 2 0 0 1 -

ICSI, intracytoplasmic sperm injection; ET, embryo transfer; GFP, green fluorescent protein.

Table 2
In vitro and in vivo development of 2nd Ovum pick up (OPU) embryos after lentivirus injection

Group APP-lentivirus injected

1st OPU 2nd OPU 3rd OPU
No. of MII oocyte used for ICSI 122 70
No. of 2 cell stage 194 (59.5) 73 (59.8) 56 (80)
No. of blastocyst (% per 2cell) 99 (51.0) 43 (58.9) 35 (62.5)
ETs 12 12
No. of surrogates 6 6
No. of pregnancies at 30 days after ICSI 9(22.5) 2(33.3) 1(16.7)
Twin 0 1
Spontaneous miscarriage 0 2
Live birth 2 0

MII, Metaphase II; ICSI, intracytoplasmic sperm injection; ETs, embryo transfers.

hFSH, and the collected oocytes contribute to in
vivo development after in vitro fertilization or ICSI
[20-22]. In rhesus monkeys, oocytes were obtained
successfully from a second cycle of superovulation
by hFSH [23]. Previously, we reported that oocytes
were collected successfully after a second round of
hFSH stimulation, but it was not known whether these
oocytes could contribute to in vivo development after
ICSI. Here, we found that 122 mature oocytes recov-
ered by second ovarian stimulation developed into 43
blastocysts after ICSI; subsequently these gave rise
to two live offspring (Table 2).

The twins were aborted at embryo day (E)101
and E102 (Fig. 3A) and GFP fluorescence was evi-
dent in the skin and skeletal muscle of both Tg
offspring (Fig. 3A, Supplementary Figure 2). Integra-
tion of GFP was confirmed by genomic and RT-PCR
(Fig. 3B, C), and GFP was seen in NeuN-positive neu-
ral cells in both Tg offspring (#101 and #102; Fig. 3D

and Supplementary Figure 2). In total, eight monkeys
were born and two showed clear GFP fluorescence in
the face, placenta and amnion, compared with the WT
neonates (Fig. 4, Table 3). One additional baby mon-
key showed weak GFP fluorescence, but we could not
take a clear picture because of the monkey’s quick
movements (Table 3). We stopped taking pictures
because the handling was causing distress. Because
two of the baby monkeys showed clear green fluores-
cence, we investigated whether this was derived from
GFP. To investigate this, the placenta was analyzed
for GFP expression at genomic, mRNA and protein
levels (Fig. 5). Genomic PCR indicated both mon-
keys were GFP-positive (Fig. 5A). Semi-quantitative
RT-PCR analysis indicated that GFP mRNA expres-
sion was detectable in the umbilical cord, placenta
and amnion of monkey #1 and in the placenta of
monkey #2 (Fig. 5B). Western blot analysis showed
that FLAG-tagged APP and GFP expressions were
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Fig. 3. GFP expression of aborted twin APP Tg monkeys. A) Bright-field and fluorescence microscopy images of the fetal Tg monkeys. B)
Detection of the integrated transgene by genomic PCR. DNA from a normal placenta was used as a control. C) Detection of the transcript
from the transgene by RT-PCR. RNA from a normal placenta was used as a control. D) Immunohistochemistry of the cerebral cortex of the
aborted Tg and age-matched non-transgenic fetuses. Sections of the cerebral cortex were subjected to immunohistochemistry with anti-GFP
and anti-NeuN antibodies, together with DAPI for nuclear staining, and they were observed using a confocal microscope (SP-8, Leica).
Arrows indicate NeuN- and GFP-positive cells. Dashed lines in the low magnification images of the WT fetuses indicate the top of the

cerebral wall. Inserts are enlarged images of square areas on the lower magnification micrographs. Scale bars =250 wm (low magnification)
or 50 wm (high magnification).

abundant in the placenta of monkey #1 and at low in the hair follicles of both (Fig. 6A, B). FACS anal-
levels in the placenta of #2 (Fig. 5C). To analyze ysis of the tissues from these monkeys showed that
the two Tg monkeys, we investigated GFP expres- 15.2% of T cells, 22.5% of B cells, 87.4% of granu-

sion in hair follicles and leukocytes and observed it locytes and 31.75% of monocytes were GFP-positive
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Tg amnion

100um
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Fig. 4. Fluorescence images of the Tg cynomolgus monkeys. Upper panels showing fluorescence images of the face, placenta and amnion
of APP-GFP Tg offspring #1. Lower panels showing fluorescence images of the face and placenta of APP-GFP offspring #2. Insets in each

panel show brightfield images.

Table 3
List of live offsprings derived from APP-lentivirus injected oocytes
Offsprings ID# Bith date VIT ET Gender GFP
PCR skin FACS of bloods

#1 CE2159F 4/17/2017 - Single F + + +
#2 CE2165F 7/17/2017 - Single F + + +
#3 CE2195F 10/18/2017 - Single F - - -
#4 CE2343M 3/26/2018 + Single M + - +
#5 CE2349F 8/3/2018 - Double F - - -
#6 CE2354M 10/10/2018 - Double M + - -
#7 CE2355F 10/10/2018 - Double F + - +
#3 CE2385F 12/24/2018 + Double F + +/— +

ET, embryo transfer; GFP, green fluorescent protein; FACS, fluorescence-activated cell sorting; V/T, Vitrifica-

tion/thawing.

(Fig. 6 C, D, E). Together, these data confirm that we
had successfully generated two APP Tg cynomolgus
monkeys.

Plasma A levels were measured in a WT mon-
key and the two transgenic monkeys (Table 4). In
the transgenic monkeys, the plasma A4 levels were
approximately double, while the plasma A4, levels
were approximately 50-fold, compared with those of
the WT monkey resulting in approximately 20-fold

increase in ratio of AB4; to AB4o in the transgenic
monkeys compared with the WT monkey.

Soluble and insoluble (formic acid soluble) A lev-
els were measured in the brain of aborted WT and
transgenic monkeys (Table 5). The levels of insolu-
ble AB42 were much higher in the transgenic monkeys
(147.5 and 1,016.9 pmol/g protein compared to the
WT monkey (19.3 pmol/g). The ratios of AB42 to
APy4p in the transgenic monkeys showed a moderate
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Fig. 5. APP expression in the placenta. A) Genomic PCR analysis with DNAs from Tg #1, Tg #2 and WT offspring. PC, positive control.
B) RT-PCR with cDNAs from Tg #1, Tg #2 and WT offspring. C) Western blot analysis with proteins extracted from the placentas of Tg
#1, Tg #2 and WT offspring. APP (C), APP-C terminal; APP (N), APP-N terminal; N.S., nonspecific.

increase in the soluble fraction and a marked increase
in the insoluble fraction compared with the WT mon-
key.

To confirm the expression of the transgene prod-
ucts in the aborted fetuses, protein samples from the
fetuses were analyzed by western blotting (Fig. 7
and Supplementary Figure 3). GFP was detected
in all tissue samples (indicated by GFP in Fig. 7).
However, the anti-FLAG antibody, which recognizes
the N-terminal of the exogenous APP, only reacted
strongly with the brain-derived lysates identifying
two bands; faint traces of GFP were detectable in
some of the other tissues (indicated by FLAG in
Fig. 7). Since the molecular sizes of the APP bands
in the brain were smaller than that observed in the
placenta from Tg#1, the same proteins samples were
further blotted with an antibody specific for the C-
terminal of APP. This antibody could detect APP
in the lysate from the Tg placenta at the same size
recognized by the N-terminal antibody, but it never
reacted with the brain protein samples from the tis-
sues of the aborted animals (indicated by P2A in
Fig. 7).

By immunohistochemistry, Af3 deposition and
phosphorylated tau could be detected in brain tissues
from an AD patient (Fig. 8), but not in the Tg or
nonTg monkeys (Fig. 8).

DISCUSSION

In this report, we describe the initial produc-
tion of a new primate Tg models of AD using the
expression construct pCSII-CAG-FLAG-APP-P2A-
GFP. This is the first report describing the generation
of Tg cynomolgus monkeys as potential experimen-
tal models for AD. The Tg monkeys were detectable
at birth by GFP fluorescence. Although several Tg
monkeys were aborted, two Tg monkeys were born
alive.

In the transgenic monkeys, plasma AB4o levels
were approximately double, while the plasma AB42
levels were approximately 50-fold compared with
those of the WT monkey. Consequently, there was
an approximately 20-fold increase in ratio of A4
to AB4o in the transgenic monkeys, compared with
the WT monkey. In the aborted Tg monkeys, how-
ever, there were no differences in the brain levels of
soluble A levels between aborted WT and trans-
genic monkeys, but there were noticeable differences
in levels of insoluble AB4>. Ratios of AB4> to AB4g
in the transgenic monkeys showed a small increase
in the soluble fraction and a marked increase in the
insoluble fraction.

There appeared to be a discrepancy between
plasma A3 levels in living Tg monkeys and brain
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Fig. 6. APP expression in the Tg cynomolgus monkeys. A) Immunohistochemistry of hair roots from WT, Tg #1 and Tg #2 offspring with
anti-GFP antibodies detected by confocal microscopy. Images were taken under the same instrument settings (same laser intensity). Scale
bars =100 wm. B) RT-PCR with cDNAs of hair roots from WT, Tg #1 and Tg #2 offspring. C) FSC/SSC plots for T cells (T/B), B cells
(T/B), granulocytes (Gr) and monocytes (M). D) GFP expression in blood cells from WT (red) and Tg #1 (blue) offspring. E) RT-PCR with

cDNAs of leukocytes from WT and Tg #1 offspring.

Table 4
Plasma A levels in transgenic cynomolgus monkeys
AB40 (pM) AB42 (pM) AB42/AB40
WT 252 1.4 0.06
Tg#l 55.5 61.5 1.11
Tg#2 42.6 64.7 1.52

AP levels in the aborted animals. One possibility
is that the expression level of mutant APP may be
low in the aborted Tg monkeys. This was shown by

Table 5

the low expression levels of GFP and APP in the
brain of aborted monkey compared with placenta
from living Tg monkeys. The other possibility is
that the expression level of APP increase after birth.
By immunohistochemistry, no amyloid deposition
and phosphorylated tau were observed in the brains
of the aborted monkeys. In wild-type cynomolgus
monkeys, mature (classical and primitive) plaques
appeared in monkeys at age of more than 20 years
old [24]. We used a transgene carrying the Swedish,

Brain A levels in aborted transgenic cynomolgus monkeys. The A levels are expressed
as pmol/g protein

Soluble fraction

Insoluble fraction

AB40 AB42 AB427AB40 AB40 AB#2 ABA2/ABA0
WT 4.6 0.6 0.13 150 19.3 0.13
Tg#101 45 1.8 0.39 310.6 1,016.90 3.27
Tg#102 1.7 0.8 0.44 81.5 1475 1.81
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Fig. 7. Western blotting analysis of APP expression in placenta of wild and Tg#1 cynomolgus monkeys and several tissues in aborted Tg
monkeys. Protein samples extracted from the indicated tissues of Tg #101 (left) and Tg #102 (right) were separated by 5-20% of SDS-PAGE,
and subjected to western blotting analysis probed with antibodies against FLAG, P2A, GFP, and actin. As controls, the lysates from the
placentas of Tg #1 and wild-type animal were also analyzed. Arrows indicate the positions of bands recognized by the anti-FLAG antibody.

Arctic, and Beyreuther/Iberian mutations that have
been reported to accelerate amyloid deposition [12].
Saito et al. reported that knock-in-mouse carrying
the same mutations showed amyloid deposition that
began by 2 months and plateaued by 7 months [12].
From this, we assume that amyloid plaques will
develop at about 5 years of age in our model monkey.
According to Bateman et al. [25], amyloid deposi-
tion occurs 20-30 years before the onset of AD, and
tau pathology as well as neurodegeneration develop
later. Therefore, it can be anticipated that it will take
more time for tau pathology and neurodegeneration
in the brain of Tg monkey after amyloid deposits. As
tau pathology does not occur in any mouse model
carrying APP mutations [10], it will be of great inter-
est to clarify whether these Tg monkeys will develop
tauopathy and neurodegeneration similar to human
AD.

Rodent models have been very useful for research
on AD and for the development of diagnostic and
therapeutic agents. However, we should consider
the limitations of such models. For example, the
first vaccine-based therapy for AD showed dramatic
effects in a mouse model [26], but, when the vac-
cine was administered to human patients, severe
side-effects occurred such as neuroinflammation

[27-29]. The failure of that first vaccine trial indi-
cates that we should test potential therapeutic agents
for adverse effects using animal models that closely
model humans, such as monkeys [30].

It must be appreciated that even Tg AD monkeys
will have some limitations. We employed the CAG
promoter, which will promote gene expression in a
non-tissue specific manner. Although western blot-
ting analysis indicated that expression of APP in
Tg monkeys was higher in the brain than other tis-
sues, the other tissues also expressed APP, including
blood cells. Thus, these monkeys may develop a sys-
temic amyloidosis-like disease. Refinements to these
models will be possible once the pathological fea-
tures are more fully investigated. Inducible knock-in
of gene expression at later ages, and more specific
cellular promoters can be considered but to be a
valid human model, all features of this primate model
will require a number of years to see pathological
effects.

In summary, we generated Tg monkeys carrying
mutations identified to cause familial AD. To confirm
whether such monkeys will be suitable as a model
for AD, we will need to examine their phenotypes.
However, we will have to wait for several years until
these monkeys develop AD-like pathology.
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Fig. 8. Immunohistochemistry for A and phosphorylated tau in the brains of wild and the Tg#1 and Tg #2 cynomolgus monkeys compared
with an Alzheimer’s disease case. Detection of AD-related pathologies in the cerebral cortex of aborted Tg and age-matched non-transgenic
fetuses. The sections of the brain tissues from the monkey embryos and an AD patient were stained with anti-A (upper) and anti-
phosphorylated tau antibodies (lower). Scale bar =50 pwm.
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