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Abstract. The noradrenergic and dopaminergic systems are affected in Alzheimer’s disease (AD). Polymorphisms in genes
encoding enzymes and proteins that are components of these systems can affect products of transcription and translation and
lead to altered enzymatic activity and alterations in overall dopamine and noradrenaline levels. Catechol-O-methyltransferase
(COMT) and monoamine oxidase B (MAOB) are the enzymes that regulate degradation of dopamine, while dopamine -
hydroxylase (DBH) is involved in synthesis of noradrenaline. COMT Vall58Met (rs4680), DBH rs1611115 (also called
—1021C/T or -970C/T), and MAOB 151799836 (also called A644G) polymorphisms have been previously associated with
AD. We assessed whether these polymorphisms are associated with cerebrospinal fluid (CSF) AD biomarkers including
total tau (t-tau), phosphorylated tau proteins (p-tau;s;, p-tau;g9, and p-tauys;), amyloid-B4 (AB42), and visinin-like protein
1 (VILIP-1) to test possible relationships of specific genotypes and pathological levels of CSF AD biomarkers. The study
included 233 subjects: 115 AD, 53 mild cognitive impairment, 54 subjects with other primary causes of dementia, and 11
healthy controls. Significant decrease in A4, levels was found in patients with GG compared to AG COMT Vall158Met
genotype, while #-tau and p-tau,g; levels were increased in patients with AA compared to AG COMT Vall58Met genotype.
AB4, levels were also decreased in carriers of A allele in MAO-B rs1799836 polymorphism, while p-tau;s, levels were
increased in carriers of T allele in DBH rs1611115 polymorphism. These results indicate that COMT Vall58Met, DBH
rs1611115, and MAOB rs1799836 polymorphisms deserve further investigation as genetic markers of AD.
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INTRODUCTION

Neuropathological changes of monoaminergic
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is an enzyme involved in the synthesis of nora-
drenaline, whereas catechol-O-methyltransferase
(COMT) and monoamine oxidase B (MAOB) reg-
ulate the degradation of dopamine. Polymorphisms
in genes for these enzymes can lead to altered
transcription and translation products, and their dys-
functional enzymatic activity consequently leads to
changes in dopamine and noradrenaline levels. It is
therefore not surprising that single nucleotide poly-
morphisms (SNPs) in genes for COMT, DBH, and
MAOB are associated with neuropsychiatric dis-
orders [3-7]. The possible association of COMT
Val158Met (rs4680), DBH rs1611115 (also called
—1021C/T or -970C/T), and MAOB rs1799836 (also
called A644G) polymorphisms with cerebrospinal
fluid (CSF) AD biomarkers has not yet been eval-
uated. CSF AD biomarkers can serve as intermediate
quantitative traits (endophenotypes, proxy variables)
of AD as they can reflect AD-related pathology
[8]. Increased deposition of amyloid in brain is
reflected in reduced concentration of CSF amyloid-
B2 (ABa42) [9], while phosphorylated tau proteins
[10] positively correlate with formation of neu-
rofibrillary tangles, thus reflecting the extent of
neurofibrillary degeneration. Total tau (t-tau) and
visinin-like protein 1 (VILIP-1) are also increased
in CSF during neurodegeneration and their levels
positively correlate with the cognitive impairment
[11-13]. In order to determine if pathological lev-
els of CSF biomarkers are more likely to occur
in patients with certain genotypes, we measured
the levels of CSF AD biomarkers (AB42, t-tau, p-
tauigy, p-taujgg, p-taussy, and VILIP-1) and assessed
whether they differed between patients with COMT

Table 1
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Vall158Met, DBH rs1611115, and MAOB 151799836
genotypes.

MATERIALS AND METHODS

Subjects

The study included 233 Croatian Caucasian sub-
jects recruited at the University Hospital Center
Zagreb. While this population is clearly represean-
tative of a European ethnic group, by which it may
not be entirely comparable to US populations investi-
gated in comparable contexts, it is nonetheless purely
Caucasian. Of note, assessing our Croatian popula-
tion using a Croatian version of the Mini-Mental State
Examination (MMSE) yielded outcomes entirely
comparable to other population similarly assessed
worldwide [14]. Out of 233 subjects recruited, 115
were AD patients, 53 had mild cognitive impair-
ment (MCI), 54 were patients with other primary
causes of dementia (14 patients had dementia due
to vascular cognitive dementia [AD+VaD], three
had dementia with Parkinson’s disease [PD], 7 had
dementia with Lewy bodies [DLB], 23 had fron-
totemporal dementia [FTD], and one had corticobasal
syndrome [CBS]). Eleven subjects were healthy con-
trols (HC) (Table 1). AD was clinically diagnosed
using criteria of the National Institutes on Aging -
Alzheimer’s Association (NIA-AA) [15]. VaD was
diagnosed by using the criteria of National Institute
for Neurological Disorders and Stroke - Association
Internationale pour la Recherche et I’Enseignement
en Neurosciences (NINCDS-AIREN) [16] and the
Hachinski Ischemic Score [17]. FTD diagnosis was

Frequency of COMT Vall58Met, DBH rs1611115, and MAOB rs1799836 genotypes in AD and MCI patients, HC, and in patients with other
causes of dementia

coMT DBH MAOB MMSE Age Gender
AA GG AG CcC TT CT AA GG AG Mean + SD Median (25-75th M/F
percentile)

AD 32 23 59 77 5 33 57 34 24 199445 73 (67-77) 53/62
MCI 9 14 30 35 3 15 23 18 12 25.1£2.9 70 (59-74) 26/27
HC 8 1 2 3 1 7 2 3 6 27.8+1.9 54 (45-61) 4/7
VaD 5 4 5 8 2 4 7 2 5 222+5.0 71 (63-77) 8/6
FTD 5 3 15 13 1 8 8 11 3 16.7+£5.2 61 (56-64) 12/11
DLB 1 6 7 4 1 2 3 3 1 19.3+3.9 70 (68-75) 572
AD + VaD 1 2 2 1 2 1 19.3+4.0 78 3/0
PD 1 2 1 2 1 1 1 22.54+10.6 65 2/1
CBS 1 1 1 27 51 0/1
ND 1 2 2 1 2 1 20.7£55 68 172

AD, Alzheimer’s disease; AD + VaD, mixed dementia; CBS, corticobasal syndrome; COMT, catechol-O-methyltransferase; DBH, dopamine
B-hydroxylase; DLB, dementia with Lewy bodies; F, female; FTD, frontotemporal dementia; HC, healthy controls; M, male; MAOB,
monoamine oxidase B; MCI, mild cognitive impairment; ND, nonspecific dementia; PD, Parkinson’s disease; SD, standard deviation; VaD,

vascular dementia.
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made by using the criteria of Neary et al. [18],
while MCI was diagnosed using criteria of Albert
et al. [19] and Petersen et al. [20]. Before the enrol-
ment in the study, patients gave informed consent for
lumbar puncture and for participation in the study.
They were tested neuropsychologically using the
MMSE, Montreal Cognitive Assessment (MoCA),
and Alzheimer’s Disease Assessment Scale-cognitive
subscale (ADAS-Cog). In addition to thorough neu-
rological examination, each patient went through
complete blood tests, including serology for Lyme’s
disease and syphilis, thyroid function, and levels of
vitamin B12 and folic acid (B9). All procedures per-
formed within this study were in accord with the
Helsinki Declaration [21] and approved by the Cen-
tral Ethical Committee of the University of Zagreb
Medical School (case no. 380-59-10106-18-111/126,
class 641-01/18-02/01 from June 20, 2018) and Ethi-
cal Committee of the Clinical Hospital Center Zagreb
(case no. 02/21 AG, class 8.1-18/82-2 from April 24,
2018).

Analysis of CSF biomarkers

CSF was collected by lumbar puncture between
intervertebral spaces L3/L4 or L4/L5. After lum-
bar puncture, CSF was centrifuged for 10 min at
2,000 g and stored in polypropylene tubes at —80°C.
CSF biomarkers were measured using the follow-
ing enzyme-linked immunosorbent assays (ELISA):
AB42 (Innotest B-amyloid1-42, Fujirebio, Gent, Bel-
gium), p-taups; (Tau [pT231] Phospho-ELISA Kit,
Human, Thermo Fisher Scientific, Waltham, MA,
USA), p-taujgg (TAU [pS199] Phospho-ELISA Kit,
Human, Thermo Fisher Scientific), p-tau;g; (Innotest
Phospho-Tau [181P], Fujirebio), t-tau (Innotest hTau
Ag, Fujirebio), and VILIP-1 (VILIP-1 Human
ELISA, BioVendor, Brno, Czech Republic) accord-
ing to the manufacturers’ instructions.

DNA analysis

Venous blood was collected in plastic syringes
with 1 ml of acid citrate dextrose as an anticoag-
ulant. Isolation of DNA from the peripheral blood
was done by the salting-out method [22]. TagMan
SNP Genotyping Assays (Applied Biosystems, Fos-
ter City, CA, USA) were used for determination of
COMT Vall58Met (rs4680), DBH rs1611115 (also
called—1021C/T or-970C/T), and MAOB rs1799836
SNPs. Analysis of SNPs was done using ABI Prism

7300 Real Time PCR System apparatus (Applied
Biosystems).

Statistical analysis

SPSS 19.0.1 (SPSS, Chicago, IL, USA) was used
for statistical analyses with level of statistical signif-
icance set at o =0.05. Normality of data was tested
using the Kolmogorov—Smirnov test. Because some
groups contained small number of subjects, non-
parametric statistics were also used. Non-parametric
Kruskal-Wallis test was used for comparison of the
CSF biomarkers’ levels among the groups. Post-hoc
non-parametric test with calculation of the corrected
p value was used for pairwise comparisons. One lim-
itation of our study was the small number of HC
available (n=11). Statistical analysis was performed
in all subjects combined (n =233). Additionally, asso-
ciation of CSF biomarkers with SNPs was tested
separately in AD subjects, MCI patients, a mixed
group of AD, MCI, and HC subjects, as well as in
a mixed group of MCI and HC subjects. Only statis-
tically significant associations were reported.

RESULTS
COMT Vall58Met (rs4680)

Levels of t-tau (H test=7.657, df=2, p=0.022)
and p-tauyg; (H test=6.348, df =2, p=0.042) were
significantly different in patients with different
COMT Vall58Met genotype (in all subjects with
different diagnoses; AD, MCI, VaD, FTD, DLB,
AD+VaD, CBS, ND, PD, and healthy controls).
Levels of z-tau (Kruskal-Wallis post hoc p=0.017)
and p-tauig; (K-W post hoc p=0.035) were signif-
icantly increased in patients with AA compared to
AG COMT Vall158Met genotype (Fig. 1). AB4s lev-
els were significantly different in all subjects with
AD, MCI, and HC grouped together with different
COMT Vall58Met genotype (H test=7.354, df =2,
p=0.025). More precisely, AB4 levels were signifi-
cantly decreased in patients with GG compared to AG
COMT Val158Met genotype (KW post hoc p =0.038)
(Fig. 2). Patients with AG genotype had normal levels
of CSF biomarkers (z-tau, p-tau;g;, and APB42), while
patients with AA and GG genotype have patholog-
ical levels of CSF biomarkers (increased z-tau and
p-taugg; levels and decreased AB4; levels) (Figs. 1
and 2).
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Fig. 2. Levels of AB4; in AD, MCI patients and HC with different
COMT Val158Met genotype. *p <0.05.

DBH rs1611115

Significant difference in the levels of p-taujg
was observed in MCI patients with different
DBH 151611115 genotype (H test=8.377, df=2,
p=0.015). Namely, p-tau;g; levels were significantly
increased in patients with CT compared to CC
DBH 151611115 genotype (K-W post hoc p=0.036)
(Fig. 3). P-taujg; levels were also significantly
increased in MCI patients with TT and CT com-
pared to CC DBH rs1611115 genotype (U =146,
Z=-2.857, p=0.004) (Fig. 4).

Fig. 3. Levels of p-taujg; in MCI patients with different DBH
rs1611115 genotype. *p <0.05.

MAO-B rs1799836

AB42 levels were significantly decreased in MCI
patients with AA and AG compared to GG MAO-B
rs1799836 genotype (U=206,7Z=-2.047, p=0.041)
(Fig. 5). These results were confirmed when MCI
patients and HC were grouped together (U=313,
Z=-1.980, p=0.048) (Fig. 5).

DISCUSSION

In this study we showed that COMT Vall58Met,
DBH rsl1611115, and MAOB 1s1799836
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Fig. 4. Levels of p-taujg; in MCI patients with different DBH
rs1611115 genotype. Subjects with TT and CT genotypes are
grouped together. *p <0.05.

polymorphisms deserve further investigation as
genetic markers of AD. Future research in this
direction is also motivated by the occurrence of
significant neuropathological alterations of nora-
drenergic and dopaminergic systems in AD [2,
23-26]. For example, up to 70% of locus coeruleus
(LC) neurons are lost in AD brains [27-29]. A
postmortem analysis of 118 brains showed that
>20% of Braak stage 0 and all of Braak stage I cases
have substantial neurofibrillary changes in dorsal
raphe nucleus (the earliest site of neurofibrillary
pathology in 6% of all AD cases) and LC (the
earliest site of neurofibrillary pathology in 8% of
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all AD cases) [30]. These findings are paralleled by
clinicopathological correlations. For example, in a
retrospective review of 100 autopsy-confirmed AD
cases, it was found that, on average, depression,
mood change, social withdrawal, confusion, dis-
orientation, agitation, disturbed wake-sleep cycle,
and other behavioral and psychological symptoms
of dementia (BPSD) were documented more than
2 years before the diagnosis of AD, whereas the
first non-cognitive symptom appeared, on average,
33 months before the diagnosis [31]. Another study
of 235 patients with early probable AD reported
that only 8.5% of them were free of BPSD during
the first three years of follow-up [32]. Perhaps the
most impressive confirmation of the importance of
the LC integrity to memory and cognition in aging
was a recent in vivo study of Dahl and collaborators
[33]. Using high-resolution, neuromelanin-sensitive
magnetic resonance imaging (MRI), these authors
found that individual differences across a variety
of memory tasks in both 66 younger and 228 older
adults strongly correlated with integrity of rostral
LC [33].

Experimental work has shown that LC input to
hippocampal CA3 drives single-trial learning of a
novel context [26]. However, besides its role in mem-
ory consolidation and synaptic plasticity, LC neurons
modulate many other different processes, such as
sleep-wake cycle, blood-brain barrier permeability,
and neuronal metabolism, all functions that have been
impaired in AD [34, 35]. Over the past 40 years
Aston-Jones and colleagues have elucidated many
of the roles of noradrenaline that regulate behavior
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Fig. 5. Levels of AB4; in A) MCI patients and B) MCI patients and HC with different MAO-B rs1799836 genotype. *p <0.05.
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(for a review, see [36]). One of these roles is that
noradrenaline is released from LC when a subject
is engaged in cognitive and motor tasks in relation
to novelty, interest, excitement, or effort [24]. As
noradrenaline regulates the phagocytosis of A by
microglia and acts as a neuroprotective and anti-
inflammatory agent [37], it is not surprising that
enhanced noradrenergic transmission in the brain
results in reduced neuroinflammation and reduced
cognitive decline [35]. It was also observed that
enhancement of dopaminergic transmission amelio-
rates cognitive deficits in AD [38, 39]. Decrease
in dopamine, dopamine metabolites, and number of
dopamine receptors has been reported in AD [40,
41]. Animal models of AD also showed decrease in
dopamine levels in the brain [42, 43]. Also, polymor-
phisms in genes for the dopaminergic system proteins
are associated with characteristic BPSD in early AD
[44, 45].

In this study, we compared the levels of six AD
CSF biomarkers (AB4», t-tau, p-tau;g, p-taujgg, p-
taupsq, and VILIP-1) in patients with different COMT
Val158Met (rs4680), DBH rs1611115 (also called
—1021C/T or —-970C/T), and MAOB rs1799836 (also
called A644G) polymorphisms. We observed that the
levels of #-tau and p-tau;g; are increased in patients
with AA compared to AG COMT Vall58Met geno-
type, while AB4> levels are decreased in patients with
GG compared to AG COMT Vall158Met genotype. P-
tau;g; levels are also increased in carriers of T allele
in DBH 151611115 polymorphism, while AB4; lev-
els are decreased in carriers of A allele in MAO-B
rs1799836 polymorphism.

As COMT is involved in degradation of dopamine,
functional polymorphisms in its gene can lead to
different transcription and translation products that
can affect its enzymatic activity and consequently
dopamine levels in the brain. Vall58Met polymor-
phism in COMT gene involves substitution at codon
158 of amino acid Val by Met [46]. Met/Met homozy-
gotes have four times lower COMT enzymatic
activity than Val/Val homozygotes. Val allele (G
allele) in COMT gene that results in lower dopamine
levels in synaptic cleft was associated with increased
risk for AD [47]. COMT Val158Met polymorphism
was compared with genetic biomarkers of AD, such
as apolipoprotein E (APOE) [48-51], and with neu-
roimaging biomarkers of AD [52-54]. However,
the association of COMT Vall58Met polymorphism
with CSF AD biomarkers was not previously tested,
and case-control studies on association of COMT
Vall58Met polymorphism and AD yielded incon-

sistent results. The G allele in COMT Vall58Met
polymorphism was associated with increased risk for
AD (mostly in synergy with the effect of APOE &4)
[48, 49, 54-56], risk of psychosis in AD [45, 57, 58],
and higher alcohol consumption in AD [52]. Sev-
eral studies showed no association between COMT
Vall158Met polymorphism and AD [59-62], while
others showed that COMT Vall58Met A allele is,
in fact, associated with AD [63, 64,7]. The meta-
analysis of Lee and Song [47] showed association
between G allele in COMT Val158Met polymorphism
and AD, while other meta-analyses [6, 65, 66] found
no association between COMT Val158Met polymor-
phism and AD. The results of our study suggest that
heterozygosity in COMT Vall58Met polymorphism
could be protective against AD as the patients with
the AA genotype had pathological levels of CSF #-tau
and p-taujg;, while patients with the GG genotype
had pathological levels of AB4>.

The presence of a T allele in the rs1611115 DBH
polymorphism contributes to a decrease in plasma
DBH (pDBH) activity [67]. Decrease in DBH activ-
ity has been detected in both brain [68, 69] and
plasma [70] of AD patients. Given that pDBH activ-
ity decreases in early AD regardless of rs1611115
DBH genotype [70], AD patients carrying a T allele
in rs1611115 DBH polymorphism may have even
more pronounced decrease in DBH activity and con-
sequently in noradrenaline synthesis. Combarros et
al. [71] and Belbin et al. [72] reported an association
between T allele in rs1611115 DBH polymorphism
and AD. However, this association of rs1611115
DBH polymorphism and AD has not been confirmed
in other studies [70, 73-75], although Mateo et al.
[73] showed that T/T rs1611115 DBH genotype, in
addition to the risk genotypes in —889 IL-Ia and
—174 IL6 polymorphisms, increases the risk of AD.
Synergy between DBH rs1611115 and BDNF 156265
polymorphisms was also observed, and this syner-
gistic interaction contributed to a greater risk for AD
[72]. The meta-analysis of Tang et al. [76] showed
no association between rs1611115 DBH polymor-
phism and AD. The association of rs1611115 DBH
polymorphism with CSF AD biomarkers was not pre-
viously tested. The results of our study agree with
evidence of increased risk of AD in carriers of the T
allele inrs1611115 DBH polymorphism and are sup-
ported by the finding of pathological CSF p-tau;g;
levels in patients carrying this allele.

It has been proposed that MAOB rs1799836
polymorphism affects MAOB transcription and
translation, enzyme’s activity and consequently



M. Babic¢ Leko et al. / COMT, DBH, and MAOB SNPs affect AD Susceptibility 141

concentration of monoamines in synapses [77].
However, studies investigating influence of MAOB
rs1799836 polymorphism on MAOB activity yielded
conflicting results. Namely, both A allele [78] and G
allele [79] in MAOB 151799836 polymorphism were
associated with lower MAOB activity. Lower MAOB
activity was associated with poor impulse control,
risky behavior, and behavioral disinhibition [80].
However, other studies [81-83] and a meta-analysis
[4] found no association between MAOB rs1799836
polymorphism and MAOB activity. Because MAOB
activity is influenced by smoking, aging, gender,
ethnicity, and various medicaments [81-88], it was
proposed [89] that MAOB could be a molecu-
lar link between lifestyle and AD pathogenesis.
As environmental and lifestyle factors may influ-
ences epigenetic mechanisms [90], lifestyle factors
could affect MAOB expression epigenetically through
one-carbon metabolism that causes reduced methy-
lation of its promoter [91]. Although there are many
indices of increased MAOB activity in AD [92-95],
the distribution of MAOB 1s1799836 genotypes in
AD patients and controls had not been analyzed.
Veitinger et al. [89, 96] reported that platelet MAOB
could even represent a peripheral biomarker of AD
with high sensitivity and specificity. The present
results and existing evidence indicate that additional
investigations should consider more closely the dis-
tribution of MAOB rs1799836 genotypes between
AD patients and HC, as well as the association of
MAOB 151799836 polymorphism with neuroimaging
AD biomarkers and APOE genotype.

In conclusion, our study shows that carriers of
different genotypes in COMT Vall58Met (rs4680),
DBHrs1611115 (-1021C/T or-970C/T), and MAOB
rs1799836 (A644G) polymorphisms have altered lev-
els of CSF AD biomarkers. As persons with specific
genotypes in COMT, DBH, and MAOB genes are
more prone to develop AD pathology (as reflected
by their levels of CSF AD biomarkers), the potential
of these polymorphisms as genetic biomarkers of AD
is significant and should be further assessed in larger
cohorts of AD patients and healthy controls.
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