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Abstract. Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60
years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-�
deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms
that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical
studies that may be associated with Alzheimer’s disease-related oxidative stress.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenera-
tive disorder with memory deficits and executive
dysfunction as characteristic clinical features [1].
Investigations show that hallmarks of oxidative stress
are observed early in the progress of AD [2–7].
Related to this, pre-symptomatic AD has been asso-
ciated with mitochondrial deficiency resulting in
disturbed bioenergetics [8]. Apart from reducing the
generation of ATP, mitochondrial deficiency results
in excessive production of reactive oxygen species
(ROS). These ROS, in turn, have been related to mem-
brane damage, cytoskeletal alterations, and cell death
[9]. Other than features of oxidative stress, progress
of AD is characterized by extracellular accumulation
of aggregated amyloid-� (A�), and intracellular neu-
rofibrillary tangles containing hyperphosphorylated
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tau. The precise nature of the association between
oxidative stress and other hallmarks of AD pathology
is unknown although some molecular mechanisms
have been suggested which will be discussed in this
review. Further, the excessive generation of ROS as
well as the neutralization of their damaging effects
in a neurodegenerative condition such as AD will be
covered.

OXIDATIVE STRESS

Oxidative stress is a state in which either increased
levels of cellular ROS are generated and/or cellu-
lar mechanisms to reduce the potentially damaging
impact of ROS are of insufficient capacity [10, 11].
This definition inherently dictates that as long as
the antioxidant defense system is sufficiently capa-
ble of scavenging the generated reactive species,
increased ROS or reactive nitrogen species (RNS)
production generally does not provide sufficient
leverage to cause pathology. However, in some cases
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aging-related increased production of free radi-
cal species coincides with a decreased capacity
of the endogenous antioxidant defense system [12,
13]. Even though normal aging coincides with
increased levels of oxidative stress, a very diverse
range of diseases demonstrates a more pronounced
level of oxidative stress including attention deficit
hyperactivity disorder (ADHD) [14], cancer (e.g.,
[15]), Parkinson’s disease [16], atherosclerosis [17],
myocardial infarction [18], sickle cell disease [19],
Down’s syndrome [20], depression [21], and diabetes
mellitus [22].

OXIDATIVE DAMAGE TO
BIOMACROMOLECULES IN
ALZHEIMER’S DISEASE

Even though low levels of ROS are crucial for
normal physiological functioning, increased ROS
levels are associated with oxidative damage of
various cellular compartments and molecules. For
example, structural and functional impairments of
membrane-associated macromolecules such as lipids
and proteins in several regions of the brain have
been observed in response to ROS associated
damage [23–25]. Analysis of lipid rafts in AD
brain tissue samples showed that increased levels
of membrane-associated oxidative stress correlated
with accumulation of cholesterol and ceramides
into clustered microdomains which could be pre-
vented by the antioxidant vitamin E and ceramide
inhibitors [26]. The mechanisms by which such
microdomains assemble have been elaborately stud-
ied but perhaps one of the key observations was
that extracellular A� aggregation in close proximity
of the cell membrane induces membrane-associated
oxidative stress. Membrane-associated oxidative
stress involves lipid peroxidation and generation
of aldehyde 4-hydroxynonenal (HNE), a neurotoxic
aldehyde that can be detected at early stages of dis-
ease progress in the AD brain [27]. Interestingly,
HNE levels were observed to be proportional to the
extent of neuronal lesions [28, 29]. Oxidative stress
can also lead to activation of pathways involved
in AD pathogenesis. For example, one member of
the mitogen-activated protein kinases (MAPKs) fam-
ily, namely p38, is activated during A�-mediated
oxidative stress. Among the different roles of p38,
it was observed to induce tau phosphorylation in
a primary neuronal model, which could be pre-
vented by pretreatment with an inhibitor of p38

or vitamin E [30]. These findings were confirmed
in vivo using a transgenic APP/PS1 mouse model
for AD [31]. AD-related oxidative stress is also
reflected by extensive oxidative damage to nucleic
acids leading to alterations in DNA structure [32,
33]. Apart from in AD, oxidation of mitochondrial
DNA and RNA are observed in a number of other
pathologies [34]. One feature of DNA/RNA oxi-
dation is the oxidation of the base guanosine to
produce 8-hydroxyguanosine (8-oxoG) [35]. High
levels of 8-oxoG were observed in neurons within
the hippocampus, subiculum, entorhinal cortex, and
frontal, temporal, and occipital neocortex in autoptic
brain tissues of patients affected by AD [36]. More-
over, RNA oxidation was found to be significantly
increased in the hippocampus, cortical neurons, white
matter and in the frontoparietal cortex of aged rats
[37]. These findings imply a role of oxidative-stress
induced damage of DNA and RNA in neurodegener-
ative disease and aging.

Also, A� and tau have been reported to undergo a
number of modifications as a function of oxidative
stress. Tau plays a role in microtubule organiza-
tion by dynamically interacting with the formed
microtubules [38]. Intracellular dynamics of micro-
tubule organization were observed to be disrupted
in AD patients [39]. Various cell lines, including
ventricular myocytes, neuro-2A cells, rat pheochro-
mocytoma PC12, and pancreatic epithelial cell line
AR42J, when exposed to H2O2 or HNE, show a
decreased growth of the microtubular network as
a result of increased microtubular catastrophe rate
[40–45] largely mediated by Michael addition reac-
tions [45]. This paragraph discusses the types of
modification that tau and A� are subject to under
conditions of oxidative stress.

Copper-induced dityrosine cross-linking of Aβ

A specific type of A� assembly involves dityro-
sine cross-linking which has been associated with
clinical markers of oxidative stress in AD but also
other neurodegenerative diseases [46]. Increased lev-
els of oxidative stress in the brain are reflected
by increased brain content of copper (Cu) and
zinc (Zn), specifically in the neuropil and in AD
plaques [47, 48]. Copper was shown to catalyze
hydroxyl radical, peroxynitrite, nitrosoperoxycar-
bonate, and lipid hydroperoxide-mediated dityrosine
cross-linking [49, 50] in monomeric and, at a
lower rate, fibrillar A�1-40 [51] in a concentration-
dependent manner [51]. The precise mechanism of
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crosslinking has been subject of study [52], but it was
shown that the picomolar affinity of A� for copper
[53] drives the generation of H2O2, which, in turn,
promotes the formation of SDS-resistant dityrosine
cross-linked A�1-28, A�1-40, and A�1-42 [54, 55].
It has also been shown that A�1-42, the 42-residue
more amyloidogenic version of A�, has higher affin-
ity to bind Cu2+ than A�1-40, the 40-residue version
of A� [55]. One of the hypotheses by which bind-
ing of A� to Cu2+ can induce the formation of
H2O2 required for A� crosslinking is by its abil-
ity to undergo Fenton redox cycling [56]. Consistent
with this thought, histidines 6, 13, and 14 in A� that
were identified to be involved in the redox cycling
of bound Cu2+ [43] are located in close proximity to
tyrosine 10. Density functional theory calculations
and tyrosine-to-alanine mutational studies experi-
mentally demonstrated that indeed tyrosine residue
10 in A� critically determines the generation of H2O2
mediated by A�-Cu2+ interaction [57]. The result-
ing crosslinked species were shown to accumulate
in the AD brain, and to exert high levels of toxicity
to neuronal cells [54, 58, 59]. Using tandem mass
spectrometry, it was observed that dityrosine cross-
linked forms of A� can also be generated in vitro
under conditions of oxidative stress induced by enzy-
matic peroxidation [60]. A recent paper showed that
exposure of in vitro generated A�1-40 fibrils to Cu2+
significantly reduced fibril length as a result of fibril
fragmentation [51]. Even though exposure of A�1-40
to Cu2+ was shown to induce thioflavin T (ThT) posi-
tive fibril assembly [51, 61, 62], the addition of H2O2
inhibited the further assembly process [51] possibly
stabilizing potent neurotoxic A� species.

Methionine-35 oxidation of Aβ

A second commonly detected Cu2+-induced
modification of A� in plaques is the reversible mod-
ification of oxidation-sensitive methionine 35 to its
sulfoxide [48, 63] or its further irreversible oxida-
tion product methionine sulfone. APP23 transgenic
mice show methionine oxidized forms of A�1-40
[64] and methionine oxidized A� is also abundantly
detected in AD patient brains [38, 63, 64]. The sul-
foxide intermediate can be reduced by the action
of peptide–methionine sulfoxide reductase [65],
although levels of this enzyme in the AD brain were
reportedly reduced [66]. In line with this observation,
upon knock-out of methionine sulfoxide reductase
A in a human amyloid-� protein precursor (A�PP)
mouse model, levels of soluble methionine sulfox-

ide A� were increased and associated with defects in
mitochondrial respiration and cytochrome c oxidase
activity [67]. In turn, exposure of rat neuroblastoma
cell line IMR-32 to methionine-oxidized A�1-42
induced an increase in levels of mRNA expression
and activity of methionine sulfoxide reductase type
A [68], suggesting that levels of methionine sulfox-
ide reductase A and methionine-oxidized A�1-42 may
affect each other in a bidirectional manner. Some-
what conflicting results have been published on the
effect of methionine-35 oxidation on A� aggregation.
For example, it was shown that H2O2/Cu2+-induced
methionine-35 oxidation slows down ThT-positive
A� fibril formation of commercially derived A�1-40
and A�1-42 compared to wild type A� without affect-
ing morphological features of the formed A� fibrils
as observed by transmission electron microscopy
(TEM) [69]. Marked differences in response to H2O2
induced methionine oxidation of A�1-40 and A�1-42
were observed in a different study showing that
oxidation of A�1-40 increases fibril formation kinet-
ics while slowing down fibril formation of A�1-42
[70] suggesting an isoform differential effect. Imag-
ing of the resulting fibers using TEM showed that
fibers generated by oxidized A�1-40 and A�1-42
were both highly fragmented compared to unoxi-
dized peptide [70]. In another study, methionine 35
of synthesized A�1-42 was oxidized by exposure
to H2O2 and oxidation was validated using mass
spectrometry. Subsequent atomic force microscopy
(AFM) and circular dichroism spectroscopy showed
that methionine oxidation in this way hindered the
typical random coil to �-sheet conversion and fil-
amentous morphology characteristic for A� fibril
formation [71]. Early aggregate formation of methio-
nine oxidized A�1-40 was studied using electrospray
ionization Fourier transform ion cyclotron resonance
mass spectrometry showing that trimer formation
was inhibited without affecting dimer assembly [72].
One of the mechanisms suggested to affect the
decreased aggregation propensity of A� upon oxi-
dation of methionine 35 was that oxidation results
in a reduced hydrophobicity of A� [71, 73], while
hydrophobicity is one of the main driving forces
for A� self-assembly. An oxidation-induced change
in hydrophobicity was experimentally illustrated for
apolipoprotein A-I, which, upon oxidation, affected
the ability of this protein to interact with lipids [73]. It
is difficult to delineate the precise origin of the diver-
sity in results that have been obtained in aggregation
studies of A� in response to methionine oxidation, but
it is likely that variations in sample preparation, origin
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and incubation conditions may contribute as aggre-
gation properties are sensitively affected by these
parameters.

4-hydroxynonenal modification of Aβ

A third type of oxidative stress related feature in
the AD brain is the accumulation of HNE [29, 74,
75]. HNE generation has been detected both in vitro
and in vivo as a result of lipid peroxidation [76, 77].
A 1990 hypothesis paper proposed several multi-
step iron-catalyzed chemical routes for the generation
of HNE through the oxidation of n-6 polyunsatu-
rated fatty acids, particularly linoleic, �-linoleate,
and arachidonic acid [78]. Further, the presence of
A� was shown to induce Cu2+-mediated produc-
tion of HNE from lipids [79], and that, in turn, the
released HNE can conjugate with A� and induce
assembly of A� into high molecular weight species
and increase the generation of A� by modulating
�-secretase (BACE) activity [80–82]. Collectively,
these data suggest that a number of in-brain factors
interrelate to generate a downward spiral that is possi-
bly associated with the observed pathogenic progress
of AD. Metals were shown to regulate HNE mod-
ification of A�. For example, it was observed that
HNE modification of A� in vitro can be achieved
by means of coincubation of A� with HNE upon
overnight incubation only in PBS that is free from
magnesium and calcium [83] consistent with the find-
ing that physiological levels of calcium effectively
inhibit HNE modification of A� [82]. Also HNE
conjugation to a truncated form of A�, A�1-16, was
shown by means of mass spectrometry to be pre-
vented by calcium and copper [83]. Of interest then
was the observation that HNE conjugation of A�
is a ROS-induced modification often encountered in
amyloid plaques [2, 27, 84, 85], while in plaque levels
of calcium and copper are reportedly high. A study
mimicking in vivo in plaque conditions, involving
physiological levels of calcium and high levels of
copper, demonstrated indeed that HNE-adducts and
A� were both recognized, though not colocalized,
in cerebral vessels [83]. These data perhaps demon-
strate that the raised levels of metals in plaques locally
inhibit HNE conjugation to A� in these plaques [82].
Lysine and histidine residues in A� seem to be the
most reactive residues toward HNE adduct forma-
tion, and it was suggested that the microenvironment
of a specific residue determines the actual reactivity
to HNE [86]. Two chemical reactions were identi-
fied that dictate the HNE-A� adduct formation: via

formation of a Schiff’s base or by Michael addition
[86]. Consistent with this thought, the conjugation
reaction can be quenched by azide, primary amines,
ammonia, Tris, DTT [83] or trifluoroacetic acid [79].
Also the addition of antioxidants hydralazine [83]
or 3,5-di-tert-butylhydroxytoluene (BHT), or copper
gelator diethylenetriaminepentaacetic acid (DTPA)
[79], were reported to inhibit HNE-modification of
A�.

Heme-complex formation of Aβ

Heme-complexed A� adducts have been postu-
lated to affect cytochrome c oxidase (COX) activity, a
mitochondrial electron transport chain enzyme which
is significantly decreased in the AD brain [87]. COX
requires heme-a, of which regulatory heme is a pre-
cursor, to assemble and perform its function [88, 89].
In turn, heme-a levels were observed to be signifi-
cantly decreased in the temporal lobes of AD patient
brains compared to age-matched controls [90]. A
potential A�-mediated role in the availability of
heme in the AD brain came to light when it was
shown that the presence of heme dose-dependently
inhibits oligomer formation of both A�1-40 and
A�1-42 in an immunoassay and prevented loss of
cellular viability upon addition of the complex to
human neuroblastoma cell line IMR32 [91]. It was
thought that, by competitive binding to heme, A�
could deplete the availability of regulatory heme
leading to deprived COX functionality and energy
deficiency in AD. Similarly, the presence of heme was
found to inhibit activation of A�-induced inflamma-
tory response in primary mouse astrocytes [92]. At the
same time, A� and heme, in the presence of H2O2,
were reported to increase tyrosyl radical formation
in A�1-16 and mediate its dimerization through 3,3’-
dityrosine cross-linking [93–95], a reaction that was
observed to be competitively inhibited by NaNO2
[94]. A direct and rapid interaction between heme and
A� was shown upon addition of heme-a or heme-b
to A�1-40 or a mixture of A�1-40 and A�1-42 which
resulted in an immediate spectral shift of heme [90].
A� histidine residues were speculated as potential
binding site via involvement of the π-electrons of
the histidine imidazole rings, as addition of copper
and zinc ions competitively inhibited the interac-
tion of A� with heme, but only when heme was
added to the reaction mixture after copper and zinc
[90, 91]. In a subsequent site-directed mutagenesis
study, using voltammetry, histidines 13 and 14 were
specifically identified as heme binding sites in A�
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[96]. In addition to this, an NMR-based spectro-
scopic study showed that heme-b binds to A�1-16
with higher affinity compared to free histidine or
other histidine-containing peptides indicating that
other parts of the A� peptide contribute to the inter-
action with heme-b [95]. Heme-A� conjugates have
also been found in AD plaques and conjugation to
heme was shown to inhibit A� aggregate formation
in a cell-free system and to dissociate existing aggre-
gates [97]. Spectroscopic studies shed more light on
the structural implications for A�1-16 upon interac-
tion with heme-b [95]. This study showed that two
complexes can be formed that exist in equilibrium,
a low spin six-coordinated 1:2 heme/A�1-16 stoi-
chiometry and a high-spin heme-(A�1-16) species.
A�-heme adducts were found to exercise peroxi-
dase activity [98] although in vivo relevance of this
catalytic activity was questioned as a result of the
reported very low kcat value of the complex of 0.016
s−1 at 278 K compared with a reference value of
45.5 s−1 for horse radish peroxidase [95]. However,
a substantial effort has since gone into understand-
ing the structural basis of this peroxide activity.
One study showed that mutation of either histidine
13 or 14, but not both, does not affect peroxidase
activity of the A�1-16-heme complex [94]. Free histi-
dine, similar to the unmutated A�1-16-heme complex,
induced peroxidase activity as observed using
an 2,2’-azinobis(3-ethylbenzothiazoline-6-sulphonic
acid) diammonium salt (ABTS) oxidation assay [94].
Apart from a regulating role by histidines, peroxi-
dase activity of the A�-heme complex was shown to
involve arginine 5 as proton donating residue cleav-
ing the O-O bond of the peroxide [94, 96, 98]. At
the same time, the addition of free arginine to heme
failed to induce peroxidase activity demonstrating
that the structural incorporation of arginine 5 within
a protein environment is somehow relevant for its
action [94, 95]. Peroxidase activity of the complex
was reported to depend on the heme-A� ratio and
temperature, with increasing A�1-16 to heme and
temperature inducing more potent peroxidase activity
[95, 99].

Oxidative damage colocalizes with tau
neurofibrillary tangles

Oxidative damage was found to colocalize with tau
enriched neurofibrillary tangles [100]. In this study,
hippocampal tissue from AD patients was subjected
to postmortem analysis investigating the localization
of the enzyme dimethylarginase. This enzyme regu-

lates the activity of nitric oxide synthase [101]. In AD
hippocampal tissue, neurons that contain neurofibril-
lary tangles also stain positive for dimethylargininase
providing a first indication that nitric oxide is gen-
erated in close proximity to the tau that makes up
the neurofibrillary tangles. In line with these obser-
vations, an antibody that recognizes an HNE-lysine
adduct was found to colocalize with endogenously
obtained paired helical tau filaments from AD brains
[29]. Also, acrolein, which is an aldehyde product of
lipid peroxidation, was observed to colocalize with
neurofibrillary tangles in AD patient brains [102].
Further, the antibody Alz50 [103], which recognizes
a conformational change in tau [104], coincides with
heme oxygenase-1 (HO-1), which is an antioxidant
enzyme [29], levels of which are strongly increased
in the AD and mild cognitive impaired (MCI) brain
[105]. Whether HO-1 activity is beneficial in terms
of alleviating oxidative stress or can induce neuro-
toxicity in the MCI and AD brain has been subject of
debate as increased HO-1 levels were also correlated
with increased phosphorylation of tau serine residues
[105].

Oxidation of tau affects filament assembly

Ascorbate/Fe(III)/O2-induced oxidation of bovine
tau was shown to induce the assembly of tau into fil-
aments in vitro [106]. The oxidation of one of the
cysteine residues was found to be involved in the
induction of the assembly of a recombinant fetal
isoform of tau into such assemblies [107]. These
data suggest that the generation of tau filaments is
a disulfide bond mediated process while oxidation
modulates the ability to self-assemble. Consistent
with this thought it was recently shown that Zn2+
interacts with the cysteine residue of a truncated
version of tau containing only the third repeat unit
of the microtubule-binding domain accelerating its
aggregation rate and toxicity in a Neuro-2A cell
line [108]. A more direct role for oxidative stress in
tau assembly was demonstrated upon administration
of the anti-oxidants 2,4-disulfonyl �-phenyl tertiary
butyl nitrone and N-acetylcysteine which reduced
immunoreactivity against tau oligomers [109]. Of
interest was the observation that peroxynitrite treat-
ment of tau induced nitration, S-nitrosylation and
oxidation of methionine, as observed by HPLC-
electrospray ionization tandem mass spectrometry
while markedly reducing aggregation, as analyzed by
light scattering and electron microscopy [110]. Col-
lectively, these observations suggest that oxidation
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of tau may modulate aggregation by either induc-
ing or inhibiting the self-assembly process and that
the specific outcome may depend on the type of oxi-
dant and the specific amino acid residue involved.
Phosphorylation was shown to importantly regulate
HNE-induced assembly of tau as exposure of phos-
phorylated tau, as opposed to unmodified tau, induced
misfolding of tau which was recognized by antibody
Alz50, and the formation of tau aggregates [29]. In
line with this, the self-assembly of a tau fragment
including the first and third tubulin-binding domains
showed that the presence of HNE mediated polymer-
ization of phosphorylated tau [111]. At a molecular
level, a link between phosphorylation and oxidative
stress was revealed when a study showed that the
activity of alkaline phosphatase was inhibited in the
presence of HNE. Exposure of tau to HNE hence
resulted in the generation of a tau species resistant
against dephosphorylation [112].

AGE-conjugated tau is associated with oxidative
stress markers

Advanced glycation end products (AGEs) are the
oxidation product of sugars that interact with proteins
and their accumulation has been related to amyloid
deposition in AD [113]. Tau assembled into paired
helical filaments has been shown to be immunore-
active against N�-(carboxymethyl)lysine, one of the
major AGEs [114]. Interaction of recombinantly pro-
duced tau with ribose-derived AGE products was
shown to result in the generation of reactive oxygen
intermediates, which, in turn, activate NFκb to induce
amyloidogenic processing of A�PP to generate A�
[115]. Uptake of AGE-glycated tau into SH-SY5Y
neuroblastoma cells was associated with malondi-
aldehyde and HO-1 detection which was prevented
by the exposure of these cells to N-acetylcysteine and
probucol, two antioxidant compounds [116]. Diffuse
cytosolic immunoreactivity against AGE was shown
in many neurons of post-mortem AD brains that also
contain hyperphosphorylated tau [117]. Astrocytes
residing in the temporal cortex of medium to severely
affected AD subjects were found to be immunore-
active for inducible nitric oxide synthase (iNOS) as
well as AGEs [118]. Thus far it is unclear whether
AGE-glycation of tau has implications for the phys-
iological role of this tubulin binding protein in the
cytoskeletal organization or what the hierarchical cor-
relation is between AGE formation and tau assembly
into filaments.

Collectively, a clinical link between mitochondrial
dysfunction and AD has been firmly established, with
a central role for AD hallmark proteins A� and tau.
While various types of ROS-mediated modifications
of A� and tau have been investigated and play a poten-
tial role the precise implications of these species on
disease progress have not been investigated.

EFFECT OF OXIDATIVE STRESS ON
MITOCHONDRIA IN ALZHEIMER’S
DISEASE

AD brain originating neurons containing defec-
tive mitochondria show loss of dendritic spines and
abbreviation of dendritic arborization [119]. Differ-
ences in CA1 hippocampal mitochondria structure
have been detected using 3-dimensional electron
microscopy. Instead of the uniformly elongated mito-
chondrial morphology observed in wild type mice,
human AD brain and hippocampal mitochondria in
mice carrying mutations for presenilin-1 (psen1),
A�PP, and tau, have an ovoid or teardrop profile
[115]. Further, AD mouse models and AD patients
show the presence of multiple small mitochondria and
exaggerated mitochondrial division [120] suggest-
ing that the mitochondrial fission process is altered
in AD. The mitochondrial fission process relies on
dynamin related protein 1 (Drp1) and mitochondrial
fission protein 1 (Fis1) [121, 122]. Recent research
observed the presence of elongated interconnected
organelles where multiple teardrop shaped mitochon-
dria were connected by thin double membranes.
This structure, referred to as “Mitochondria-on-a-
string (MOAS)”, has been identified in an AD mouse
model together with increased Drp1 phosphoryla-
tion, causing incomplete fission. Even though altered
mitochondrial fission processes in neurodegenerative
diseases have been viewed primarily as a pathological
feature, in cardiomyocytes Drp1 induced mitochon-
drial fission was shown to exert a protective effect
against cellular apoptosis by enabling the cells to
meet altered energetic demands [123]. An alterna-
tive role of Drp1 was suggested with the observation
that reduced association of Drp1 with the mitochon-
drial membrane induced a lack of mitochondrial
fusion, which, in turn, induces high levels of mito-
chondrial oxidative stress [124]. The fusion process
should be in balance with mitochondrial fission to
maintain mitochondrial homeostasis. Mitochondrial
fusion is mediated by inner membrane fusion fac-
tor optic atrophy-1 (OPA1). Addition of H2O2 to an
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osteosarcoma and a cardiomyoblast cell line lead to
inhibited mitochondrial fusion as a result of loss of
OPA1 activity through cleavage mediated by metal-
loendopeptidase OMA1 [125, 126].

ENDOGENOUS ANTIOXIDANT ACTIVITY
IS COMPROMISED IN ALZHEIMER’S
DISEASE

The endogenous antioxidant capacity is a multi-
component system targeted at neutralizing ROS and
RNS to prevent damage of cellular compartments.
Many of the factors involved in endogenous antiox-
idant capacity are affected in AD, and experimental
evidence for this will be discussed in this section.

Glutathione

Glutathione (GSH) is one of the prime endoge-
nous antioxidants in the brain. GSH is a tripeptide
thiol-containing antioxidant that is synthesized by the
conjugation of the amino acids glutamate, cysteine,
and glycine mediated by the enzymes �-glutamyl cys-
teine synthetase and glutathione synthetase [127].
GSH acts by scavenging ROS, and, in the pro-
cess, becomes reversibly oxidized to form glutathione
disulfate (GSSG) [127, 128]. Oxidative stress induces
the expression of the NADPH-dependent enzyme
glutathione reductase, which reverts oxidized GSSG
to its reduced form GSH [129]. A study involving
74 human subjects demonstrated that GSH levels of
autopsied brains did not significantly decrease with
aging [128]. At the same time, whole-brain GSH
levels were shown to be profoundly reduced in indi-
viduals suffering from AD compared to age-matched
controls [130] although another study reports that
GSH levels in AD brains are not significantly differ-
ent from those found in age-matched control brains
[131]. Region-specific differences were identified
showing increased GSH levels in the hippocampus
and midbrain of AD patients without significant dif-
ference in GSSG levels [132]. Moreover, a correlation
between peripheral and brain levels of GSH exists as
it was demonstrated that levels of erythrocytic GSH
in elderly patients with MCI and AD were substan-
tially decreased compared to a control group [130]. A
study investigating human AD patient lymphocytes
showed that decreased GSH levels correlated with
increased GSSG levels [133]. Moreover, basal blood
levels of GSSG/GSH ratios in control, mild, moder-
ate or severe dementia patients showed a significant
correlation with progression of disease [134]. Aging

related reduction of brain GSH was shown to go hand
in hand with decreased gene expression of �-glutamyl
cysteine synthetase in the brain [135]. While whole-
brain levels of GSH transferase in AD brains were
not significantly different from age-matched control
brains [131], mRNA expression levels of �-glutamyl
cysteine synthetase vary per region in the brain with
high expression levels in cortex, cerebellum and hip-
pocampus and low expression in the neostriatum of
mice [136, 137], and it was suggested that these
regional differences in de novo GSH generation can
explain regional differences in susceptibility to oxida-
tive stress [137].

Melatonin

Melatonin, or N-acetyl-5-methoxytryptamine, is
involved in various homeostatic functions to aid
cellular protection. It is an electroreactive neurohor-
mone with antioxidant activity that is synthesized
and secreted in the brain from mitochondria of
pinaelocytes, cells of the pineal gland [138–140].
Also the metabolites of melatonin, N1-acetyl-N2-
formyl-5-methoxykynuramine (AFMK) and N1-
acetyl-5-methoxykynuramine (AMK), demonstrate
antioxidant activity, either directly by scavenging a
variety of free radicals including hydroxyl, peroxyl,
superoxide, peroxide and peroxynitrite (ONOO−)
[141, 142], or indirectly by inducing antioxidant
enzymes including superoxide dismutase (SOD),
glutathione peroxidase (GPx), and GSH reductase
[143], increasing GSH synthesis [144], and inhibit-
ing prooxidant enzymes RNS, xanthine oxidase, and
myeloperoxidase [145]. Even though aging is related
to a decrease in CSF melatonin levels, presenile and
senile AD patients demonstrated an even stronger
reduction in melatonin levels that was shown to be
dependent on apolipoprotein genotype [146], one of
the strongest identified genetic correlates with AD.
How these factors and processes are associated is
currently unclear.

Transcriptional control of the endogenous
antioxidant system by Nrf2

The neuron-glial unit, the main interaction site
between neurons and cells of glial origin such as
astrocytes, regulates oxidative stress levels through
an intimately linked intercellular mechanism for
maintaining redox homeostasis [147, 148]. Brain
oxidative stress levels are maintained within strict
limits as a result of the astrocytic nuclear factor ery-
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throid 2 (NFE2)-related factor 2 (Nrf2) homeostatic
pathway [149]. Upon translocation to the nucleus,
Nrf2 binds to antioxidant response element (ARE), a
promotor element present on antioxidant genes [150].
Nrf2 degradation is controlled by ubiquitin-mediated
degradation, which, in turn, is regulated by cytoskele-
ton associated Kelch-like protein, Keap1 [151–154].
In the absence of oxidative stress, Nrf2 is transcrip-
tionally inactive as its activity is repressed by Keap1
[154]. Under conditions of oxidative stress Keap1 is
oxidized inhibiting the degradation of Nrf2. Tran-
scriptional activity of Nrf2 was shown to decline
upon aging [155, 156]. One study showed that AD
progression was linked with haplotype allele varia-
tion in the NFE2L2 gene promotor which encodes
for NRF2 [157] while therapeutic administration of a
lentiviral vector encoding for human Nrf2 was shown
to improve cognitive dysfunction in APP/PS1 [158],
and APP/PS1DeltaE9 mice [159]. Furthermore, a
recent transcriptomics study demonstrated that NRF2
knockout leads to early onset cognitive dysfunction,
plaque deposition and tau tangle formation [160].
Other recent experimental evidence linking AD to
the Nrf2 pathway showed that methysticin, a kavalac-
tone activating the Nrf2 signaling pathway, reduced
neuroinflammation, loss of memory and damage as
a result of oxidative stress in the hippocampus of
APP/Psen1 mice [161]. Even though the Nrf2 sig-
naling pathway is highly active in astrocytic cells,
this pathway is virtually absent in cells of neuronal
origin [162, 163] while the capacity of neurons to
degrade Nrf2 is high as a result of abundant neu-
ronal expression of the protein cullin 3 which leads to
destabilization of neuronal Nrf2 [162]. These obser-
vations argue for a high level of functional integration
of astrocytes and neurons in the brain to regulate
oxidative stress levels.

ALZHEIMER’S DISEASE RELATED
OXIDATIVE STRESS

Disturbed metal ion homeostasis in Alzheimer’s
disease

Metal ions such as Cu2+ and Zn2+ play an
important role in regulating synaptic functioning by
inhibiting the rat excitatory NMDA receptor [164],
and rat GABA receptor [164, 165]. Iron ion (Fe2+)
has been documented to regulate synaptic plasticity
and synaptogenesis as well as myelination [166] as
illustrated by the neuronal expression of iron trans-
porter DMT1 [167–169]. The levels of these metal

ions are normally strictly regulated to prevent oxida-
tive stress resulting from interaction of Fe2+ or Cu2+
with oxygen to generate radicals such as superox-
ide ions or hydroxyl radicals. Disruption of metal ion
homeostasis has been observed in various neurode-
generative disorders including AD [170]. A patient
study using instrumental neutron activation analy-
sis demonstrated that levels of Cu2+ were decreased
while Zn2+ and Fe2+ levels were elevated in the
hippocampus and amygdala of AD patients which
correlated with observed histopathological changes
in these regions [171]. On the other hand, serum lev-
els of Cu2+ were shown to be increased in AD patients
compared to control subjects [172]. Also in preclin-
ical stages and MCI Fe2+ levels were increased in
the cortex and cerebellum and correlated with gener-
ation of radicals [173]. Compared with the neuropil
of the amygdala of AD patients, senile plaques were
observed to contain increased levels of Zn2+, Fe2+,
and selectively in the rim of the plaques, Cu2+ [47].
As Zn2+, Fe2+, and Cu2+ have been shown to inter-
act with A� in vitro [174], metal ion dyshomeostasis
has been postulated as potential mechanism by which
AD pathology may be modulated.

Spatial link between amyloid plaques and cells
exhibiting oxidative damage

A multiphoton microscopy-based study using
the genetically encoded calcium indicator Yellow
Cameleon 3.6 packaged into an adeno-associated
virus (AAV2) and expressed in the brains of adult
transgenic APP/PS1 mice showed that calcium over-
loaded neurites in living animals were more likely to
be located in close proximity (<25 �m) of a plaque
[175]. This observation suggests a direct or spatial
link between pathological alterations in neurons and
the formation of senile plaques. A second marker
that indicates that there is a spatial link between
AD-related deposits in the brain and neuronal func-
tioning was the receptor for advanced glycation end
products (RAGE). Neuronal cells adjacent to senile
plaques display increased RAGE expression while
little change in expression was demonstrated in brain
regions remote from plaques [176]. Two other mark-
ers that have been used to topologically differentiate
subpopulations of cells affected by oxidative stress
include p50, which is a DNA binding subunit of tran-
scription factor NFκB [177, 178], and HO-1. Cellular
structures containing accumulations of A� displayed
increased levels of oxidative stress as demonstrated
by elevated levels of HO-1, and p50 [176]. Inactive
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NFκB resides in the cytosol and is bound to inhibitory
protein IκB which prevents nuclear translocation of
NFκB. Phosphorylation, ubiquitination, and degrada-
tion of IκB drives the activation of NFκB [179]. The
redox state regulates activation and nuclear translo-
cation of NFκB [180], and, as such, ROS was found
to induce phosphorylation of IκB via activation of
responsible kinases [181, 182]. Using p50 and HO-
1, it was observed that the spatial link found between
A� deposits and induction of cellular ROS is not lim-
ited to CSF residing neurons, but this observation
extends to endothelial and smooth muscle cells in
cerebral blood vessels. The expression of HO-1 was
found to be elevated in AD injured neuronal cells, a
feature that was more pronounced in regions close to
neurofibrillary tangles and A� plaque deposits [183].

Oxidative stress is an early stage pathological
feature

A redox proteomics study of the brain of Down
syndrome (DS) patients prior to onset of AD pro-
vided insight into the role of oxidative damage
in the development of DS related early onset AD
[184]. Male and female DS and control brains
were analyzed postmortem for carbonylation lev-
els of proteins as hallmark of oxidative stress. DS
brains showed increased carbonylation of six pro-
teins including cathepsin D, glial fibrillary acidic
protein and succinyl-CoA:3-ketoacid-coenzyme A
transferase 1 mitochondrial protein. Carbonylation
affected protein functionality, while at the same
time, proteasome activity and autophagy activity
were decreased [184] potentially leading to loss of
functional protein. Even though this study was con-
ducted on a small number of subjects, it did provide
important insight into the potential role of oxida-
tive stress in early stages of disease. A larger scale
study using human peripheral blood mononuclear
cells (PBMCs) derived from 104 MCI subjects sim-
ilarly showed increased oxidative stress markers as
detected by the fluorescent probe DCFH2-DA [185].
Also, in MCI and mild AD patient PBMCs homeosta-
sis of ER stress-mediated Ca2+ was disturbed with
decreased SOD1 levels [185]. Analysis of lympho-
cytes obtained from MCI subjects and AD patients
similarly showed increased ROS levels, detected by
8OHdG, compared to lymphocytes derived from an
age-matched control population [186]. The valid-
ity of using 8OHdG brain levels as a biomarker
to detect oxidative stress-related damage to DNA
in AD patients has been questioned [187]. How-

ever, the detection of increased levels in the frontal
cortex of other modified macromolecules such as
F2-isoprostanes as well as 3-NT and oxidized glu-
tathione detected in patients with probable AD further
corroborates the thought that oxidative stress is an
early stage pathological feature of AD [188]. The
work by Ansari and Scheff also compared oxidative
stress levels in age-matched groups with progressive
forms of cognitive disorder, from non-cognitively
impaired to AD, and showed that oxidative stress
progressively worsened with cognitive decline. In
addition to this, activities of SOD and catalase in
post mitochondrial supernatant and in mitochondrial
and synaptosomal fractions of the frontal cortex were
significantly declined already in MCI subjects [188].
Consistent with this, an earlier longitudinal study on
autopsied control and patient brains demonstrated
that levels of isoprostane (F2) and F4-neuroprostane
were increased in both amnestic MCI and late stage
AD patients in various regions of the brain [189].

A vascular component

The microcerebrovascular structure showed age-
dependent changes [190] which are more pronounced
in cognitive disorders such as dementia [191, 192].
For example, the basement membranes of corti-
cal capillaries of patients suffering from cognitive
disorders were significantly thicker than those of
age-matched controls [192]. Smooth muscle atro-
phy and general disorganization of these cells was
consistently observed in AD subjects although these
features seemed unrelated to the deposition of A�
[193]. These structural changes translate into a
decreased capillary flow in aged (16 months old)
compared to young (2 months old) mice [194] as
well as aggravated loss of blood flow rate in an aged
APPswe/PS1�E9 transgenic mouse model [195]. The
observed structural and functional changes in the
microvascular organization thus lead to hypoperfu-
sion and a general inability of the cerebral vasculature
to meet the metabolic needs of the brain while this
was partly compensated for by an increased abil-
ity to extract oxygen from the remaining blood flow
[196]. However, the remaining metabolic deficiency
is of sufficient magnitude to result in neural hypoxia
[196]. Various conditions have been associated with
increased brain oxidative stress and neuronal apop-
tosis in response to hypoxia, including sleep apnea
[197, 198], exposure to carbon monoxide [199], and
ischemia [200]. Sleep apnea co-occurs frequently
with AD [201] while prevalence of sleep apnea
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positively correlates with aging [202, 203], and
treatment of sleep apnea slows down the rate of
cognitive decline in patients diagnosed with mild-
to-moderate AD [201]. Further, hypoxia induced
oxidative stress in the brain has been shown to induce
cognitive deficits in rats [204]. The mechanisms by
which the brain adapts to hypoperfusion-induced
hypoxia have been explored and most proposed
mechanisms are centered around the thought that
activation of hypoxia-inducible factor 1� (HIF-1�)
plays an important role. HIF-1� is a component of
a heterodimeric complex with the aryl hydrocarbon
nuclear translocator (ARNT or HIF�) [205]. Under
normoxic conditions, HIF� is dissociated from this
complex and unstable as a result of its hydroxylation
which targets it for ubiquitination and proteasomal
degradation [206–208]. Hypoxia prevents hydroxy-
lation of HIF� by inhibition of the two hydroxylating
enzymes, factor inhibiting HIF-1 and prolyl hydroxy-
lase enzymes [209, 210]. This stabilization induces its
nuclear localization and heterodimeric complexation
with ARNT. Subsequent co-recruitment of this com-
plex with transcription coactivators p300 and CREB
binding protein (CBP) initiates gene transcription.
Hypoxic conditions are considered to raise cytoso-
lic ROS levels and, in this way, induce the activation
of HIF (reviewed in [211]) probably in a mito-
chondrial complex III-dependent manner [212]. The
HIF-dependent hypoxia-inducible genes are gener-
ally involved in processes aimed at promotion cellular
survival under hypoxic conditions. A study inves-
tigating mRNA expression in adult rat brains upon
occlusion of the middle cerebral artery demonstrated
that glucose transporter-1 (GLUT-1) and glycolytic
enzymes (phosphofructokinase, aldolase, and pyru-
vate kinase) were upregulated to increase transport
of glucose and glycolysis [213].

GENETIC AND OTHER FACTORS THAT
CORRELATE OXIDATIVE STRESS TO
ALZHEIMER’S DISEASE

This paragraph will first review the established
experimental evidence that has demonstrated a con-
nection between oxidative stress and AD, such as
clusterin, apolipoprotein E (ApoE), and genes related
to A�PP processing machinery. Second, this para-
graph will also highlight some potential interactions
that have yet to be experimentally established but
for which observations have shown to connect to
both AD and oxidative stress. These factors include

Klotho, and circadian clock genes and we envisage
that future investigation into these factors and their
relation to AD and oxidative stress levels may high-
light alternative or additional mechanisms for the
interaction of these clinical features. Figure 1 summa-
rizes the genetic factors associating AD and oxidative
stress to date.

Clusterin

Apolipoprotein J is a ubiquitously expressed
secreted glycoprotein which is also known as clus-
terin (CLU). Aging induces elevated levels of CLU
gene expression [214, 215] and plasma CLU [216].
In a genome-wide association study CLU has been
identified as a genetic determinant of AD [217] and
plasma CLU levels were associated with atrophy
of the entorhinal cortex and clinical progression of
the disease [218] as well as with longitudinal brain
atrophy in MCI patients [219]. Apart from aging,
expression of the CLU gene was demonstrated to be
sensitive to heat-shock induced changes in the organ-
ism or the direct environment of the organism as a
result of the presence of activating protein-1 (AP-1)
and CLU-specific element regulatory elements in its
promotor [220]. Consistent with the idea that CLU
plays a role in stress-associated coping of cellular
response a study in H9c2 cardiomyocytes revealed
that the Akt/GSK-3� pathway may be involved in
the anti-oxidant and anti-apoptotic effect of CLU
in a megalin-dependent manner [221]. Multi-ligand
receptor megalin has been identified to also act as
receptor of clusterin [222]. Various cellular stress
stimuli have been shown to regulate transcriptional
activity of AP-1 [223]. Differential CLU expression
was similarly observed in other oxidative stress-
related pathologies including asthma [224], atopic
dermatitis [225], diabetes type 2 [226], coronary heart
disease [226], and cancer [227]. Oxidative stress
increases CLU expression. This was demonstrated
in a study in which human diploid fibroblasts were
treated with H2O2 which resulted in increased mRNA
levels of CLU [228]. In human neuroblastoma cell
lines SH-SY5Y and IMR-32 both mRNA and pro-
tein levels of CLU were found to be upregulated
in response to pro-oxidant pair iron-ascorbate [229].
In line with these observations, CLU was originally
identified to function as a chaperone protein where its
activity was reported to depend on cellular redox state
[230]. CLU was shown to protect against oxidative
stress in various cellular systems including fibroblasts
and prostate cancer cells [221, 231] but also in vivo
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Fig. 1. Genetic factors and molecular mechanisms of oxidative stress in Alzheimer’s disease. Overview of probable (experimental evidence
available in literature) and possible (no direct experimental evidence available) genetic factors that associate oxidative stress with Alzheimer’s
disease. Various molecular mechanisms by which oxidative stress and Alzheimer’s disease may be associated have been described. These
often involve the two hallmark proteins A� and tau and effects may be directly involving the generation of ROS or indirectly via interaction
with various cellular factors giving rise to increased ROS generation or lowered endogenous antioxidant capacity.

in a Drosophila melanogaster model [232]. In neu-
roblastoma N2a and SH-SY5Y cells knockdown of
CLU by short hairpin RNA interference was found to
down-regulate antioxidant capacity [233]. The pre-
cise anti-oxidant mechanism of CLU is not known
although blockage of the sulfhydryl groups contained
in the sequence of the protein resulted in abolishment
of its oxidative stress preventive activity [232]. A
review covering the involvement of CLU in oxidative
stress detection and action has been published before
[234]. Apart from an antioxidative effect of CLU,
an indirect role of CLU actually promoting oxidative
stress has been described showing that the presence
of CLU induces the formation of slowly sedimenting
complexes composed of SDS-resistant synthetic A�
assemblies that, in turn, induced oxidative stress in
PC12 cells [235].

Apolipoprotein E and Thioredoxin-1

Apolipoprotein E4 (ApoE4) was identified as one
of the major genetic risk factors for AD [236–239].
Apolipoprotein E exists in three isoforms, �2, �3,

and �4, which vary in their amino acid compo-
sition. Carriers of the �4-allele have an increased
risk of developing AD [236] as well as a decreased
age of AD onset [237] compared to non-�4 carri-
ers. The pathogenic origins of ApoE4 have been
studied to great length and indicate that ApoE4 is
involved in processes such as aggregation and clear-
ance of A� [240, 241], mitochondrial dysfunction,
and impairment of calcium [242, 243] or cellular
iron homeostasis [244], and ApoE4 affects synaptic
architecture and functioning [245, 246]. A potential
connection between the ApoE allele, AD, and oxida-
tive stress was first deduced from the observation
that the extent of oxidative stress and anti-oxidant
defense is related to ApoE genotype in mice and
in patients [13, 244, 247–249]. ApoE was demon-
strated to act, directly or indirectly, as an antioxidant
against hydrogen peroxide-induced cytotoxicity in a
B12 ApoE expressing cell line [250]. Elevated lev-
els of peroxidized plasma low-density lipoproteins
were observed in ApoE-deficient mice [251]. Levels
of lipid oxidation were significantly increased in the
frontal cortex of AD patients that were homozygous
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or heterozygous for the �4-allele of ApoE compared
to homozygous �3 carriers and controls [13]. Upregu-
lation of catalase activity was exclusively observed in
frontal cortex tissue of homozygous ApoE4 carriers
while SOD activity and concentrations of glutathione
were not different from that of controls [13]. Addi-
tionally, levels of HNE were increased in �4-carriers
[84]. Further, mouse brain synaptosomes expressing
human ApoE4 were more susceptible to A�42-
associated oxidative stress than synaptosomes from
mice expressing human ApoE2 or ApoE3 [252]. Var-
ious experimental findings shed light on the potential
molecular mechanism underlying these observations.
They show involvement of thioredoxin-1 (Trx1), an
endogenous antioxidant with a downregulating role in
apoptosis signal-regulating kinase-1 (Ask-1) [253].
Thioredoxin reductases are reducers of Trx1 [254].
Levels of Trx1 were reduced in AD brains [255, 256]
depending on ApoE genotype, but also in ApoE4
expressing mouse hippocampi, and human primary
cortical neurons and neuroblastoma cells to which
ApoE4 was supplemented with the culture medium,
compared to ApoE3 [257]. At the same time, Trx1
mRNA levels in ApoE4 TR mouse hippocampi
were elevated consistent with findings reporting
increased Trx1 expression in conditions of oxida-
tive stress [258]. Persson and colleagues suggested
that increased mRNA levels of Trx1 potentially act
as a compensatory mechanism for the increased
cathepsin D-induced Trx1 turnover as observed in
SH-SY5Y neuroblastoma cells [257]. Moreover,
A�1-42 was demonstrated to cause transient oxidation
of Trx1 [255] as well as ApoE4-induced downreg-
ulation of this protein which resulted in activation
of an apoptotic pathway involving the translocation
of Death-Domain Associated Protein-6 [255, 257,
259] without affecting catalase and GSH activities
[257].

Down syndrome, a trisomy of AβPP encoding
chromosome 21

Individuals with DS are prone to develop early-age
AD with pronounced oxidative stress. DS is char-
acterized by trisomy of chromosome 21 (HSA21),
which encodes A�PP as well as some proteins of rel-
evance to redox homeostasis providing an interesting
group of patients to study early stage aspects of oxida-
tive stress in AD pathogenesis in response to a defined
genetic condition. Comparable to observations in
AD patients, mouse models of DS demonstrated
deficits in hippocampal learning and memory as well

as neurodegeneration of cholinergic basal forebrain
neurons [260, 261]. DS patients display features of
cellular energy impairment [4]. Recent transcrip-
tomic profiling of the skeletal muscle of a DS mouse
model showed that among the identified differen-
tially expressed protein-coding genes in this tissue,
two, Sod1 and Runx1, were implicated in oxida-
tive stress [262]. Chromosome HSA21 also codes
for SOD explaining why expression levels of SOD
are increased in DS [263]. Transgenic mice over-
expressing SOD1 demonstrate excessive levels of
oxidative stress [264] because concentrations of CAT
and GPx, two enzymes that act to neutralize hydro-
gen peroxide, the product of SOD1 activity, do not
rise accordingly. Besides SOD1 fifteen other genes on
HSA21 were predicted to play a role in mitochondrial
energy generation and the metabolism of ROS [265].
Levels of various ROS, RNS and aldehyde products
of lipid peroxidation were found to be increased in
brain [20, 266] and urine [267] of DS humans and
animals [266] indicating that oxidative stress may
play a role in the pathogenesis of DS associated AD.
Levels of oxidative stress, i.e., high ratio between
SOD1 and GPx, correlated with cognitive pheno-
type [268]. However, a recent study showed that
administration of melatonin at the pre- and post-natal
stages partially alleviated oxidative stress but did not
improve cognitive function in a mouse model [269].
The process of programmed cell death was found
to coincide with increased levels of oxidative stress,
compared to control cells. Programmed cell death
could be rescued by administration of free radical
scavengers including vitamin E, and N-tert-butyl-2-
sulphophenylnitrone [263] but dietary parameters did
not alleviate oxidative stress biomarkers in young
adult DS patients [20]. Similar to AD, the DS brain
shows features of oxidative stress at very early
stage. For example, the DS fetal brain cortex was
observed to show increased levels of thiobarbituric
acid reactive substances (TBARs), HNE, and protein
carbonyl groups compared to controls [270]. Also
end-products of non-enzymatic glycation, pyrraline
and pentosidine, were increased in DS fetal tis-
sue [270] and in amniotic fluid of DS pregnancies
[271].

AβPP processing machinery

Cells of both neuronal and non-neuronal origin
exposed to H2O2 or HNE generate increased levels of
intracellular and secreted A� [272–275]. The role of
oxidative stress in A� generation was further demon-
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strated in Tg19959 mice, which overexpress a double
mutated form of A�PP. Upon crossing this mouse
line with a mouse in which one allele of MnSOD was
knocked out, brain A� levels and A� plaque load
were significantly increased [276]. Similarly, hypoxia
treated transgenic APP23 mice that were subjected
to hypoxia conditions demonstrated increased mem-
ory deficits and deposition of A� into plaques [277].
Repeated exposure to hypoxia facilitated progress of
AD-like pathology in aged APPSwe/PS1A246E trans-
genic mice [278]. Vascular deposition of A� on the
surface of cerebral endothelial cells results in vascu-
lar degeneration which has been observed in AD and
leads to a condition termed cerebral amyloid angiopa-
thy [279]. Exposure of primary cerebral endothelial
cells derived from 2-month-old Tg2576 mouse brains
to H2O2 resulted in upregulation of A�PP expression
and altered A�PP processing to favor the amyloido-
genic pathway [280]. Also in humans it was found
that oxidative stress induced by hypoxia due to
cardiac arrest increased serum A� levels [281] sug-
gesting that the machinery that generates this peptide
is upregulated under pro-oxidative stress conditions
in a wide range of disease models affecting various
regions of the brain.

Oxidative stress has an Aβ species specific effect

A� is generated as a heterogeneous pool of pep-
tides which vary in the number of C-terminal amino
acids. The two most prevalent types of A� are the 40-
amino acid (A�1-40) and the 42-amino acid (A�1-42)
isoforms. It has been demonstrated that the longer
A�1-42 peptide is inherently more amyloidogenic
than A�1-40. Analysis of the specific species of A�
that were generated under HNE-induced oxidative
stress conditions using a TN2 cell culture revealed
a 70-80% and 60-140% increase of intracellular
A�x-40 and A�x-42, respectively. Secreted levels of
A�x-40 were not affected by oxidative stress while
secreted A�x-42 was increased by approximately 50%
compared to control cells [274]. These findings are
potentially pathologically relevant as it was reported
previously by our group and others that a marginally
increased A�1-42:A�1-40 ratio has severe implica-
tions for synaptotoxic response [282–284]. A� is
generated by sequential cleavage of A�PP by two
enzymes, �-secretase and BACE, by a process termed
amyloidogenic pathway. Alternatively, A�PP can be
cleaved into an N-terminally truncated fragment of
the A� peptide, called the p3 peptide, by �- and

�-secretase-mediated processing. Details of A�PP
processing have been extensively covered in a number
of reviews [81, 285].

Both presenilin and anterior
pharynx-defective-1, components of γ-secretase,
are upregulated in conditions of oxidative stress

Psen1 constitutes the catalytic site of the A�PP
cleaving enzyme �-secretase. In concerted action
with BACE, psen1 is responsible for the genera-
tion of A� (reviewed in [286]). Clinical mutations
in psen1 cause familial forms of early onset AD
(reviewed in [287]) and can affect �-secretase medi-
ated processing of A�PP in various ways [288].
Generally, mutations in psen1 comprise the compo-
sition of the heterogeneous A� mixture by shifting
the ratio between the various A� peptides gener-
ated [289–291]. In human SK-N-BE neuroblastoma
cells, which were exposed to HNE- or H2O2-
mediated oxidative stress, an increase in A� level
was found that could be attributed indirectly to �-
secretase in a c-jun N-terminal kinase (JNK)/c-jun
pathway/BACE1 dependent manner [75]. However,
a direct relation between hypoxia-induced oxidative
stress and �-secretase functionality exists. This was
later demonstrated in zebrafish by showing that HIF-
1� induces increased mRNA expression levels of
zebrafish related PSEN1 [292]. In line with these
observations, PSEN1 -/- fibroblasts demonstrated
impaired induction of HIF-1� [293], suggesting an
apparent bi-directional interaction between psen1
and HIF-1�. Importantly, this factor plays a cru-
cial role in the regulation of oxygen homeostasis
and the expression and stability of one of the HIF-
1� domains is regulated by oxygen levels [205,
209, 210]. Anterior pharynx-defective-1 (APH1) is
another component of �-secretase and it was shown
that Hela cells express increased levels of APH1� in
response to chemical hypoxia induced activation of
HIF-1� resulting in increased A�PP and Notch pro-
cessing [294]. NF-kB has been identified as important
regulator of HIF-1� expression [295]. NF-κB was
shown to become activated and translocated to the
nucleus in response to oxidative stress by addition
of metformin, a pro-oxidative biguanide, to LAN5
neuroblastoma cells. This directly induced transcrip-
tional activation of A�PP and psen1 and ultimately
into increased A�PP cleavage, and intracellular accu-
mulation of A� which promoted A� aggregation
[296].
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β-secretase is upregulated at a transcriptional
level by oxidative stress

BACE1 is an integral part of the amyloidogenic
processing pathway of A�PP and the functionality of
this enzyme was, similar to �-secretase, reported to
be affected by oxidative stress. Low micromolar con-
centrations of HNE produced by pro-oxidant stimuli
ascorbic acid/FeSO4 or H2O2/FeSO4 or by direct
addition to cell medium of NT2 cells in culture were
reported to induce BACE1 activity. This induction
leads to an increased production of APP C-terminal
fragments without affecting A�PP synthesis. Pre-
treatment of these NT2 cells with �-tocopherol
prevented BACE induction and CTF generation
demonstrating direct involvement of oxidative stress
in inducing BACE activity [81, 297]. Also in
APP/PS1 mice, it was shown that administration
of an antioxidant compound, tricyclodecan-9-yl-
xanthogenate (D609), which is a GSH-mimetic
compound, leads to decreased levels of oxidative
stress as well as a reduction in BACE1 levels result-
ing in decreased A�PP processing into A� [298].
Various other publications similarly reported that
BACE1 protein expression levels were increased in
response to oxidative stress [80, 274, 299–305]. A
similar observation has been reproduced in various
model systems. For example, a developing (48-h
post fertilization) zebrafish animal model exposed to
hypoxia showed that the mRNA levels and activity of
zebrafish bace1, the zebrafish orthologue to human
BACE1, were affected by oxidative stress. At the
same time, the level of CAT was found to be increased
upon exposure of zebrafish to hypoxia [292]. Also,
in murine primary cortical neuronal cultures, severe
and cytotoxic levels of oxidative stress lead to an
increased BACE1 expression. Mild oxidative stress
conditions were found to result in subcellular redis-
tribution of BACE1 that promoted amyloidogenic
processing of A�PP [306]. Apart from in various
animal and cellular models, increased BACE1 levels
and activity were also found in brains of sporadic AD
patients [307–309]. To understand the cellular signal-
ing pathways involved in oxidative stress-regulated
expression of BACE1, an NT2 cell-based assay
was used. In this system, pharmacological based
inhibition of C-Jun N-terminal Kinase (JNK) and
p38MAPK, involved in the stress activated protein
kinase (SAPKs)/JNK signaling pathway, but not Akt
signaling, was found to inhibit transcriptional regu-
lation of BACE1 [274]. P38MAPK was also reported
to be active and identified in A� deposits of A�PP

tg mice [310]. These observations are consistent with
an earlier report that showed that Sp1 regulates tran-
scription of BACE1, where expression levels of Sp1
were positively correlated with the generation of
BACE1 and A�PP processing [311]. In line with this,
using a lipofuscinfluorphore A2E-mediated photo-
oxidation model to investigate the role of BACE1
in age-related macular degeneration, it was shown
that BACE1 expression is competitively regulated by
Sp1 and DNA methyltransferase 1 (DNMT1) after
photo-oxidation [313]. DNMT1 levels were report-
edly decreased resulting in demethylation of specific
loci within the BACE1 gene promotor [312]. More-
over, members of the SAPK family were also found to
be upregulated in AD patient brains [30, 313] and are
activated by various stress signals including oxida-
tive stress [314, 315]. The oxidative-stress regulated
involvement of JNK has been further demonstrated in
studies using transgenic mouse models. For example,
JNK was found to be significantly activated in mutant
A�PP tg mice with extensive oxidative damage but
not in mutant A�PP tg mice with little oxidative dam-
age [100].

Downregulation of non-amyloidogenic AβPP
processing

While it was consistently reported that the
amyloidogenic processing pathway of A�PP is
upregulated by various direct and indirect mech-
anisms, the non-amyloidogenic pathway, involving
sequential cleavage of A�PP by �-secretase and
�-secretase, was found to be downregulated under
conditions of oxidative stress [280]. Multiple lines
of evidence have shown that �-secretase is upregu-
lated under conditions of oxidative stress. As such,
it was anticipated that the net lowering of the
non-amyloidogenic processing of A�PP should be
accommodated for by a decrease in �-secretase
activity. It was indeed shown that human neurob-
lastoma cell line SH-SY5Y exposed to hypoxic
conditions decreases the expression of disintegrin and
metalloproteinase domain-containing protein 10, or
ADAM-10, also called �-secretase, in an O2-dose
dependent manner [316]. Similarly, human MSN
cells exposed to oxidative stress induced by H2O2
or FeCl2 were shown to downregulate the active
form of ADAM10 [303]. Mechanisms that explain
the downregulation of �-secretase under conditions
of oxidative stress have not been explored in great
detail. One of the hypotheses that has been postu-
lated involves the JNK3-dependent phosphorylation
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of Thr668 of A�PP which is considered to be a direct
target for BACE1 [303, 317].

Circadian clock genes

Even though the connection between circadian
clock, oxidative stress, and AD has been little investi-
gated and may not be directly related, the findings that
have been reported on this topic show that a poten-
tial interaction between these features may well exist
and warrants further investigation. This paragraph
summarizes the experimental evidence in supports
of such a connection. Circadian rhythm disturbances
and associated disorders of the sleep-wake cycle,
i.e., fragmentation of sleep and decreased duration
of rapid eye movement sleep (REM), occur at var-
ious stages of AD-related neurodegeneration and
symptoms are generally more severe with increas-
ing A� burden and tau pathology [318–321]. One
report shows that extensive loss of sleep reduced the
activity of SOD and the production of ATP in rat
hippocampi [322], features that are strikingly sim-
ilar in the AD brain. In a follow-up report, apart
from reduced SOD activity, it was found that the
activity of glutathione peroxidase was also decreased
while liver malondialdehyde levels were increased
with the extent of sleep deprivation [323]. On the
other hand, brain and peripheral tissues were shown
to differ in their peroxiredoxin oxidation rhythms
[324] as well as in other clock components [325].
This means that peripheral observations cannot be
automatically extrapolated to brain processes. Dur-
ing periods of REM sleep firing rates of wake-active
noradrenergic locus coeruleus neurons, cells that dis-
play high sensitivity to metabolic stress [326–328],
are profoundly reduced [329]. Extensive wakefulness
induces loss of locus coeruleus neurons and sirtuin
type 3 (SirT3) was observed to be involved in this
neurodegenerative process [330]. NAD+-dependent
deacetylase SirT3 is an important regulator of energy
production and redox response by reduction of GSH
[331, 332], mediating the upregulation of SOD2 and
catalase [333], and activation of SOD2 [334]. Exten-
sive deprivation of sleep is related to reduced levels of
SirT3 in young adult wild type mice locus coeruleus
neurons while oxidative stress levels increase pre-
sumably as a result of a combined increase in
metabolic activity and decline in antioxidant response
[330]. Other circadian clock related factors asso-
ciated with redox homeostasis of NAD cofactors
include transcriptional activator complex BMAL1
and its binding partners CLOCK and NPAS2 [335].

These clock genes were observed to be involved
in glucose metabolism and redox homeostasis in
peripheral tissues [335–337]. Expression levels of
the master circadian clock regulator genes Bmal1
and Clock are significantly decreased in the cere-
bral cortex of aged mice [338] although expression
levels of these genes in AD brains have not been
published. Mice generated with a deletion of Bmal1
demonstrated increased systemic [337, 339] and low
levels of brain oxidative stress [340] mediated by
a disturbance of its transcriptional targets, includ-
ing Period Circadian Regulator 2 (Per2) and albumin
D-element binding protein (Dbp) [341] as well as
neuropathologies and synaptic degeneration [337,
341]. For example, the kinetic occipital region in
the brain of these Bmal1 knock-out mice showed
a three-fold increase in level of F4-neuroprostanes
when measured indicative of increased lipid peroxi-
dation levels in neuronal cells [341]. The deletion also
resulted in increased neurodegeneration caused by
mitochondrial 3-nitropropionic acid which was sug-
gested to be a direct consequence of the decrease in
BMAL1 transcription [341]. Both SirT3 and BMAL1
levels are tightly regulated by circadian rhythmicity
of oxidoreductase factor nicotinamide adenine dinu-
cleotide (NAD+) [342], while, in turn cellular redox
status affects the activity of clock transcription factors
[335]. Proteasome expression levels and activity were
observed to follow circadian oscillations that corre-
lated with the level of carbonylated proteins [343]
demonstrating that clearance of oxidized proteins are
also showing circadian rhythm. It would be of interest
to investigate Bmal1 and Clock expression levels in
AD patient brains to establish a possible connection
between the observed symptoms of sleep depriva-
tion in AD, oxidative stress status and cognitive
dysfunction.

Klotho, the aging suppressor gene, regulated by
oxidative stress

Klotho is a single-pass transmembrane protein
hormone containing a long type I transmembrane
domain and a short secreted domain [344]. The
latter is released into the extracellular space upon
insulin-mediated release by ADAM family mem-
bers ADAM10 and ADAM17 [345]. Mutations in
the KLOTHO gene were observed to induce a human
aging resembling phenotype in a transgenic mouse
model which could be genetically rescued by exoge-
nous expression of klotho cDNA [346]. Consistent
with this, aging was found to be suppressed in a
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klotho overexpressing mouse model [347]. Single
nucleotide polymorphisms of KLOTHO affect traf-
ficking and catalytic activity of klotho which was
associated to onset of aging in a human popula-
tion based study [348]. Expression of the protein
declines with age as was demonstrated by microar-
ray analysis of the aging brain of a rhesus monkey
model [349]. Subsequently, the klotho gene has
been dubbed an aging suppressor gene which acts
by regulating oxidative stress [350] because it was
shown to effectively reduce urinary excretion of 8-
OHdG upon renal overexpression in mice [351]. This
hypothesis was further supported by the finding that
different cell types incubated with Klotho protein
were protected from oxidative stress and apopto-
sis induced by paraquat [350], hydrogen peroxide
[352], glutamate and oligomeric A� [353]. Apart
from in the kidney, the protein is also expressed in
the choroid plexus in the brain with low levels of
expression in the hippocampus [346, 354]. In this
brain region Klotho plays a role in hippocampus-
dependent memory by regulating adult hippocampal
neurogenesis [355]. Mutation of klotho in a trans-
genic mouse model demonstrated increased levels of
8-OHdG and malondialdehyde in the hippocampus in
an age-dependent manner [356]. One of the molecular
models by which secreted Klotho has been suggested
to regulate oxidative stress includes the insulin/IGF-
1 growth signaling pathway [357]. Klotho inhibits
this pathway leading to activation of Forkhead box O
(FOXO) transcription factor. This, in turn, enhances
the expression of ROS scavenging enzyme mitochon-
drial manganese SOD2 [350] indicating that Klotho
may perhaps lend its anti-aging capacity by indi-
rect regulation of the generation of an antioxidant
enzyme.

PUTATIVE MOLECULAR MECHANISMS
OF ALZHEIMER’S DISEASE-RELATED
OXIDATIVE STRESS

One of the striking observations is that microglia
in close proximity to amyloid plaques are often
found to be activated and release O2

·– and H2O2
[358]. Clearly, the multicellular organization of the
brain may be a relevant determinant in outcome of
oxidative stress in AD, and potentially also other,
neurodegenerative diseases. For both A� and tau a
number of potential contributory as well as inhibitory
pathways in the process of oxidative stress genera-
tion have been proposed. For example, A� can reduce

Cu2+ to Cu+ in a catalytic cycle that uses O2 and bio-
logical reducing agents as substrates while generating
neurotoxic H2O2 [359, 360] and a peptide radical
inducing oxidation and dityrosine cross-linking of
A� were observed [93, 361]. Figure 1 provides an
overview of the various cellular factors and mecha-
nisms that are thought to associate oxidative stress
and AD to date.

A protective or advancing effect of Aβ on
oxidative stress may be subtly defined

A potential anti-oxidant effect of A� has been
attributed to the reported ability of A� to sequestrate
redox-active metals [54, 361–367]. As a result of this
binding, it has for example been proposed that A�
may quench Cu2+ preventing Cu2+ from generating
H2O2. In contrast, other reports have shown that the
binding of A� to such transition metal ions actually
results in enhanced formation of ROS [368] by the
reported ability of A� to reduce Cu2+, upon binding,
to Cu1+ [369]. A subsequent publication questioned
the role of Cu2+ binding in generation of ROS as it
was shown that rodent A�1-42, in which Cu2+ binding
is ameliorated, results in similar levels of oxidative
stress as human A�1-42 [369]. Heme-a, an essen-
tial component of mitochondrial complex IV, was
shown to interact with A�1-40, resulting in decreased
assembly of this complex into a functional electron
transport chain complex [90]. These in vitro observa-
tions are supported by the finding that mitochondrial
whole brain levels of cytochrome-a are decreased
with 25% in the AD brain [370, 371]. Both these pro-
tective and toxic roles of A�-metal complexation in
oxidative stress receive ample support in the scientific
field and perhaps the actual outcome whether metal
ion binding is toxic is more subtly defined by factors
such as A� level, A� aggregation state, co-occurring
factors such as the availability of a reducing agent
[359], redox kinetics [372], or disease stage. Support-
ive of such a hypothesis is the observation that A� was
found to act as a neurotrophic agent selectively at low
nM concentrations while at higher peptide concentra-
tions neurotrophic functionality was abolished [363,
373, 374]. Even though the functional role of A� has
been heavily debated, it has been argued that antioxi-
dant activity may be the primary role of this peptide in
the brain [374]. However, a compelling finding argu-
ing against an anti-oxidant function as primary role
for A� was that oligomeric human A�, but not rodent
A�, can bind two molecules of heme with sub �M
affinity which results in the generation of a peroxidase
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[362]. Moreover, rat A�1-40 was reported to inter-
act with zinc with lower affinity than human A�1-40.
Such species specificity directly argues against a pri-
mary anti-oxidant role of A� although it does not
rule out the potential of the peptide to also, next to its
yet to identify primary role, demonstrate anti-oxidant
activity via indirect routes.

Tau plays an indirect role in oxidative stress via
organelle transport

Upon overexpression tau inhibits kinesin-
dependent transport of mitochondria and
peroxisomes into neuronal processes while the
microtubular network remains intact [375]. Lack
of transport of these two organelles was shown to
deplete neurites from ATP and protection mech-
anisms against oxidative stress as was illustrated
by an increased vulnerability of tau overexpressing
differentiated N2a cells upon exposure to H2O2
[375]. Another parameter proposed to play a role in
tau-induced oxidative stress includes tau aggregation
into paired helical filaments [376]. Addition of
synthesized HNE at micromolar concentrations
to retinoic acid differentiated P19 embryonal car-
cinoma cells induced tau to crosslink into high
molecular weight species [376]. Crosslinking of
tau into paired helical filaments was shown to be
driven by abnormal levels of phosphorylation, or
hyperphosphorylation, of tau, which renders the
protein insoluble and dysfunctional [377, 378].
The role of phosphorylation of tau in this process
and the link to oxidative stress were highlighted
by three subsequent publications showing that
1) phosphorylation of tau is partly regulated by
the extracellular signal-regulated protein kinase
(ERK2) which becomes activated upon exposure
to H2O2 [379], and also, 2) by rapid and potent
activation of transcription factor NFκB by reactive
oxygen intermediate-mediated release of inhibitory
factor IκB from NFκB [181], and 3) acrolein, a
peroxidation product of arachidonic acid, induced
p38 stress-kinase-mediated tau phosphorylation
[380]. An in vitro follow up study demonstrated
that co-incubation of a pseudo-phosphorylation
mimicking form of tau with acrolein and methylgly-
oxal induced the formation of tau dimers and high
molecular weight oligomers [381]. Other than phos-
phorylation, also the glycation of tau was observed
to connect tau tangle formation with oxidative stress.
Using SH-SY5Y cells, advanced glycation end
product-recognizing antibodies, increased HO-1 and

malondialdehyde reactivity were shown to colocalize
with tau paired helical filaments [111].

Direct generation of ROS by Aβ fragments

A pioneering publication in 1994 used mass
spectrometry and electron paramagnetic resonance
spin trapping to demonstrate that A� in vitro
under cell free conditions itself can fragment into
free radical peptides in an oxygen-dependent but
metal-independent manner [382]. The generated
A�25-35 fragment was capable of inactivating the
enzymes glutamine synthetase and creatine kinase.
The authors suggested that methionine 35 may be
capable of reacting with oxygen to produce sulfoxide,
which, in turn, can result in radical generation [382,
383] although this hypothesis has not been experi-
mentally verified.

Aβ aggregation state

A� was demonstrated to accumulate into various
aggregation states ranging from monomeric to larger
assemblies into amyloid plaques found upon post-
mortem analysis of AD patient brains. In-between
these two states an apparent continuum of oligomeric
aggregates with different aggregation numbers, e.g.,
the number of monomers per oligomer, exists, and
many studies have attempted to identify and char-
acterize the most toxic species within this range.
Detailed reviews have been published on this spe-
cific topic highlighting the potential toxic role of these
intermediates and their relation with the clinicopatho-
logical features of AD [384–387].

The dynamic nature of Aβ assembly hampers
studies into oxidative stress

Generally, experimental studies indicate that par-
ticularly the intermediate soluble aggregated forms of
A� are highly toxic and these species are commonly
referred to as oligomers or pre- or protofibrils [388,
389]. More specifically, soluble SDS-stable dimers,
extracted from AD brains [390], up to 56 kDa soluble
A� assemblies that are capable of inducing cogni-
tive impairment in Tg2576 mice [391] have been
identified as potential toxic species acting upon AD
progress. While most of these studies merely investi-
gate the association between assembly state and loss
of cellular viability, synaptic function, or cognition,
consistent with these observations, a study investi-
gating the effects of different A� aggregate species
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on oxidative stress showed that specifically prefibril-
lar and oligomeric A�1-42 potently increased levels
of oxidative stress in NT2 cells as detected by HNE
and H2O2 generation [392]. Using a combination
of electron spin resonance spectroscopy coupled to
spin trapping, a short burst of H2O2 generation was
observed during early aggregation stages of A�1-40
[393]. Recently, incubation of A� with Cu2+ and
H2O2 were shown to modulate A� self-assembly.
Depending on the Cu2+ to H2O2 ratio, up to hex-
americ species of A�1-42 could be detected using
SDS-PAGE with little propensity to develop into
ThT positive fibrils upon prolonged incubation [394].
These A�1-40 and A�1-42 oligomers demonstrated
prolonged disruption of phospholipid vesicles which
is one of the proposed cytotoxic mechanisms of A�
oligomers [394]. However, the precise aggregation
number of such A� oligomers is difficult to pin
down using most standard biophysical and biochem-
ical techniques as a result of their heterogeneous,
dynamic, and interconverting nature.

Interaction of Aβ with mitochondrial factors

Several mechanistically indirect pathways have
been suggested by which means A� can influence
mitochondrial function.

By interaction of Aβ with mitochondrial alcohol
dehydrogenase

Yeast-two-hybrid based screening of the human
brain and a HeLa cell model demonstrated that
A� and mitochondrial alcohol dehydrogenase may
interact [183]. This interaction was shown to be
specific involving residues 12–24 of A�1-40 and
disturbs the NAD-binding pocket and the catalytic
triad of the enzyme leading to functional inhibi-
tion of nicotinamide dinucleotide binding required
for the function of the enzyme [183, 197, 395,
396], resulting in oxidative stress and neurodegen-
eration [183]. Given the fact that A� is primarily an
extracellularly generated peptide it is questionable
whether A� and mitochondrial alcohol dehydroge-
nase may ever reside in close proximity of each
other. However, by means of co-immunoprecipitation
assays, immunogold electron microscopy and confo-
cal microscopy it was demonstrated that A� can be
detected in the mitochondria within the cerebral cor-
tex of AD patients and mutant APP (mAPP) as well
as mAPP/ABAD transgenic mice. Also, in these in
vivo animal models A� was reported to co-localize

with the N-terminus (residues 98–101 and 108–110)
of alcohol dehydrogenase while mutations within
this site abrogated A� binding to alcohol dehydroge-
nase [197]. Strengthening the suggestion that alcohol
dehydrogenase may play a role in AD, degenerat-
ing neurons in the brains of AD patients were found
to express up-regulated levels of alcohol dehydro-
genase [197], particularly those in close proximity
to A� deposits [183]. Although it cannot be ruled
out that this observation represents an A�-unrelated
compensatory mechanism to counteract the impaired
energy homeostasis generally observed in AD neu-
rons [313, 397]. The role of alcohol dehydrogenase
in AD has been more extensively covered in a review
[398].

By disruption of energy generation from
mitochondria

The brain requires ATP and its intermediates for
the formation of the neurotransmitter acetylcholine
[399], and the critical membrane component choles-
terol [374]. To accommodate these requirements it
was recognized more than a century ago that the
vascular system exerts some degree of plasticity to
ensure sustained local activity of the neuronal net-
work [400]. Further, astrocytes, expressing GLUT1
type glucose transporters [401], play a central role in
neuronal energy supply [402] supporting the notion
that the multicellular context of the brain is highly
supportive of neuronal energy-consuming activities.
Current PET and fMRI functional brain imaging
techniques are based on the assumption that brain
function is associated with brain energy consump-
tion and from such techniques a wealth of information
has been acquired over recent years on brain energy
homeostasis in a variety of neurodegenerative disor-
ders. The association between oxidative stress and
energy production becomes apparent when consid-
ering that the regeneration of GSH from GSSG is an
NADPH dependent process, where NADPH is mainly
obtained through glucose metabolism. In various neu-
rodegenerative disorders, including AD, a decrease in
brain ATP generation is observed. Membrane fluid-
ity changes observed upon iodoacetic acid-induced
inhibition of ATP production could be rescued by
treatment with anti-oxidants tirilazad and gossypol
[403] suggesting that reduced ATP availability may
result in oxidative stress and membrane damage.
Upon aging, glucose metabolism derails progres-
sively as a result of changes in brain insulin [404],
and cortisol [405] levels. Also, activity of synaptic
ATPases was significantly decreased in rat frontal
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cerebral cortex upon aging [406]. This condition
seems to worsen in AD patients as it was shown
in patients with incipient late-onset AD type demen-
tia, that cerebral glucose utilization had reduced with
45% which progressed to 55% in advanced stages
of the disease [407]. Oxidative stress, induced by
NO was shown to transiently reduce ATP gener-
ation in rat astrocytes while increasing glycolysis
rate in an F1F0-ATPase and adenosine nucleotide
translocase dependent manner specifically in primary
astrocytes to rescue this ATP-depleted phenotype
[408]. At the same time, rat primary neurons exposed
to NO were shown to progressively become ATP
depleted which ultimately lead to cell death [408].
A number of metabolism-related enzymes have been
identified to be affected in a progressive manner
in AD, including pyruvate dehydrogenase, ATP-
citrate lyase and acetoacetyl-CoA thiolase [409].
Activities of glycolysis and citric acid cycle related
enzymes aldolase, triose phosphate isomerase, phos-
phoglycerate kinase, and phosphoglycerate mutase
are affected in AD as a result of oxidation or
nitration [410–414]. Inconsistent results have been
published on phosphofructokinase activity in AD
brains, with some researchers suggesting no signif-
icant reductions [415]. Subcortical regions of the
brain further displayed increased activities of hex-
okinase, an enzyme involved in the initiating step of
glycolysis, and lactate dehydrogenase in AD patient
brains while activities of these enzymes in corti-
cal regions were unaffected [416]. As the authors
already suggest [416], increased activity of lactate
dehydrogenase is suggestive of a metabolic need for
anaerobic respiration to compensate for lost abil-
ity to generate ATP via aerobic metabolic routes.
Taken together, oxidation and nitration processes of
many of the enzymes involved in cellular metabolism
may reduce activity of such enzymes sufficiently
to explain the significantly reduced ATP genera-
tion observed in AD brains while the bioenergetic
adaptation of the cell towards anaerobic routes for
obtaining sufficient quantities of ATP to sustain high
levels of ATP generation cannot be sufficiently com-
pensated for. The question remains whether tau or
A� only play an indirect role in activity reduction
by inducing oxidation or nitration of these enzymes
or whether a direct role, for example by activity-
reducing interaction such as demonstrated for ABAD
causes loss of metabolic rate. A study using co-
immunoprecipitation assays combined with tandem
mass tag multiplexed quantitative mass spectrometry
identified glycolysis enriched proteins such as pyru-

vate kinase and aldolase as potential interactors with
tau [417]. Using ELISA and gel filtration assays,
it was reported that synthesized A�42 and A�1-28
can interact in vitro with a KD of 5 nM with rat
phosphofructokinase, but not lactate dehydrogenase
[418]. It is still debatable what the triad of factors
oxidative stress, A� or tau and cellular metabolism
exactly comprises in terms of molecular interactions
and how they reciprocatively interact with each other.
One attempt to address this question was published
by Casley and colleagues who incubated isolated rat
brain mitochondria either with A�25-35 or A�1-42
with or without NO to determine the relative impact
of each of these factors on mitochondrial respiration
using oxygen sensitive electrodes [419]. Both A�
peptides significantly inhibited mitochondrial respi-
ration by specifically affecting the activity of complex
IV, while exposure of the mitochondria to NO sub-
stantially worsened respirational outcome.

Interaction with RAGE

RAGE is a transmembrane receptor widely
expressed in all tissue types including the brain [420,
421]. One diverse group of ligands known to interact
with this receptor are advanced glycation end prod-
ucts, AGEs. AGEs are the product of non-enzymatic
aldose-mediated glycated or oxidized proteins [422],
and accumulation of AGEs was shown to be aging-
related [423, 424] and accelerates in conditions such
as diabetes [425]. Potential clinical relevance of
RAGE to AD was demonstrated using ELISA of AD
brain homogenates showing a 2.5 fold increase in
expression of RAGE compared to age-matched con-
trol subjects [176]. The roles of RAGE and AGEs
in AD pathogenesis have been covered in a number
of reviews [426, 427]. The offspring of a trans-
genic RAGE overexpressing mouse model crossed
with Tg APP animals showed neuronal perturba-
tion already at 3-4 months of age, and astrogliosis
and reactive microglia at 14–18 months [428]. One
of the general observations is that A� can interact
with RAGE. For example, Yan and co-workers have
shown that endothelial or PC12 RAGE provides a
binding site for 125I-labeled synthetic A� on cellu-
lar surfaces. This interaction was found to result in
cellular perturbation and dose-dependent generation
of TBARS, NF-κB-mediated microglial activation,
and cytotoxicity. TBAR generation could be blocked
by pre-treatment of cultures with antioxidants probu-
col or N-acetylcysteine [176] demonstrating a direct
or indirect association with oxidative stress. Indeed,
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interaction of A� with RAGE on the cell-surface
exerted localized oxidant activity. The authors further
observed that stimulation of RAGE by other ligands
which do not themselves generate ROS induces intra-
cellular generation of oxidants in target cells [176]
suggesting that it is the interaction between RAGE
and its ligand that induces the oxidation effect and
not the ligand by itself. Not only A� as AD hall-
mark peptide appeared to show an association with
RAGE-induced oxidative stress: using immunostain-
ing it was shown that tau paired helical filaments
colocalize with AGEs in AD temporal cortex tissue
[116]. Also, tau was shown to be amenable to ribose-
mediated glycation and exposure of SH-SY5Y cells
to these glycated tau species resulted in oxidative
stress without affecting cell viability [116]. It appears
that AGE-RAGE interaction with AD hallmark part-
ners results in a variety of cellular responses that can
mediate oxidative stress.

Disruption of calcium homeostasis

ROS generation and Ca2+ signaling –
a bidirectional paradigm

One important step in the process of synaptic
transmission is the Ca2+-regulated fusion of neu-
rotransmitter containing synaptic vesicles with the
pre-synaptic membrane which results in the release
of neurotransmitters in the synaptic cleft. Apart from
neurotransmitter release a plethora of other cellular
mechanisms are regulated by Ca2+-dependent signal-
ing, for example regulation of membrane excitability,
neuronal growth and differentiation as well as expres-
sion of a wide range of genes that are activity-induced
and apoptotic processes. Extracellular and endoplas-
mic reticular Ca2+ levels largely exceed intracellular
levels and this sustained Ca2+ homeostasis is an
important factor required for cellular functioning.
A number of reviews that extensively cover neu-
ronal Ca2+ homeostasis mechanisms have been
published [429–432]. To aid Ca2+ homeostasis, Ca2+
levels in neuronal cells are strictly regulated by
controlled release from various intracellular and
extracellular pools. Release of Ca2+ from the extra-
cellular pools into the cell is mediated by factors
such as voltage-gated Ca2+ channels, N-methylo-D-
aspartate (NMDA) receptors and transient receptor
potential channels while intracellular Ca2+, stored
in the endoplasmic reticulum, is released via the
inositol triphosphate receptor (Ins[1,4,5]P3 R) and
ryanodine receptor (RyRs) [429]. These factors act
in a concerted manner to regulate intracellular Ca2+

levels in a temporal and spatial manner. Reports show
that dyshomeostasis of Ca2+ levels and oxidative
stress amplify each other in a bidirectional manner.
For example, ROS species superoxide anion, hydro-
gen peroxide and hydroxyl radicals are known to
regulate signaling pathways involving Ca2 + . Mito-
chondrial Ca2+ mediates activity of a number of
mitochondrial enzymes involved in the tricarboxylic
acid cycle and oxidative phosphorylation and, as
such, increased Ca2+ levels were reported to elevate
cellular metabolic rate [433–435]. In turn, cellular
metabolic rate was shown to be directly proportional
to ROS generation in rat and porcine lung [436],
and hepatomas [437]. Bidirectionality of the ROS-
generation/Ca2+ signaling paradigm was observed
by functional impairment of membrane-bound recep-
tors and channels that regulate influx or efflux of
Ca2+ mediated by oxidative stress-induced lipid per-
oxidation. Ca2+ dyshomeostasis was reported in
neurodegenerative disorders in general, including
AD. For example, whereas wild type presenilin was
reported to form Ca2+ permeable channels allow-
ing Ca2+ leakage from the endoplasmic reticulum
[438, 439], some, but not all FAD related muta-
tions in Psen1 and 2, show deficiencies in Ca2+
leak function in a mouse embryonic fibroblast model,
primary fibroblasts obtained from patients and a pla-
nar lipid bilayer [439, 440]. Apart from neurons,
astrocytes also play an ion regulating role support-
ing neuronal activity. Astrocytes act in a concerted
effort to regulate Ca2+ levels via release of ATP
which subsequently binds to purine receptors on
the membrane of adjacent astrocytes [441]. ATP
binding then results in release of intracellular Ca2+
via the phospholipase C beta/inositol triphosphate
(IP3) pathway [442]. Using a microarray analysis,
it was reported that the expression of 32 Ca2+ signal-
ing pathway-related genes were altered in astrocytes
at various stages of AD pathology [443]. A� was
reported to perturb astrocytic Ca2+ regulation indi-
rectly by inducing oxidative stress which impairs
membrane Ca2+ pumps and enhances Ca2+ influx
through voltage-dependent channels and ionotropic
glutamate receptors [444–446].

By potentiating mitochondrial permeability
transition pore formation

The mitochondrial permeability transition pore
(mPTP) plays an important role in mitochondrial
Ca2+ homeostasis [447]. Its molecular composition
and mechanism of action have been under debate
in the last years. Initially, the mPTP was thought
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to consist of the voltage-dependent anion chan-
nel (VDAC) in the outer membrane, the adenine
nucleotide translocase (ANT) in the inner membrane
and Cyclophilin D (CypD) in the matrix. In this way,
when CypD translocates to the inner mitochondrial
membrane to interact with ANT and VDAC [448],
the mPTP opens allowing non-selective exchange of
calcium [449–451]. More recent findings dismiss this
initial idea and indicate that VDAC is not a key com-
ponent of the mPTP [452, 453] and ANT has only
a regulatory function rather than being a core unit
of the mPTP [454]. Only CypD, a peptidyl-prolyl
isomerase F located in the mitochondrial matrix,
remains a critical molecule in the mPTP in both
postulations. Consistent with this, studies in animal
models have shown that mPTP formation can be effi-
ciently blocked by the addition of a cyclophilin D
inhibitor, cyclosporine A (CSA) or by depletion of
CypD [448, 455, 456]. Short and transient mPTP
opening has been shown to occur under physiological
conditions, allowing rapid passage of protons, Ca2+
and other substances of a size up to 1.5 kDa [457,
458]. However, prolonged mPTP leaking may result
in mitochondrial disruption. Apart from a high con-
centration of Ca2+ in the mitochondrial matrix [459],
ROS can trigger mPTP opening. Moreover, cytoso-
lic ROS was observed to induce signals leading to
mPTP opening resulting in further ROS release and
this phenomenon is referred to as “ROS-induced ROS
release (RIRR)” [460]. Several lines of investigation
have proposed that A�-induced ROS and increased
Ca2+ levels could well link with mPTP formation.
In this regard, increased CypD expression has been
identified in neurons of the hippocampus and tem-
poral lobe of AD patients [461]. CypD was shown
to specifically bind to A� oligomers both in vitro
and in vivo in a dose-dependent manner facilitating
permeability transition and ROS formation causing
mitochondrial dysfunction [461–463]. Removal of
CypD improved cognitive and synaptic function in
a mouse model for AD [462], protecting cells from
Ca2+, oxidative stress or A�-induced cell death [448,
464, 465], and restored oligomeric A�42-mediated
loss of axonal mitochondrial transport in neurons.
The role of ROS was highlighted by demonstrating
rescue of A�-induced loss of axonal mitochondrial
movement upon administration of Probucol, an anti-
oxidant agent [466]. As a result of these observations,
various studies embarked on targeting CypD/mPTP
inhibition as potential treatment for neurodegenera-
tive diseases [467, 468].

CONCLUSIONS

Oxidative stress is an early clinical feature of AD,
as well as other neurodegenerative disorders. AD-
related oxidative stress arises as a result of increased
generation of ROS, induced by mitochondrial failure,
but also decreased levels of endogenous antioxi-
dants are commonly observed in AD. Many of the
biomacromolecules that are part of normal cellular
physiology are susceptible to oxidative modification
altering their function. Also, A� and tau, two AD
hallmark proteins are subject to oxidation, while A�
itself was reported to induce the formation of ROS. A
number of genetic factors have been identified to play
a role in AD-related failure to maintain physiological
ROS levels within strict limits. For example, clus-
terin, apolipoprotein E, klotho, and enzymes involved
in the A�PP processing machinery regulating A�
generation are related, either directly or indirectly,
to oxidative stress. Various molecular mechanisms
explaining the association between oxidative stress
and AD have been identified. A� and its potent
interaction with Cu2+ was identified as key fea-
ture in AD-related oxidative stress. But also various
other mitochondria-associated factors play a role,
including mitochondrial permeability transition pore
formation, regulation of cellular metabolic pathways
and Ca2+ signaling. The association between oxida-
tive stress and AD appears complex, bi-directional,
and self-reinforcing.
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