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Abstract. In this issue, an article by Tiepolt et al. shows that PET scanning using [''C]PiB can demonstrate both cerebral
blood flow (CBF) changes and amyloid-f3 (A3) deposition in patients with mild cognitive dysfunction or mild dementia of
Alzheimer’s disease (AD). The CBF changes can be determined because the early scan counts (1-9 minutes) reflect the flow of
the radiotracer in the blood passing through the brain, while the A3 levels are measured by later scan counts (40—70 minutes)
after the radiotracer has been cleared from regions to which the radiotracer did not bind. Thus, two different diagnostic
measures are obtained with a single injection. Unexpectedly, the mild patients with AP positivity had scan data with only
a weak relationship to memory, while the relationships to executive function and language function were relatively strong.
This divergence of findings from studies of severely impaired patients highlights the importance of determining how AD
pathology affects the brain. A possibility suggested in this commentary is that A3 deposits occur early in AD and specifically
in critical areas of the neocortex affected only later by the neurofibrillary pathology indicating a different role of the amyloid-3
protein precursor (ARPP) in the development of those neocortical regions, and a separate component of AD pathology may
selectively impact functions of these neocortical regions. The effects of adverse ABPP metabolism in the medial temporal
and brainstem regions occur later possibly because of different developmental issues, and the later, different pathology is
clearly more cognitively and socially devastating.
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In this issue, Tiepolt et al. [1] present a PET scan
study showing that early scan counts, obtained in
the time-frame of 1 to 9 minutes after injection of
['1CIPiB, reflect cerebral blood flow (CBF). Pitts-
burgh compound B (PiB) is an extensively studied
radiotracer marker whose late scan counts reveal the
distribution of cerebral amyloid-3 (AB) [2], a protein
deposited in the brains of patients with Alzheimer’s
disease (AD). This study presented the early PiB
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count distribution and showed that distribution pat-
tern is substantially similar to the pattern of CBF
loss seen in AD patients using established scanning
techniques [3, 4]. This finding is important because
it shows that a single PET tracer injection can be
used to determine both the pattern of CBF change in
patients with cognitive impairment as well as testing
for the presence of AB. The study provides further
potentially even more important data challenging the
association of memory changes with early AD and
AP deposition. The relationship between the CBF
changes and various cognitive factors, in the pres-
ence or absence of cerebral AP, in this relatively
mildly impaired population, suggests the need for
better understanding of AD pathology.
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ESTABLISHMENT OF AD PATHOLOGY

AD is a complex condition first described by
Alois Alzheimer in 1906 in which neurofibrillary
tangles (NFTs) and neuritic plaques (NPs) affect
the brain in association with progressive cognitive
impairment and dementia [5]. The modern aware-
ness of AD began in 1968 when Blessed, Tomlinson,
and Roth showed in elderly individuals that the
NFTs correlated with the severity of the dementia,
though the NPs, which contain AB, did not [6]. A
major advance in understanding AD pathology was
the demonstration that AD pathology predominantly
affects the posterior-temporal, inferior parietal, pos-
terior cingulate, and medial temporal regions [7],
with a characteristic pattern of progression begin-
ning in the entorhinal cortex involving neurofibrillary
(NF) and microtubule associated protein-tau (tau)
pathology rather than senile plaque and A3 pathol-
ogy [8], consistent with the earlier findings of
Blessed, Tomlinson, and Roth. This progression of
AD NF/NFT/tau pathology is clearly reflected by
both CBF [3] and cerebral metabolism [9, 10], as well
as by PET tracers targeting tau [11, 12], with char-
acteristic regional and stage-specific variations [12].
These changes in the brain are closely related to the
impairments of memory function that are so typical
of the dementia associated with AD and its progres-
sion [13, 14]. This pattern has strongly suggested
that AD pathology selectively attacks those neuro-
plastic brain systems which perform the functions of
episodic memory [15, 16].

The NPs and A are consistent components of AD
pathology [17], which is the predominant cause of
dementia. However, the distribution pattern of A3
pathology, which is found at least as early and dif-
fusely in the neocortex as the tau pathology, is found
first in most regions of the neocortex [18], but is gen-
erally not or much less related to cognitive changes
than the tau pathology [19-23].

UNDERSTANDING AD
PATHOPHYSIOLOGY AND DEMENTIA
CAUSATION

The key issue related to the development of demen-
tia in AD is thought to be the loss of synapses [24],
leading to decreases in energy metabolism [25], with
a direct secondary loss of CBF. This process, as
noted above, is closely related to tau pathology and
likely results from clogging of neuritic processes [26]

leading to NF pathology, amputation of neurites, and
synaptic slaughter [27]. The Tiepolt et al. study [1]
shows that the CBF change can be demonstrated with
PiB by examining the early passage of the radiotracer
to the brain. The actual tagging of A requires scan-
ning 40 to 70 minutes after the injection, due to the
dynamics of brain binding to the compound, specif-
ically the clearance of PiB from regions where there
is no AP for it to tag. The data presented by Tiepolt
et al. [1] confirm that the estimated CBF is consis-
tent with cognitive changes associated with loss of
cerebral metabolism in AD, but associated cognitive
changes vary according to the A presence and the
overall severity.

The important inconsistency revealed by the
Tiepolt et al. study [1] is the lack of a strong rela-
tionship in the mildly-impaired Ap-positive patients
between CBF measurement and episodic memory,
while CBF shows better relationships with executive
and language functions. Thus, there is a critical issue
as to whether there may be a separate process early
in the development of AD, which disrupts the execu-
tive and language functions of the frontal, temporal,
and parietal neocortical regions, where A is chiefly
deposited [28-30], that is not related to the effect of
AD on episodic memory, which occurs later in the
disease progression and does correspond to dementia
severity.

AD AND THE ROLE OF THE AMYLOID-$
PROTEIN PRECURSOR AND A

There has been a long and contentious perspec-
tive that AD is specifically a disease beginning with
AP deposition that causes the development of the tau
pathology, which is directly related to the demen-
tia [31-33]. Yet this “amyloid cascade hypothesis”
has yielded no AD therapeutic benefits in 25 years
[34-36].

While the concept that the A3 molecule directly
leads to the tau pathology is weak and circumstan-
tial, it has become progressively clearer that the
amyloid- protein precursor (ABPP) plays a cen-
tral role in all forms of Alzheimer-type dementia,
and each type begins with an early deposition of A3
[37]. The first advance in this area of understanding
related to the occurrence of Alzheimer-type dementia
in Down syndrome, linked to trisomy of chromosome
21. When A3 was sequenced and related to a gene on
chromosome 21, ABPP, the first link to a causative
mechanism of AD was established [38]. Deposition



J.W. Ashford / The Dichotomy of AD Pathology: Amyloid- and Tau 79

of A3 occurs early in Down syndrome as well [39].
Many of the early onset AD cases are related to
mutations in ABPP or a component of the gamma-
secretase (PSEN1 and PSEN2) [40], and each of these
cases is associated with a typical age of onset of
dementia [41] and an early deposition of AP in the
typical pattern of AD [42]. The relationship of early
changes related to the apolipoprotein E (APOE) gene
and A, which is the strongest genetic factor leading
to AD [43, 44], is specifically related to A3 as well
[4, 45-47]. A major question in the field is the basis
of the APOE relationship, which could be through a
direct stimulation of the transcription of ABPP [48],
though other theories have been posited related to
AR, and APOE affects hundreds of cellular mecha-
nisms [49], so the specific molecular biology is not
yet known. Further there are several other genetic fac-
tors which affect AD occurrence and are associated
with early AR levels [50, 51]. Additionally, environ-
mental factors likely play a role in the age at which
AD develops and are likely also associated with early
A deposition [52].

Extensive efforts have led to the development of
PET ligands such as PiB to image A in the brain,
which have confirmed that A is deposited first gener-
ally in neocortical regions, with a predilection for the
lateral temporal cortex, the orbito-frontal cortex, and
the precuneus, beginning well before symptoms of
dementia develop and consistent with the anatomical
pathology. Yet these measurements are not or min-
imally related to cognitive decline or dementia and
removal of these deposits does not slow the progress
of AD. Yet A is somehow integrally involved with
AD, including that it is closely related to specific
young-onset genetic factors [40] and the genotype
of Apolipoprotein E (APOE) [4, 53-55]. In view of
the major questions about the role of A in the devel-
opment of dementia in AD [36], there is a need for
an analysis of the basic pathology of AD with regard
to brain changes and cognitive deterioration.

The amyloid hypothesis has been problematic for
many reasons [56], but one issue has been that the
distribution of the amyloid changes is predominantly
neocortical, with tendencies to involve frontal and lat-
eral temporal areas early, which does not correspond
to the distribution of the CBF, cerebral metabolic,
or tau changes in the brain early or late [19]. Fur-
ther, the AP changes are not related to the cognitive
dysfunction of the dementia of AD, and they have a
time-course that precedes the dementia by decades
[53, 54]. So, there remains the question of whether
the AP pathology is directly associated with any

cognitive impairment, and if so, what impairment.
Since the AP pathology occurs so early and affects
several key neocortical regions including the frontal
lobes, it is reasonable to consider that it may have
an effect on executive and language functions, as
described in the Tiepolt et al. paper [1]. A similar
finding was found as well in another recent study
examining normal elderly and individuals with mild
cognitive impairment with the Montreal Cognitive
Assessment and a computerized cognitive test, which
included processing speed [57], a factor more related
to A3 than the tau-related pathology [45]. Another
study found a relationship between A3 positivity and
executive impairment, that was not independently
related to the APOE genotype [47].

The dementia of AD is specifically characterized
by highly correlated impairments of memory and
other cognitive functions and activities of daily living
[58]. The AD-dementia corresponds to the metabolic
impairment mostly located in the posterior temporal
and inferior parietal neocortical regions, with limited
frontal lobe involvement [10], the secondary loss of
CBF[3], and tau pathology [8]. However, A3 changes
can be severe yet not be associated with dementia
or any well-characterized cognitive impairment [59].
Thus, AP deposition might be a separate process
unrelated to the relentlessly progressive tau pathology
of AD and its dementia. Determining exactly how the
AP and tau pathologies are related is probably essen-
tial to understand AD and develop an approach to AD
prevention.

THE ROLE OF ABPP
IN NEUROPLASTICITY

Given the central relationship of several genetic
factors to ABPP, A, and AD, there is a clear need
to understand the specific properties of the ABPP, its
proteolysis, and its pervasive role in brain function.
ABPP appears be controlled by a variety of molec-
ular processes related to the establishment of new
synaptic organizations underlying the formation of
new memory, particularly in the temporal and parietal
lobes [16, 60]. Of great potential relevance, the beta-
cleavage and gamma-cleavage product from ABPP
produces, in addition to A3, an equal amount of
an intracellular domain protein (AICD), which has
important roles in intracellular signaling [61-63].
The alpha-cleavage products appear to have sepa-
rate properties [64]. One possible role of AICD is to
stimulate transcription of intracellular factors [65],
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which may include tau phosphorylation. Of further
relevance, there are several cellular mechanisms for
controlling ABPP proteolysis, and the control of the
alpha-secretase, ADAM-10 [66]. These systems may
play an important role in ABPP management. Fur-
ther, ABPP may be managed differently in various
cortical regions and have multiple critical roles, with
pathological processing in some regions leading to
A deposition and in others leading to abnormal tau
phosphorylation.

It is possible that ABPP may have a specific role
in the neocortex and particularly the frontal lobes
which has not yet been delineated. ABPP could play
a central role in pruning synapses, producing A as
a natural synaptic toxin, during critical neocortical
periods, and the late and prolonged critical period
of the frontal lobes may make parts of that region
particularly susceptible to dysfunction, thus predis-
posing to A3 deposition there. The critical period of
the frontal lobes, which occurs in late adolescence
and early adulthood, is associated with the develop-
ment of schizophrenia [67, 68]. Particular brainstem
neurons which project to the neocortex, including
the frontal lobes, norepinephrine and serotonin, are
also known to augment ABPP alpha-secretase activ-
ity, decreasing AP production [66, 69], and these
neurons are known to degenerate early in AD [70,
71], potentially leading to an excess of beta-cleavage
of ABPP and an excess production of AB. Accord-
ingly, some ABPP related mechanisms which have
an early, adverse effect on the function of the frontal
lobe could lead to symptoms of mild behavioral
impairment, including personality changes, apathy,
and depression, which are related to prodromal and
mild AD [72, 73]. In further support of this con-
cept, these behavior changes are linked to genetic
loci associated with AD [74]. However, even in
the case of psychiatric symptoms, tau pathology,
particularly in the brainstem, appears to be more
closely related to all dysfunctions than A pathology
[75].

Alternatively, in the temporal lobe (hippocampus,
amygdala, posterior convexity), inferior parietal lobe,
and posterior cingulate, neuroplasticity is a life-long
function, leading to progressively longer dendrites
[76, 77]. Neuroplasticity may depend on ABPP to
either grow neurites or cause them to retract, through
induction of tau de-phosphorylation or phosphory-
lation, respectively [16]. Accordingly, disturbances
of ABPP metabolism, without A deposition, could
lead to neuritic pathology [26] and synaptic slaughter
[27], resulting in dementia.

IMPORTANCE OF BETTER COGNITIVE
ASSESSMENT

A point emphasized by the Tiepolt et al. paper
[1] is the importance of cognitive assessment. Anal-
ysis of CERAD data has led to improvements
in cognitive screening for AD. For example, data
from CERAD was analyzed, and the most efficient
components were identified to construct the Brief
Alzheimer Screen [78]. Yet, one of the deficiencies
of the CERAD test battery is the lack of power
for assessment of episodic memory. Indeed, more
powerful assessment of episodic memory is criti-
cal to improving the assessment of AD, particularly
in very mild impairment. Computerized testing is
a probable direction for developing more precise
assessments which can increase the sensitivity for
measuring not just memory function, but execu-
tive, language, and visuo-spatial functions. Improved
measures will provide a better assessment of the cog-
nitive impairments early in the course of AD and the
continuum of deterioration of cognition leading into
dementia [57].

Another issue which should be addressed in con-
sidering brain scans in general is the costs and risks
of the scans, including the expense of frequent repe-
titions to determine longitudinal changes. Given the
relationship between genetic factors and A3 deposi-
tion, including the early deposition of Af3 in Down
syndrome, early onset AD, specific APOE genotype,
and polygenic risk factors, it may be that the relation-
ship between age and established age time-lines can
provide as much information about the amount of A3
deposited in the brain as does a brain scan [53, 55].
In the course of establishing such time-lines, there
should also be further investigation of environmen-
tal factors and medications which affect age of AP
deposition. Ultimately, the goal is to determine the
course of AD in any individual non-invasively and
efficiently.

While there has been an exhaustive search for
biomarkers of AD, ultimately, the best measures,
potentially reflecting every aspect of pathology, will
be more precise cognitive assessment of several
relevant but different domains. Certainly, cogni-
tive assessment performed by computer can provide
greater precision than paper and pencil tests and be
considerably cheaper and have less side-effects than
brain scanning. As better brain scanning approaches
develop, as exemplified by the Tiepolt et al. paper [1],
the best outcome may be improvement of neurocog-
nitive assessment.
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