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This supplement contains items that support the analysis presented in the above-referenced article, the 
purpose of which is to identify combinations of repurposed drugs that could be effective in the treatment 
of Alzheimer’s disease (AD). The core idea is to overcome the limitations in available data by searching for 
correlations between representations of two completely different datasets: a database of clinical findings 
on dementia, and a computational model based on the pre-clinical literature on neuroinflammation. The 
dataset is provided by permission from the Rush Alzheimer’s Disease Center (RADC database). The 
computational model was created on the basis of experimental data as published in the literature on 
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Fig. S1. Simplified schematic of the microglia (MG) model. The MG model recapitulates the structure of a 
microglial cell. Ligands (rectangles) bind receptors (octagons), which activate signaling molecules (ovals), 
which in turn activate transcription factors (also ovals), which modulate gene expression. Many of the 
microglial gene products (also rectangles) act as ligands for microglial receptors, forming many feedback 
loops. The presence/absence of certain factors distinguish young from old animals, or microglia extracted 
from them, such as acetylcholine and fractalkine (young) or necrotic factors (old). Drugs (trapezoids) can 
have one or more targets. Model elements are either inputs or units, which differ in that inputs cannot 
receive connections from other elements. This diagram is a highly simplified version of the full MG model, 
which is composed of 90 inputs and 146 units. See Tab. S1.  

 

Tab. S1. Table of MG model elements and abbreviations. The name of each molecular species or cellular 
process is listed along with its abbreviation and the corresponding name of the element that represents 
it in the model. Each model element name is the same as the name used for it in the computer programs. 
Since the programming languages do not allow Greek characters they are replaced with lower-case Roman 
letters. To further distinguish model element names from actual molecule or cellular-process names they 
are rendered in monotype font. The # symbol in abbreviations or model element names stands for an 
arbitrary integer number. Abbreviations or model element names are not applicable (n/a) to items that 
are, respectively, not abbreviated in the text or do not appear in the current version of the model.  

element name abbreviation model element 
acetaminophen n/a acet 
acetylcholine Ach Ach 
acetylsalicylic acid (aspirin) n/a aspi 
adaptor protein 1 AP1 AP1 
adenosine monophosphate‐activated protein kinase  AMPK AMPK 
adenylate cyclase AC AC 
aldosterone n/a aldo 
Alzheimer Disease AD n/a 
amyloid-β Aβ Ab 
amyloid-β internal n/a AbIN 
anandamide AEA AEA 
angiotensinogen ang ang 
angiotensin I angI angI 
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angiotensin II angII angII 
angiotensin II receptor # AT# AT# 
angiotensin converting enzyme ACE ACE 
apocynin n/a apoc 
arachidonoylglycerol 2AG AG 
arginase 1 Arg1 Arg1 
α # adrenergic receptor a#AR a#AR 
α 6 β 1 integrin α6β1 a6b1 
α 7 nicotinic acetylcholine receptor α7nAChR a7nAChR 
β-arrestin bArr bArr 
β-2-adrenergic receptor b2AR b2AR 
11-β-hydroxysteroid dehydrogenase bHSD1 bHSD1 
beclin-1 bec1 bec1 
8-bromo-cyclic adenosine monophosphate BrcAMP BrcAMP 
butenal n/a bute 
c-Jun N terminal kinase JNK JNK 
caffeine n/a caff 
calcium Ca Ca 
cannabinoid receptor # CB# CB# 
caspase # casp# casp# 
cathepsin B n/a cathB 
Cay10512 Cay Cay 
chitinase-like protein Ym1 Ym1 
chloroquine n/a chlo 
clonidine n/a clon 
cluster of differentiation # CD# CD# 
cluster of differentiation # ligand CD#L CD#L 
cluster of differentiation # receptor CD#R CD#R 
compound C n/a compC 
cortisone CORT CORT 
cyclic adenosine monophosphate cAMP cAMP 
cyclic guanosine monophosphate cGMP cGMP 
cytochrome C oxygenase # COX# COX# 
cytoskeleton n/a cyto 
dexamethasone n/a dexa 
diacylglycerol lipase DAGL DAGL 
dimethylfumarate n/a dime 
diphenhydramine diph diph 
diphenylene iodonium chloride DPI DPI 
dithiocarbamate PDTC PDTC 
docking protein # Dok# Dok# 
DNA-X adaptor protein 12 DAP12 DAP12 
edaravone n/a edar 
E prosthanoid receptor # EP# EP# 
E prosthanoid receptor 4-associated protein EPRAP EPRAP 
estrogen (estradiol)  E2 E2 
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exchange protein activated by cAMP Epac Epac 
extracellular signal-related kinase ERK ERK 
Fas-associated protein with death domain FADD FADD 
fibrillar Aβ fAβ n/a 
flecainide n/a flec 
fluoxetine n/a fluo 
forkhead box protein O FOXO FOXO 
fractalkine CX3CL1 CX3CL1 
fractalkine receptor CX3CR1 CX3CR1 
G protein-coupled estrogen receptor GPER GPER 
G protein i Gi Gi 
G protein q Gq Gq 
G protein s Gs Gs 
glimepiride n/a glim 
glucocorticoid receptor GR GR 
growth factor receptor binding protein 2 GRB2 GRB2 
guanosine triphosphate-ase activating protein GAP GAP 
guanylate cyclase  GC GC 
histamine HA HA 
histamine 1 receptor H1R H1R 
hydrogen sulfide H2S n/a 
ibuprofen n/a ibup 
inducible nitric oxide synthase iNOS iNOS  
inhibitor of κ B IκB IkB 

inhibitor of κ B kinase IKK IKK 
inositol phosphate IP IP 
insulin receptor IR n/a 
insulin receptor insulin-like growth factor 1 receptor IRIGF1R IRIGF1R 
insulin-like growth factor 1 IGF1 IGF1 
insulin-like growth factor # receptor IGF#R IGF#R 
interferon γ IFNγ IFNg 
interferon receptor IFNR IFNR 
interleukin # IL# IL# 
interleukin 1 β IL1β IL1b 
interleukin # receptor IL#R IL#R 
interleukin 1 receptor-associated kinase IRAK IRAK 
isoproterenol isop isop 
Janus kinase # JAK# JAK# 
JWH-015 n/a JWH 
lipopolysaccharide LPS LPS 
lipoxin (or aspirin-triggered lipoxin) n/a lipo 
lipoxin A4 receptor  ALX ALX 
lithium Li Li 
liver tyrosine kinase Lyn Lyn 
liver X receptor β LXRβ LXRb 
liver X receptor β ligand n/a LXRbL 
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L-N-monomethyl arginine citrate LNMMA LNMMA 
losartan n/a losa 
LY294002 n/a LY294 
major histocompatibility complex 2 MHC2 n/a 
MAPK/ERK kinase MEK MEK 
mifepristone n/a mife 
melatonin n/a mela 
metformin n/a metf 
mineralocorticoid receptor MR MR 
minocycline n/a mino 
mitogen-activated protein kinase MAPK MAPK 
mitogen-activated protein # kinase MAP#K MAP#K 
mitogen-activated protein kinase phosphatase # MKP# MKP# 
morphine n/a morp 
myeloid differentiation primary response protein MyD88 MyD88 
N-acetylcysteine NAC NAC 
N-acyl phosphatidylethanolamine NAPE NAPE 
naloxone n/a nalo 
necrotic factors n/a necro 
nicotine n/a nico 
nicotinamide adenine dinucleotide phosphate (reduced) NADPH NADPH 
nifedapine  n/a nife 
nitric oxide NO NO 
N-(L-3-trans-Propylcarbonyl-oxirane-2-carbonyl)-L-isoleucyl-
L-proline methyl ester 

CA074Me CA074 

N-nitro-L-arginine methyl ester LNAME LNAME 
non-steroidal anti-inflammatory drugs NSAIDs n/a 
noradrenelin  NA NA 
nuclear factor κ B NFκB NFkB 
nucleotide-binding-domain leucine-rich-repeat family pyrin 
domain containing 3 (cryopyrin 3) 

NLRP3 NLRP3 

omeprazole n/a omep 
PD123319 n/a PD123 
pentoxifylline n/a pent 
perindopril n/a peri 
peroxisome proliferator-activated receptor γ PPARγ PPARg 
PF-04418948 n/a pf04 
phagocytosis n/a phago 
phenylephrine n/a phen 
phosphatidylinositol 3 kinase PI3K PI3K 
phosphodiesterase  PDE PDE 
phosphodiesterase 5  PDE5 PDE5 
phosphoinositide 3 kinase PI3K PI3K 
phospholipase A 2 PLA2 PLA2 
phospholipase C PLC PLC 
propentofylline n/a prope 
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propranolol n/a prop 
prostaglandin E 2 PGE2 PGE2 
protein kinase A PKA PKA 
protein kinase B Akt Akt 
protein kinase C PKC PKC 
protein kinase Cδ PKCδ PKCd 
protein kinase G PKG PKG 
protein phosphatase 2 A PP2A PP2A 
protein 38 mitogen-activated protein kinase p38MAPK p38MAPK 
punicalagin n/a puni 
Rac member of the Rho family of GTPases Rac Rac 
Ras member of the Rho family of GTPases Ras Ras 
rapidly accelerated fibrosarcoma 1 Raf1 Raf1 
reactive oxygen species ROS ROS 
receptor-interacting protein 1 RIP1 RIP1 
renin n/a renin 
repressor/activator protein 1 Rap1 Rap1 
resveratrol n/a resv 
retinoic acid n/a retino 
retinoid X receptor RXR RXR 
rifampicin  n/a rifa 
rosiglitazone n/a rosi 
sarcoma homology domain 2-containing inositol 
phosphatase 1 

SHIP1 SHIP1 

SB203580 SB203 SB203 
scavenger receptor A SRA n/a 
scutellarin  n/a scut 
signal transducer and activator of transcription # STAT# STAT# 
sildenafil n/a sild 
Sma and Mad proteins from C. elegans and Drosophila, 
respectively 

Smad Smad 

sodium Na Na 
sodium hydrosulfide NaHS NaHS 
sodium nitroprusside SNP SNP 
spleen tyrosine kinase Syk Syk 
spironolactone n/a spir 
SP600126 SP600 SP600 
superoxide dismutase SOD SOD 
suppressor of cytokine signaling 3 SOCS3 SOCS3 
tetrodotoxin TTX TTX 
thalidomide n/a thal 
Toll-like receptor # TLR# TLR# 
Toll/interleukin 1 receptor (TIR)-domain-containing 
adaptor-inducing interferon β 

TRIF TRIF 

TNF receptor-associated factor 6 TRAF6 TRAF6 
transforming growth factor β TGFβ TGFb 
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transforming growth factor-associated kinase 1 TAK1 TAK1 
transforming growth factor receptor  TGFR TGFR 
triggering receptor expressed on myeloid cells 2 TREM2 TREM2 
triggering receptor expressed on myeloid cells 2 ligand TREM2L TREM2L 
tumor necrosis factor α TNFα TNFa 
tumor necrosis factor receptor TNFR TNFR 
tumor necrosis factor receptor type 1-associated death 
domain protein 

TRADD TRADD 

Vav guanine nucleotide exchange factor Vav Vav 
voltage gated calcium channel VGCC VGCC 
voltage gated sodium channel VGSC VGSC 
WIN55,212-2 (cannabinoid receptor agonist) WIN WIN 
wortmannin n/a wort 

 

 

Tab. S2. List of MG model drugs, abbreviations, effects, targets, and references. The name of each drug 
is listed along with its model element name, in monotype. Also indicated in brackets are drugs in 
common between the MG model and the RADC database, which are included in the computational drug 
screen.  

drug effect(s) target(s) references 
acetaminophen (acet) 
[in screen] 

reduces LPS-induced COX2 COX2 [1] 

acetylsalicylic acid 
(aspirin, aspi) 
[in screen] 

reduces LPS-induced IL1b COX2, ERK, 
IkB, and 
p38MAPK 

[2, 3] 

apocynin (apoc) reduces HA-induced phago and 
ROS 

NADPH [4] 

8-bromo-cyclic 
adenosine 
monophosphate 
(BrcAMP) 

blocks LPS-induced increase in IL6, 
NO, and TNFa 

cAMP [5] 

butenal (bute; and a 
more stable derivative) 

reduces LPS-induced COX2, iNOS, 
NO, ROS, and TNFα 

IκB, STAT1, 
and STAT3 

[6, 7] 

caffeine (caff) reduces LPS- induced COX2, iNOS, 
NO, and TNFα 

PDE [8] 

Cay10512 reduces aldosterone-induced 
increase in IL6 

NFκB [9] 

CA-074 (CA074) reduces Aβ-induced IL1β cathB [10] 
chloroquine (chlo) 
[in screen] 

reduces LPS-induced IL6, IL12, 
TNFα, and IL10 

PLA2 [11] 

clonidine (clon) 
[in screen] 

does not reduce LPS-induced IL1b, 
IL6, iNOS,NO, and TNFa 

α2AR [5, 12] 

compound C (compC) prevents metf or resv 
suppression of morp-induced 
increases in IL1b, IL6, iNOS, and 
TNFa 

AMPK [13, 14] 
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dexamethasone 
(dexa) 
[in screen] 

reduces LPS-induced IL6 and TNFα MKP1 [15] 

dimethylfumarate 
(dime) 
 

reduces LPS- induced iNOS, NO, 
IL1β, IL6, and TNFα 

ERK [16] 

diphenhydramine 
(diph) 
[in screen] 

reduces HA-induced IL6, phago, 
ROS, and TNFa 

H1R [4, 17, 18] 

diphenylene iodonium 
chloride (DPI) 

reduces LPS/IFNg-induced iNOS, 
NO, IL1β, IL6, ROS, and TNFα 

NADPH [19-21] 

dithiocarbamate 
(PDTC) 

reduces HA-induced IL6 and TNFα NFκB [17] 

edaravone (edar) 
 

reduces LPS-induced NO, IL1β, ROS, 
and TNFα; reduces necroL-induced 
iNOS, IL1β, and TNFα 

AT1, ROS [22] 

estrogen (estradiol; E2)  
[in screen] 

reduces LPS-induced IL1β and TNFα GPER [23] 

flecainide (flec; 
results on safinamide 
included) 
[in screen] 

reduces LPS-induced ROS and 
necroL-induced iNOS 

VGSC [24] 

fluoxetine (fluo) 
[in screen] 

reduces LPS- induced iNOS, NO, IL6, 
and TNFα; enhances IL4-induced 
IL10 

p38MAPK 
and IκB 

[25, 26] 

glimepiride (glim) 
[in screen] 
[averaged with rosi] 

reduces LPS-induced IL1β, IL6, and 
TNFα 

IGF2R and 
IRIGF1R 

[27] 

ibuprofen (ibup) 
[in screen] 

reduces Aβ-induced COX2, IL1β, 
and ROS but enhances phago 

COX2 [28-30] 

isoproterenol (isop) 
 

reduces LPS-induced iNOS and 
TNFα; enhances LPS-induced IL10; 
reduces LPS/IFNγ-induced IL12 

β2AR [31-33] 

JWH-133 or JWH-015 
(JWH) 

induces IL10; reduces LPS-induced 
TNFα; rescues CD40L-impaired 
phagocytosis of Aβ; reduces 
IFNγ/CD40L-induced NO and TNFα; 
reduces Aβ/CD40L-induced NO and 
TNFα;  

CB2 [34, 35] 

lipoxin (or aspirin-
triggered lipoxin; 
lipo) 

reduces LPS-induced iNOS, NO, 
IL1β, and TNFα 

ALX [36] 

lithium (Li) 
[in screen] 

Reduces LPS-induced IL1b, IL6, and 
TNFα 

PI3K [37, 38] 

L-NMMA (LNMMA) reduces LPS-induced NO and TNFα iNOS [39] 
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losartan (losa;  
candesartan results 
included) 
[in screen] 

reduces LPS-induced COX2, IL1b, 
iNOS, NO, ROS, and TNFa but 
increases IL10 

AT1R [40-43] 

melatonin (mela) reduces LPS-induced iNOS, NO, 
IL1β, TNFα, and phagocytosis; 
reduces Aβ-induced IL6, ROS, and 
TNFα 

NFκB [44-46] 

metformin (metf) reduces morp-induced increases in 
IL1b, IL6, and TNFa 

AMPK [14] 

mifepristone (mife) increases IL6; reverses CORT- or 
dexamethazone-induced decrease 
in IL6; does not affect aldosterone-
induced increase in IL6 

MR [9] 

minocycline (mino) 
[in screen] 
[averaged with rifa] 

reduces LPS-induced IFNγ, IL1β, 
iNOS, NO, and TNFα; does not 
affect IL4-induced IL4, IL10, or Arg1 

NFκB [20, 47, 48] 

morphine (morp) 
[in screen] 

increases IL1b, IL6, iNOS, NO, and 
TNFa but does not change IL4, IL10, 
or TGFb 

MyD88 [13, 14, 49, 50] 

N-acetylcysteine (NAC) 
 

reduces Aβ-induced IL1β; reduces 
LPS-induced iNOS, NO, and ROS 

ROS [10, 19-21] 

N-nitro-L-arginine 
methyl ester (LNAME) 

reduces LPS-induced ROS iNOS [21] 

naloxone (nalo) reduces LPS-induced IL1β and TLRα TLR4 [51, 52] 
nicotine (nico) 
 

reduces LPS-induced ROS and 
TNFα; reduces Aβ-induced ROS and 
TNFα; enhances phago generally 

α7nAChR [53-55] 

nifidipine (nife; 
results on verapamil 
also included) 
[in screen] 

reduces LPS-induced NO, ROS, and 
TNFα; reduces LPS/IFNg-induced 
COX2, IL1b, IL6, iNOS, NO, and 
TNFa; does not reduce LPS/IFNγ-
induced phago 

VGCC, 
NADPH, 
Akt, and  
p38MAPK 
 

[56-58] 

omeprazole (omep; 
results on lansoprazole 
also included) 
[in screen] 

reduces LPS/IFNγ-induced TNFα p38MAPK [59] 

PD123319 (PD123) blocks decrease in LPS-induced 
COX2, IL1b, iNOS, NO, ROS, and 
TNFa and increase in IL10 due to 
losartan 

AT2R [42] 

pentoxifylline (pent) 
 

reduces LPS-induced IL1β and TNFα 
but not IL6 or NO 

PDE [15, 39] 

perindopril (peri; 
results on captopril also 
included) 
[in screen] 

reduces LPS-induced NO, ROS, and 
TNFα but increases IL10 

ACE [42, 60] 



10 
 

PF-04418948 
(PF04; results on TG4-
155 also included)  
[in screen] 

reduces PGE2-induced COX2; 
reduces LPS/IFNγ/PGE2-induced IL6 
but enhances TNFα  

EP2 [61-63]  

phenylephrine (phen) 
 

reduces LPS-induced  α1AR [5, 12, 64] 

propranolol (prop) 
[in screen] 

prevents isop from reducing LPS-
induced iNOS, NO, and ROS 

β2AR [64, 65] 

punicalagin (puni) 
 

reduces LPS-induced COX2, IL6, and 
TNFα; reduces Aβ-induced TNFα 

IKK [66, 67] 

resveratrol (resv) 
 

reduces LPS-induced COX2, iNOS, 
NO, IL6, and TNFα; reduces 
LPS/IFNg-induced NO, IL1β, IL6, 
IL12, and TNFα; reduces Aβ-
induced IL6 and TNFα; reduces 
morphine-induced increases in 
IL1b, IL6, iNOS, and TNFa; does not 
affect IL4, IL10, or TGFb 

TLR4 [13, 68-70]  

rifampicin (rifa) 
[in screen] 
[averaged with mino] 

reduces LPS-induced COX2, iNOS, 
NO, IL1β, and TNFα 

TLR4  [71, 72] 

rosiglitazone (rosi; 
and also pioglitazone)  
[in screen] 
[averaged with glim] 

reduces LPS-induced iNOS and 
IL1β; reduces Aβ-induced COX2 and 
iNOS but enhances phago; reduces 
necroL-induced NO and IL1β 

PPARγ  [73-75] 

SB203580 (SB203) reduces HA-induced IL6 and TNFα p38MAPK [17] 
scutellarin (scut) reduces LPS-induced iNPS, NO, 

IL1β, ROS, and TNFα; reduces IFNγ-
induced iNOS and NO; reduces 
necroL-induced iNOS, IL1β, and 
TNFα 

JNK, 
p38MAPK, 
and STAT1  

[22, 76] 

sildenafil (sild) 
 

reduces LPS-induced iNOS, NO, 
IL1β, ROS, and TNFα; reduces 
necroL-induced IL1β and TNFα but 
increases iNOS, NO, and IL10 

PDE5 [20, 77] 

sodium hydrosulfide 
(NaHS) 

reduces Aβ-induced COX2, IL1β, 
IL6, and TNFα 

NFκB [78] 

spironolactone (spir) 
[in screen] 

reduces aldosterone-induced 
increase in IL6 

MR [9] 

SP600126 (SP600) reduces HA-induced IL6 and TNFα JNK [17] 
tetrodotoxin (TTX) reduces LPS-induced phagocytosis VGSC [79] 
thalidomide (thal) reduces LPS-induced IL6, NO, and 

TNFα 
MyD88 [39, 80] 

WIN-552122 (WIN) 
[in screen] 

reduces LPS-induced iNOS and NO 
but has no effect on TNFα; reduces 
Ab-induced TNFα 

CB1, CB2 [81, 82] 

wortmannin (wort) reduces HA-induced IL6 and TNFα PI3K [17] 
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Text S1. Optimizing the parameters of the MG model 

The elements in the recurrent network model of microglia (MG model) can be divided into inputs and 
units. Units receive connections from the input elements and from the other units in the network. Input 
elements do not receive connections from other elements. The parameters of the MG model are the 
strengths (or weights) of the connections between model elements and they are optimized by training 
the model using a recurrent neural network learning algorithm [83, 84].  

The algorithm is used to train the MG model on input/desired-output patterns that are hand curated from 
the result of experiments on microglia as reported in the literature. Tab. S3 shows a highly simplified 
version of the input/desired-output patterns, arranged in tabular form, that were used to train the MG 
model. The table shows that inputs are represented as binary (0 or 1), while desired outputs are assigned 
integer values in the range from 3 (low level) to 7 (high level), with a baseline of 5. The input/desired-
output patterns used to train the model are discretized in order to regularize the highly non-standardized 
data available on microglia and the semi-quantitative techniques (such as gel electrophoresis, 
immunoprecipitation, etc) used to gather them. In the relatively few cases where different labs measured 
the effects on microglia of the same input pattern, the results of the different labs were combined to form 
a single input/desired-output pattern. This prevented overtraining the model on specific inputs that, 
through experimental bias, are better represented than others in the literature. Consistency between the 
findings of various labs was generally high. In the very few cases of disagreement between labs, the 
consensus was found and was represented in the input/desired-output table. The desired-output integer 
levels are scaled by 0.1 to being them into the [0, 1] range of the sigmoidal function that is used to model 
the activations of all model units. 

On each training cycle an input/desired-output pattern is chosen at random from the input/desired-
output table and the actual response of the network is computed. Because the model is a dynamical 
system its response is a function of time, and its actual output is taken after the network has reached 
steady state. Then network error is computed as the difference between the desired output and the actual 
output, and this error is used by the recurrent neural network learning algorithm to compute changes to 
the connection weights that reduce the error. The weight changes (either positive or negative) are scaled 
by a learning rate and are then added to the corresponding connection weights. 

The number of training cycles greatly exceeds the number of input/desired-output training patterns, so 
each pattern is randomly chosen and applied many times to the network over the course of training. In 
the recurrent network model any input element or unit can connect with any other unit, so its connectivity 
is “complete” but all connections are not treated equally. Known structure is imposed on the network 
through differential learning weights. Many of the known cell-signaling interactions of microglia are 
recapitulated in the model by designating the connections between specific elements (eg from the 
transcription factor NFkB to the enzyme COX2, see also Fig. S1) as “structure” connections; the rest are 
designated as “non-structure connections”. To privilege the known structure connections over the non-
structure connections the learning rate is three orders of magnitude higher for the structure than for the 
non-structure connection weights. 
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The model is trained over many training cycles (1 x 106), after which the mean squared error over all of 
the outputs and over all of the patterns is reduced to a very low value (~3 x 10−4). Fig. S2 shows that the 
responses of the output units to all of the input patterns reaches steady state in under 25 time steps, and 
that the steady-state output responses closely match the desired outputs for all input/desired-output 
patterns (the mean squared error between the desired and actual outputs is less than 3 x 10−4).  

 

 

Tab. S3. Simplified MG model input/desired-output table. The microglia (MG) model is trained on pairs of 
input/desired-output patterns. Inputs (drugs or exogenous) are present or absent (1 or 0), while endpoint 
(target) outputs are assigned integer values between 3 (lowest) to 7 (highest). The actual input/desired-
output training set contains 179 pairs of input/desired-output patterns. 

input  desired output 

as
pi

 

ib
up

 

m
or

p 

ni
fe

 

ro
si

 

Aβ
 

LP
S 

IL
4e

x 

IG
F1

ex
 

 

IL
1β

 

TN
Fα

 

RO
S 

IL
4 

IG
F1

 

0 0 0 0 0 0 0 0 0  5 5  5 5 5 
0 0 0 0 0 1 0 0 0  7 7 7  3 
0 0 0 0 0 0 1 0 0  7 7 7 5 3 
0 0 0 0 0 0 0 1 0  4 4  7 7 
0 0 0 0 0 0 0 0 1   3 3   
1 0 0 0 0 0 1 0 0  6 6    
0 1 0 0 0 1 0 0 0  6  6   
0 0 1 0 0 0 0 0 0  7 7  5  
0 0 0 1 0 0 1 0 0   6 5   
0 0 0 0 1 1 0 0 0  6 6  7  
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Fig. S2. Desired and actual outputs of an example trained MG model network. The trained MG model 
accurately reproduces the required input-output behavior. Eighteen model units are designed as target 
(endpoint) outputs because they represent factors (or in one case a process, phagocytosis) whose 
expression has been experimentally measured. Each subplot corresponds to 1 of the 18 output units and 
shows the agreement between its response (solid line) and each of the desired outputs (dashed lines) that 
it is assigned in the input/desired-output table. All of the actual output responses reach steady-state levels 
within 25 time steps, and the error between the desired and actual outputs is computed from the steady-
state responses. The mean squared error between all of the actual and desired outputs less than 3x10−4. 
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Text S2. The MG model and its identity as a deep neural network 

The MG model aims to maximally utilize available experimental data on microglia by adhering to the 
known structure of microglial cell-signaling and gene regulatory pathways, and by conforming to the 
known behavior of microglia. Because of its autocrine (and paracrine) loops and its many other loops the 
model is a recurrent and therefore dynamic system, and it is modeled as a dynamic, recurrent network. 
Each element (input or unit) can influence the activation of other network units according to its own 
activation, and to the strength (or weight) of its connection to the units. Each unit computes the weighted 
sum of its activated connections from other elements and passes that sum through a sigmoidal (S-shaped) 
nonlinearity that bounds the activation of the unit between 0 and 1. The sigmoid represents the natural 
constraints on biological entities such as enzymes and other proteins whose expressions, concentrations, 
and activations are bounded from below at zero and from above at some saturation level. Recurrent 
networks of nonlinear elements, and particularly of sigmoidal elements, are commonly used in 
neurobiology to model systems of interacting neurons [85] but they can also serve as valid models of 
biological systems more generally [86]. 

The modeling approach taken here is analogous to many recent deep-learning approaches in two 
important respects. The first concerns the nature of “deep” networks. The term “deep learning” applies 
to feedforward neural networks of nonlinear elements where the first layer is the input layer, the last 
layer is the output layer, and all intervening layers are referred to as “hidden” layers. Activation in 
feedforward networks is propagated forward only, from the input layer through each successive hidden 
layer and finally to the output layer. The feedforward networks used in deep learning are “deep” because 
they have many hidden layers, and this greatly increases their processing power.  

Recurrent neural networks can have specific input elements, and can also have specific units designated 
as outputs, but otherwise any unit can project to any other unit so recurrent networks have many 
interacting feedback loops but they lack explicit layers. However, recurrent neural networks are dynamic 
systems and, as such, their unit activations are functions of time. On each time step, each unit receives 
the weighted activations of other network elements on the previous time step, so that each time step in 
a recurrent network is equivalent to a hidden layer in a purely feedforward network [87]. A trained 
recurrent network that reaches steady-state in 25 time steps is equivalent to a feedforward network that 
is 25 layers deep. 

The second respect in which this approach is analogous to many deep-learning approaches is in its 
incorporation of preset structure. Generally in feedforward networks the connectivity from a previous to 
a subsequent layer is “complete” in that every element in one layer connects to every element in the next 
layer. Convolutional neural networks are distinguished from other feedforward networks in having some 
layers whose connections to the next layer are not complete but are constrained according to the center-
surround receptive field pattern that has been well described in the visual system [88, 89]. These layers 
are “convolutional” because the same connectivity pattern is applied in an overlapping fashion over the 
entire layer, but the key concept is that the known structure of a biological system can be incorporated 
into the structure of a neural network model to improve its performance. Thus, the center-surround 
receptive field structure that is preset in convolutional neural networks follows from the known 
physiology of the visual system, and it greatly improves the ability of convolutional neural networks to 
process images.  
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By analogy, many aspects of the known structure of the cell-signaling system of microglia has been 
incorporated into the recurrent neural network model, in an attempt to improve its ability to simulate the 
behavior of actual microglia (Fig. S1). The main structural feature of microglia recapitulated by the model 
is recurrence, which models known autocrine/paracrine interactions. Further structure is imposed on the 
recurrent network by allowing the weights of structure connections, which correspond to known 
interactions between elements of the model, to grow more rapidly than those of the non-structure 
weights during the training process (Text S1). 

Where this approach most strikingly departs from the usual deep-learning approach is in the number of 
training examples available to train it. Most deep networks are trained on “big data”, characterized by 
thousands of training examples. For example, a convolutional network was recently used to predict the 
disease status of patients from MRI images of their brains [90]. The network was trained on 2265 images 
of the brains of 755 patients from the Alzheimer Disease Neuroimaging Initiative (ADNI) who had been 
diagnosed and classified by neurologists as Alzheimer Disease (AD), mild cognitive impairment (MCI), or 
healthy control (HC). As images, all of the training inputs are from the same “domain”, and so the trained 
network is expected to generalize well and to predict disease status (AD, MCI, or HC) given brain-scan 
images that were not included in the training set. Also, with over two thousand image/disease pairs in the 
ADNI database, there were sufficiently many for them to be divided into a training set and a testing set. 
Networks were trained only over the training set and then tested for generalizability using the testing set, 
and the experimenters used generalizability to choose between convolutional networks having two 
different structures. 

The “small data” on which the recurrent network model of microglia was trained precludes this kind of 
testing/training regime for two reasons. First, with only 179 training pairs, the available training set is 
already very small. For example, it is more than an order of magnitude smaller than the ADNI 
image/disease set. Second, most of the inputs are from different domains, especially drug inputs. Ideally, 
the model should be trained on the results of many different experiments measuring the effects of the 
same drug or drug combination on the expressions of the same, large set of cytokines and other factors. 
Unfortunately, for many of the drugs included in this analysis, only one experiment was available that 
measured its effects on microglia, and then only measured its effects on one or a few cytokines and other 
factors (these drugs included acetaminophen, chloroquine, flecainide, glimepiride, omeprazole, and 
spironolactone; see Tab. S2 for other such compounds). 

The trained model was needed to predict the effects of drugs in combination, but very few experiments 
measuring the effects on microglia of drugs in combination have been reported in the literature. Thus, 
experimental data is not available in a quantity sufficient both to train a model of microglia on drug 
combinations and to test its generalizability over drug combinations. To overcome these limitations, the 
approach taken here leveraged existing data both by structuring the model using information on known 
interactions within microglia, and then by training it using as much information as was available on the 
outputs of microglia to various drugs and other inputs. The fact that the efficacies of drug combinations 
in reducing neuroinflammation as predicted by the MG model are significantly correlated with the 
benefits of those same drug combinations as observed in the RADC database strongly suggests that the 
approach taken here was indeed effective in creating a model that captured important aspects of the 
behavior of actual brain microglia. The model’s ability to predict drug-combination efficacy from an 
entirely new domain is proof of its generalization capability that is far more compelling than its 
performance on a testing set taken from the same dataset as its training set.  
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Text S3. Quantifying drug combination efficacy as predicted from the MG model 

The predicted efficacy of any drug or drug combination can be defined by the amount by which it moves 
the response of the microglia model from the neurotoxic (highly pro-inflammatory) to the 
neuroprotective (highly anti-inflammatory) output pattern. The neurotoxic and neuroprotective output 
patterns, as well as the actual output pattern resulting from any drug or drug combination given in 
conjunction with Aβ and LPS, can be expressed as vectors each having 18 elements. Efficacy is then 
computed as the normalized difference between the actual (a) and neurotoxic (t) pattern vectors, divided 
by the sum of the normalized differences between the actual and neurotoxic, and the actual and 
neuroprotective (p) pattern vectors. Symbolically: efficacy = |a−t| / (|a−t| + |a−p|), where |*| denotes 
vector normalization. Thus, the vector norms are combined in a ratio that takes value 0 if the actual output 
pattern is the same as the neurotoxic pattern, value 1 if the actual output pattern is the same as the 
neuroprotective pattern, ½ if the actual output pattern is equally distant from the neurotoxic and 
neuroprotective patterns, et cetera. As explained in the main text, the analysis is focused on a specific set 
of 196 drug combinations. For illustrative purposes, the MG model efficacies of these 196 drug 
combinations are converted to angles and are shown in a polar plot in Fig. S3. The figure shows that the 
efficacies of different drug combinations as predicted by the MG model can vary considerably. 

 

Fig. S3. Predicting the efficacy of drug combinations using the MG model. The MG model efficacy of any 
drug combination is quantified as the amount by which it can move the actual MG model output pattern 
from the neurotoxic (highly pro-inflammatory) to the neuroprotective (highly anti-inflammatory) pattern. 
The neurotoxic and neuroprotective output patterns are represented as vectors that are 180 degrees 
apart in 2-D space. Then each drug combination efficacy is converted to an angle, where efficacies from 0 
to 1 correspond to angles from 0 to 180, and is represented as a vector in the same 2-D space. The 
“speedometer” (polar) plot shows the MG model efficacies of each of the 196 drug combinations that 
were included in the analysis. The speedometer representation is adopted for ease of illustration only. 
MG model efficacy is basically computed as a ratio of differences between patterns, which are expressed 
in terms vectors and norms for ease of computation (see Text S3). No assumption of the orthonormality 
of an 18-dimensional vector space containing the output patterns is intended.  
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Text T4. Assessing drug combination benefit from the RADC database 

Assigning a numerical value to RADC benefit required a number of steps, but the number of simplifying 
assumptions was kept to a minimum. The first step was to rescale the raw scores on the 25 different 
assessments of cognitive function, since each was quantified according to its own scale. For example, in 
the “animals” test, participants named as many different animals as they could over several 1 minute 
trials, and the number of animals named ranged from 0 to 75. The raw scores on this test where therefore 
rescaled into the range [0, 1] by dividing each score by 75. The scores on the other 24 tests were similarly 
rescaled, and then the various rescaled scores for each participant were averaged to form a composite 
cognitive score for each visit.  

A key challenge in the analysis of the RADC dataset is the well-known relationship between cognitive 
function and age, so the age variable must be taken into account in assessing the relative benefits of the 
various drug combinations. Adding to the challenge is the fact that cognitive function was assessed at 
different ages for different participants. To meet this challenge, the decline of cognitive function with age 
for all of the participants in each drug combination group was summarized by pooling all of the composite 
cognitive score versus age (cog-score vs age) values for all participants in each drug combination group, 
and fitting them with a simple power function via nonlinear regression. The power function relates cog-
score to age by raising age to an exponent (n), multiplying that power by a scalar (s), and summing that 
product with a constant (c). Symbolically:  expected cog-score = s * age ^ n + c. Fitting of the power 
function to cog-score vs age data is illustrated in Fig. S4A for a specific drug category case and for the no-
drug case. Note that the expected cog-score at any age is the cog-score as computed by the best-fit power 
function, after the observed cog-score vs age data are used to parameterize the power function.  

The power functions fit to cog-score vs age data for all 196 of the main drug combinations, along with the 
power function fit to the no-drug cog-score vs age data, are shown in Fig. S4B. The curves in Fig. S4B show 
that cog-score vs age relationships vary considerably between different drug combination groups, and 
that cognitive function in many drug combination groups is worse than that in the no-drug group.  

Finally, to reduce the RADC database benefit of any specific drug combination to a single value, the power 
function curve for that group was used to compute the expected cog-score at each age included in that 
specific drug combination group (pooled over all participants in that group). Also, the power function 
curve for the no-drug group was used to the compute the expected cog-score in the no-drug case, but at 
the same ages as were included for that specific drug combination group. Then, the expected cog-score 
in the no-drug case was subtracted from the expected cog-score for that specific drug combination at the 
same set of ages, and the differences were average to yield the RADC database benefit for that specific 
drug group.  
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Fig. S4. Fitting power functions to composite cognitive score versus age data. The RADC database benefit 
of any drug combination is quantified as the average difference between the composite cognitive scores 
of RADC participants who took that drug combination (drug-combo group) and those who took no drugs 
(no-drug group). Cognitive score as a function of age is described using a power function whose 
parameters are optimized to provide the best fit to the data in a least-squares sense. Panel (A) shows the 
power functions fit to the age vs composite cognitive scores for the RADC participants who took no drugs, 
and for those who took a specific, representative drug combination. The fitted power functions are then 
used to compute the expected composite cognitive scores for the drug and no-drug groups at the ages 
for which the drug group data are available, and the average of the differences (drug − no-drug) is 
computed. Panel (B) shows the power functions best fit to the data of the no-drug group (81 participants) 
and to the groups of RADC participants who each took 1 of the 196 drug combinations included in the 
analysis (1045 participants total over all 196 drug groups). This plot shows that most of the RADC database 
benefits are negative, so RADC database benefit should be interpreted as a relative measure. 
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Fig. S5. Number of drugs in combination vs efficacy for the MG model. The MG model actually screens all 
4,194,304 combinations of 22 drugs because the model has 1 drug representing each of 18 RADC drug 
categories, but has 2 drugs representing the antibiotic and antidiabetic drug categories (in the cases of 2 
representative drugs per category the modeling results are averaged to give the mode response for that 
category). Each dot represents 1 of the 4,194,304 drug combinations, and the dots are arranged in 
horizontal rows according to the number of drugs in the combination (there are so many combinations 
that most of the dots run together into seemingly solid lines). Efficacy can range broadly for combinations 
composed of the same number of drugs. Maximal efficacy rises for combinations up to about seven drugs 
but then it levels off and even decreases as the number of drugs per combination continues to rise. This 
suggests that the model is capturing possible antagonistic interactions that would decrease the anti-
inflammatory effect of individual drugs, even though it is trained mainly on drugs that have an anti-
inflammatory effect by themselves.  
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Fig. S6. Relationships between demographic variables and benefits/efficacies. Comorbidity, whether 
hypertension (HTN) specifically or combined comorbidity, is strongly positively correlated with the 
benefit/efficacy of drug combinations as determined from RADC alone, MG alone, or from MG and RADC 
jointly (A1, A2, and A3). The correlations between HTN or comorbidity and RADC benefit (A1) are only 
marginally significant. Education is positively correlated with RADC benefit (B1) but again significance is 
marginal. No other correlations are statistically significant. See Tabs. S6-S8 for numerical values associated 
with these regression analyses.  
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Tab. S4. Regression analyses of demographic variables and RADC benefit. Numerical results are for 
regression analyses of the demographic variables associated with the participants in the correlation set. 
The number of data points for all regression analyses reported in this table is 196. The row 
letters/numbers correspond to the panel letters/numbers in Fig. S6. HTN stands for hypertension. 
Comorbidity is combined comorbidity.  

row 
(panel in Fig S6) 

relationship 
examined 

slope of 
regression line 

correlation 
coefficient 

p-value for 
regression 

A1 HTN proportion 
vs RADC benefit 

0.7929 0.1803 0.0114 

A1 comorbidity 
vs RADC benefit 

1.6601 0.1806 0.0113 

B1 education 
vs RADC benefit  

4.0465 0.1747 0.0143 

C1 male proportion  
vs RADC benefit 

0.3836 0.1335 0.0622 

C1 female proportion 
vs RADC benefit 

−0.3836 −0.1335 0.0622 

D1 white proportion  
vs RADC benefit 

0.1537 0.1016 0.1563 

D1 black proportion  
vs RADC benefit 

−0.1223 −0.0835 0.2445 

D1 hispanic proportion 
vs RADC benefit 

−0.0992 −0.0763 0.2880 

D1 asian proportion 
vs RADC benefit 

−0.0330 −0.0705 0.3263 

D1 native proportion 
vs RADC benefit 

0.0017 0.0075 0.9174 
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Tab. S5. Regression analyses of demographic variables and MG efficacy. Numerical results are for 
regression analyses of the demographic variables associated with the participants in the correlation set. 
The number of data points for all regression analyses reported in this table is 196. The row 
letters/numbers correspond to the panel letters/numbers in Fig. S6. HTN stands for hypertension. 
Comorbidity is combined comorbidity.  

row 
(panel in Fig S6) 

relationship 
examined 

slope of 
regression line 

correlation 
coefficient 

p-value for 
regression 

A2 HTN proportion 
vs MG efficacy 

1.2812 0.4493 0.0000 

A2 comorbidity 
vs MG efficacy 

2.1050 0.3532 0.0000 

B2 education 
vs MG efficacy  

-2.1665 -0.1442 0.0437 

C2 male proportion  
vs MG efficacy 

0.1179 0.0633 0.3782 

C2 female proportion 
vs MG efficacy 

-0.1179 -0.0633 0.3782 

D2 white proportion  
vs MG efficacy 

-0.1411 -0.1440 0.0441 

D2 black proportion  
vs MG efficacy 

0.0935 0.0984 0.1700 

D2 hispanic proportion 
vs MG efficacy 

-0.0802 -0.0951 0.1848 

D2 asian proportion 
vs MG efficacy 

0.0408 0.1342 0.0607 

D2 native proportion 
vs MG efficacy 

0.0069 0.0474 0.5091 
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Tab. S6. Regression analyses of demographic variables and joint MG/RADC efficacy. Numerical results are 
for regression analyses of the demographic variables associated with the participants in the correlation 
set. The number of data points for all regression analyses reported in this table is 196. The row 
letters/numbers correspond to the panel letters/numbers in Fig. S6. HTN stands for hypertension. 
Comorbidity is combined comorbidity.  

row 
(panel in Fig. S6) 

relationship 
examined 

slope of 
regression line 

correlation 
coefficient 

p-value for 
regression 

A3 HTN proportion 
vs joint estimate 

1.2821 0.4551 0.0000 

A3 comorbidity 
vs joint estimate 

2.1258 0.3611 0.0000 

B3 education 
vs joint estimate  

−1.8747 −0.1264 0.0776 

C3 male proportion vs 
joint estimate 

0.1349 0.0733 0.3073 

C3 female proportion 
vs joint estimate 

−0.1349 −0.0733 0.3073 

D3 white proportion  
vs joint estimate 

−0.1281 −0.1323 0.0645 

D3 black proportion  
vs joint estimate 

0.0837 0.0892 0.2135 

D3 hispanic proportion 
vs joint estimate 

−0.0829 −0.0996 0.1649 

D3 asian proportion 
vs joint estimate 

0.0376 0.1254 0.0798 

D3 native proportion 
vs joint estimate 

0.0068 0.0471 0.5124 
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Fig. S7. Median cognitive scores for RADC-alone determined drug combinations. The plot shows the 
composite cognitive scores for the ten best and ten worst RADC-alone determined drug combinations, 
each taken as a whole group. Also shown are the median composite cognitive scores for the group of 
combinations of antihypertensive (antiHTN) medications along with COX2 inhibitors and aspirin, and 
those for all other drug combinations including the null (no-drug) combination. The antiHTN combinations 
are listed in Tab. S9. The central line in each box is the median, and the dashed line extending across the 
plot corresponds to the median for all other drug combinations including the null (no-drug) combination. 
The bottom of each box is the 25th percentile, the top is the 75th percentile, and the whiskers cover 
approximately 99% of all of the data points. The means of the ten best, ten worst, and antiHTN groups 
are all significantly different from the mean of the other group at the p = 0.01 level using the Bonferroni 
correction for multiple comparisons. Grouping the ten best, ten worst, and antiHTN combinations 
together was necessary in order to determine interaction probabilities using N-way ANOVA because not 
all combinations of factors were available when each drug combination was treated individually. The 
results of the N-way ANOVA analysis of the RADC-alone determined combinations is shown in Tab. S7. 
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Tab. S7. Factor interactions for RADC-alone determined drug combinations. The drug combinations are 
grouped into four levels as described in the caption to Fig. S7. Some main effects and some interactions 
are significant. Factor abbreviations are: drug4, the four drug combination groupings; comor, combined 
comorbidity score; HTN, hypertension; and educ, education.  
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Fig. S8. Median cognitive scores for jointly determined drug combinations. The plot shows the composite 
cognitive scores for the Ten Best and Ten Worst jointly determined drug combinations, each taken as a 
whole group. Also shown are the median composite cognitive scores for the group of combinations of 
antiHTN medications along with COX2 inhibitors and aspirin, and those for all other drug combinations 
including the null (no-drug) combination. The antiHTN combinations are listed in Tab. S10. The central line 
in each box is the median, and the dashed line extending across the plot corresponds to the median for 
all other drug combinations including the null (no-drug) combination. The bottom of each box is the 25th 
percentile, the top is the 75th percentile, and the whiskers cover approximately 99% of all of the data 
points. The means of the Ten Best, Ten Worst, and antiHTN groups are all significantly different from the 
mean of the other group at the p = 0.01 level using the Bonferroni correction for multiple comparisons. 
Grouping the Ten Best, Ten Worst, and antiHTN combinations together was necessary in order to 
determine interaction probabilities using N-way ANOVA because not all combinations of factors were 
available when each drug combination was treated individually. The results of the N-way ANOVA analysis 
of the jointly determined combinations is shown in Tab. S8. 
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Tab. S8. Factor interactions for jointly (MG and RADC) determined drug combinations. The drug 
combinations are grouped into four levels as described in the caption to Fig. S8. Some main effects and 
some interactions are significant. Whereas the interaction between the drug combination groupings and 
hypertension was significant for the RADC-alone determined drug combinations (Tab. S7), it was not 
significant here for the jointly determined drug combinations. Factor abbreviations as in Tab. S7.  
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Fig. S9. Median cognitive scores for RADC-alone determined drug combinations. The plot shows the 
composite cognitive scores for the ten best and ten worst RADC-alone determined drug combinations, 
each taken individually. Also shown are the median composite cognitive scores for each of a set of 
combinations of antihypertensive (antiHTN) medications along with COX2 inhibitors and aspirin, and 
those for all other drug combinations including the null (no-drug) combination. The antiHTN combinations 
are listed in Tab. S9. Note that the seventh antiHTN combination (number 27) is excluded from this plot 
because it is the same as the fourth best combination (number 4). The central line is each box is the 
median, and the dashed line extending across the plot corresponds to the median for all other drug 
combinations including the null (no-drug) combination. The bottom of each box is the 25th percentile, the 
top is the 75th percentile, and the whiskers cover approximately 99% of all of the data points. The medians 
for the ten best combinations (numbers 1-10) and for the ten worst combinations (numbers 11-20) all are, 
respectively, higher and lower than the median for all other drug combinations (number 30). This 
demonstrates agreement between the RADC dataset benefit measurement, which was used to determine 
the ten best and worst, and statistics based on the composite cognitive score directly. The means and 
sample sizes for all drug combinations are shown in Tab. S9. 
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Tab. S9. Means and sample sizes for RADC-alone determined drug combinations. This table includes the 
ten best and the ten worst RADC-alone determined drug combinations. It also includes a set of 
combinations of a COX2 inhibitor (COX2I) and aspirin and the antihypertensive (antiHTN) drug classes of 
ACE inhibitor (ACEI), beta blocker (BB), calcium channel blocker (CCB), and angiotensin-receptor blocker 
(ARB). Note that the combination of aspirin, ACEI, BB, CCB, and ARB is the same as combination 4 of the 
ten best RADC-alone determined drug combinations. The last entry is for all other combinations including 
the null (no-drug) combination. The main effect of drug combination is significant at p = 3.1415 x 10−137. 
Means in boldface are significant at the p = 0.01 level using the Bonferroni correction for multiple 
comparisons with the last entry. 

Drug combination  Factor name Mean Sample size 
1 combination 1 of ten best 0.6876 30 
2 combination 2 of ten best  0.6903 34  
3 combination 3 of ten best 0.6926 26 
4 combination 4 of ten best 0.6678 23 
5 combination 5 of ten best 0.6992 57 
6 combination 6 of ten best 0.6669 22 
7 combination 7 of ten best 0.6570 36 
8 combination 8 of ten best 0.6861 32 
9 combination 9 of ten best 0.7291 39 

10 combination 10 of ten best 0.6977 17 
 

11 combination 1 of ten worst 0.2042 16 
12 combination 2 of ten worst 0.3830 44 
13 combination 3 of ten worst 0.3299 23 
14 combination 4 of ten worst 0.3723 27 
15 combination 5 of ten worst 0.4316 8 
16 combination 6 of ten worst 0.3567 26 
17 combination 7 of ten worst 0.4049 29 
18 combination 8 of ten worst 0.3911 39 
19 combination 9 of ten worst 0.4242 46 
20 combination 10 of ten worst 0.4032 23 

 
21 COX2 inhibitor (COX2I) alone 0.6102 75 
22 aspirin alone 0.6067 282 
23 calcium channel blocker (CCB) alone 0.5566 27 
24 COX2I and aspirin 0.6421 146 
25 COX2I and CCB 0.5084 4 
26 aspirin and CCB 0.5928 62 
27 COX2I, aspirin, and CCB 0.6678 23 
28 aspirin, ACE inhibitor (ACEI), beta blocker (BB), 

CCB, and angiotensin receptor blocker (ARB) 
0.6861 14 

29 COX2I, aspirin, ACEI, BB, CCB, and ARB 0.6792 15 
 

30 all other combinations including null (no-drug) 
combination 

0.5890 24,737 
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Fig. S10. Median cognitive scores for jointly determined drug combinations. The plot shows the composite 
cognitive scores for the Ten Best and Ten Worst jointly determined drug combinations, each taken 
individually. Also shown are the median composite cognitive scores for each of a set of combinations of 
antihypertensive (antiHTN) medications along with COX2 inhibitors and aspirin, and those for all other 
drug combinations including the null combination. The antiHTN combinations are listed in Tab. S10. The 
central line is each box is the median, and the dashed line extending across the plot corresponds to the 
median for all other drug combinations including the null (no-drug) combination. The bottom of each box 
is the 25th percentile, the top is the 75th percentile, and the whiskers cover approximately 99% of all of the 
data points. The medians for the Ten Best combinations (numbers 1-10) and for the Ten Worst 
combinations (numbers 11-20) not all are, respectively, higher and lower than the median for all other 
drug combinations (number 30), and this reflects the discrepancies between the MG model efficacies and 
the RADC benefits that are apparent in the correlation shown in Fig. 1 of the main text. The means and 
sample sizes for all drug combinations are shown in Tab. S10. 
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Tab. S10. Means and sample sizes for jointly determined drug combinations. This table included the Ten 
Best and the Ten Worst jointly determined drug combinations. It also includes a set of combinations of a 
COX2 inhibitor (COX2I) and aspirin and the antihypertensive (antiHTN) drug classes of ACE inhibitor (ACEI), 
beta blocker (BB), calcium channel blocker (CCB), and angiotensin-receptor blocker (ARB). The data for 
the COX2I/aspirin/antiHTN combinations are the same as in Tab. S9. The last entry is for all other 
combinations including the null (no-drug) combination. The main effect of drug combination (with jointly 
determined Ten Best and Ten Worst) is significant at p = 5.7818−44. Means in boldface are significant at 
the p = 0.01 level using the Bonferroni correction for multiple comparisons with the last entry. 

Drug combination Factor name Mean Sample size 
1 combination 1 of Ten Best 0.6992 57 
2 combination 2 of Ten Best  0.5789 33 
3 combination 3 of Ten Best 0.5896 22 
4 combination 4 of Ten Best 0.6977 17 
5 combination 5 of Ten Best 0.6136 26 
6 combination 6 of Ten Best 0.6080 20 
7 combination 7 of Ten Best 0.6954 52 
8 combination 8 of Ten Best 0.6568 21 
9 combination 9 of Ten Best 0.6329 23 

10 combination 10 of Ten Best 0.6621 30 
 

11 combination 1 of Ten Worst 0.6153 52 
12 combination 2 of Ten Worst 0.2042 16 
13 combination 3 of Ten Worst 0.4736 54 
14 combination 4 of Ten Worst 0.6521 28 
15 combination 5 of Ten Worst 0.6626 21 
16 combination 6 of Ten Worst 0.5039 55 
17 combination 7 of Ten Worst 0.6471 15 
18 combination 8 of Ten Worst 0.6045 30 
19 combination 9 of Ten Worst 0.6418 26 
20 combination 10 of Ten Worst 0.5420 26 

 
21 COX2 inhibitor (COX2I) alone 0.6102 75 
22 aspirin alone 0.6067 282 
23 calcium channel blocker (CCB) alone 0.5566 27 
24 COX2I and aspirin 0.6421 146 
25 COX2I and CCB 0.5084 4 
26 aspirin and CCB 0.5928 62 
27 COX2I, aspirin, and CCB 0.6678 23 
28 aspirin, ACE inhibitor (ACEI), beta blocker (BB), 

CCB, and angiotensin receptor blocker (ARB) 
0.6861 14 

29 COX2I, aspirin, ACEI, BB, CCB, and ARB 0.6792 15 
 

30 all other combinations including null (no-drug) 
combination 

0.5874 24,687 
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