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Abstract.
Background: Microarray technologies have identified imbalances in the expression of specific genes and biological pathways
in Alzheimer’s disease (AD) brains. However, there is a lack of reproducibility across individual AD studies, and many related
neurodegenerative and mental health disorders exhibit similar perturbations.
Objective: Meta-analyze publicly available transcriptomic data from multiple brain-related disorders to identify robust
transcriptomic changes specific to AD brains.
Methods: Twenty-two AD, eight schizophrenia, five bipolar disorder, four Huntington’s disease, two major depressive
disorder, and one Parkinson’s disease dataset totaling 2,667 samples and mapping to four different brain regions (temporal
lobe, frontal lobe, parietal lobe, and cerebellum) were analyzed. Differential expression analysis was performed independently
in each dataset, followed by meta-analysis using a combining p-value method known as Adaptively Weighted with One-sided
Correction.
Results: Meta-analysis identified 323, 435, 1,023, and 828 differentially expressed genes specific to the AD temporal lobe,
frontal lobe, parietal lobe, and cerebellum brain regions, respectively. Seven of these genes were consistently perturbed
across all AD brain regions with SPCS1 gene expression pattern replicating in RNA-Seq data. A further nineteen genes
were perturbed specifically in AD brain regions affected by both plaques and tangles, suggesting possible involvement in
AD neuropathology. In addition, biological pathways involved in the “metabolism of proteins” and viral components were
significantly enriched across AD brains.
Conclusion: This study identified transcriptomic changes specific to AD brains, which could make a significant contribution
toward the understanding of AD disease mechanisms and may also provide new therapeutic targets.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
form of dementia affecting over 44 million individu-
als worldwide, and numbers are expected to triple by
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2050 [1]. The hallmark of the disease is characterized
by the abnormal brain accumulation of amyloid-�
(A�) protein and hyperphosphorylated tau filaments,
which forms structures known as plaques and tan-
gles, respectively. The accumulation of these proteins
contributes to the loss of connections between neuron
synapses, leading to the loss of brain tissue and the
disruption of normal cognitive functions.

As AD progresses, the spread of plaques and tan-
gles in the brain usually occurs in a predictable pattern
and can begin up to 18 years prior to the onset of clini-
cal symptoms [2]. In the earliest stages of the disease,
plaques and tangles form in areas of the brain primar-
ily involved in learning and memory, specifically the
hippocampus and entorhinal cortex, both situated in
the temporal lobe (TL) region [3]. Next, the frontal
lobe (FL), a region involved in voluntary movement,
is affected, followed by the parietal lobe (PL), a region
involved in processing reading and writing. In the
later stage of the disease, the occipital lobe, a region
involved in processing information from the eyes, can
become affected, followed by the cerebellum (CB),
a region which receives information from the sen-
sory systems and the spinal cord to regulates motor
movement. Nerve cell death, tissue loss, and atrophy
occur throughout the brain as AD progresses, leading
to the manifestation of clinical symptoms associated
with loss of normal brain function. However, not all
brain regions are neuropathologically affected in the
same manner. The CB, which only accounts for 10%
of the brain but contains over 50% of the brain’s total
neurons, is often neglected in AD research because
it is generally considered to be partially spared from
the disease as plaques are only occasionally seen but
tangles are generally not reported [4, 5].

The histopathological spread of the disease is well
documented, and with the advent of high throughput
genomics approaches, we are now able to study the
transcriptomic and biological pathways disrupted in
AD brains. Microarrays can simultaneously exam-
ine thousands of genes, providing an opportunity
to identify imbalances in the expression of specific
genes and biological pathways. However, microar-
ray reproducibility has always been questionable,
with replication of differentially expressed genes
(DEGs) very poor [6]. For example, two independent
microarray transcriptomic studies performed differ-
ential expression analysis in the hippocampus of AD
brains. The first study by Miller et al. identified 600
DEGs [7], and a similar study by Hokama et al. iden-
tified 1071 DEGs [8]. An overlap of 105 DEGs exist
between the two studies; however, after accounting

for multiple testing, no gene was replicated between
the two studies. The Miller study consisted of 7
AD and 10 control subjects expression profiled on
the Affymetrix platform while the Hakoma study
consisted of 31 AD and 32 control subjects expres-
sion profiled on the Illumina platform. Replication
between the Illumina and Affymetrix platform has
been shown to be generally very high [9]; therefore,
the lack of replication between the two studies is
probably down to a range of other factors includ-
ing low statistical power, sampling bias, and disease
heterogeneity.

Unlike DEGs, replication of the molecular changes
at a pathway level are more consistent and have
provided insights into the biological processes dis-
turbed in AD. Numerous studies have consistently
highlighted disruptions in immune response [10–13],
protein transcription/translation [10, 11, 14–17], cal-
cium signaling [10, 18, 19], MAPK signaling [7, 16],
various metabolism pathways such as carbohydrates
[16], lipids [16, 20], glucose [17, 21, 22], iron [11,
23], chemical synapse [7, 18, 19], and neurotransmit-
ter [11, 18, 19]. However, many of these pathways
have also been suggested to be disrupted in other
brain-related disorders. For example, disruptions in
calcium signaling, MAPK, chemical synapse, and
various neurotransmitter pathways have also been
implicated in Parkinson’s disease (PD) [24, 25]. In
addition, glucose metabolism, protein translation,
and various neurotransmission pathways have also
been suggested to be disrupted in bipolar disorder
(BD) [26–29]. Although the biological disruptions
involved in AD are steadily being identified, many
other neurodegenerative and mental disorders are
showing similar perturbations. We are yet to identify
robust transcriptomic changes specific to AD brains.

In this study, we combined publicly available
microarray gene expression data generated from AD
human brain tissue and matched cognitively healthy
controls to conduct the most extensive AD transcrip-
tomic microarray meta-analyses known to date. We
generate AD expression profiles across the TL, FL,
PL, and CB brain regions. We further refine each
expression profile by removing perturbations seen in
other neurodegenerative and mental disorders (PD,
BD, schizophrenia [SCZ], major depressive disorder
[MDD], and Huntington’s disease [HD]) to decipher
specific transcriptomic changes occurring in human
AD brains. These AD-specific brain changes may
provide new insight and a better understanding of the
disease mechanism, which in turn could provide new
therapeutic targets for preventing and curing AD.
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MATERIALS AND METHODS

Selection of publicly available microarray
studies

Publicly available microarray gene expres-
sion data was sourced from the Accelerating
Medicines Partnership-Alzheimer’s Disease AMP-
AD (doi:10.7303/syn2580853, doi:10.1038/ng.305,
doi:10.1371/journal.pgen.1002707, doi:10.1038/ng.
305, doi:10.1038/sdata.2016.89, doi:10.1038/sdata.
2018.185) and ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/) in June 2016. For a study to be selected
for inclusion, the data had to 1) be generated from
a neurodegenerative or mental health disorder,
2) be sampled from human brain tissue, 3) have
gene expression measured on either the Affymetrix
or Illumina microarray platform, 4) contain both
diseased and suitably matched healthy controls in the
same experimental batch, and 5) contain at least 10
samples from both the diseased and control group.

Microarray gene expression data pre-processing

Data analysis was performed in RStudio (ver-
sion 0.99.467) using R (version 3.2.2). All data
analysis scripts used in this study are available
at https://doi.org/10.5281/zenodo.823256. In brief,
raw Affymetrix microarray gene expression data
was “mas5” background corrected using R package
“affy” (version 1.42.3) and raw Illumina microarray
gene expression data Maximum Likelihood Estima-
tion (MLE) background corrected using R package
“MBCB” (version 1.18.0). Studies with samples
extracted from multiple tissues were separated into
tissue-specific matrices, log2 transformed and then
Robust Spline Normalised (RSN) using R package
“lumi” (version 2.16.0).

BRAAK staging is a measure of AD pathology and
ranges from I-VI. In general, stages I-II, III-IV and
V-VI represent the “low likelihood of AD”, “probable
AD” and “definite AD” respectively [30]. To main-
tain homogeneity within the sample groups and to be
able to infer pathological related genetic changes, if
BRAAK staging was available, clinical AD samples
with BRAAK scores ≤3 or clinical control samples
with BRAAK scores ≥3 were removed from further
analysis.

Gender was predicted using the R package “mas-
siR” (version 1.0.1) and used to subset the data into
four groups based on diagnosis (case/control) and
gender (male/female). Next, probes below the 90th

percentile of the log2 expression scale in over 80%
of samples were deemed “not reliably detected” and
were excluded from further analysis to eliminate
noise [31] and increase power [32].

Publicly available data is often accompanied by
a lack of sample processing information, making
it impossible to adjust for known systematic errors
introduced when samples are processed in multiple
batches, a term often known as “batch effects”.
To account for both known and latent variation,
batch effects were estimated and removed using the
Principal Component Analysis (PCA) and Surrogate
Variable Analysis (SVA) using the R package “sva”
(version 3.10.0). Gender and diagnosis information
were used as covariates in sva when correcting
for batch effects. Outlying samples were itera-
tively identified and removed from each gender
and diagnosis group using fundamental network
concepts described in [33]. Platform-specific probe
ID’s were converted to Entrez Gene ID’s using
the BeadArray corresponding R annotation files
(“hgu133plus2.db”, “hgu133a.db”, “hgu133b.db”,
“hugene10sttranscriptcluster.db”, “illuminaHu-
manv4.db”, “illuminaHumanv3.db”) and differential
expression analysis was performed within each
dataset using the R package “limma” (version
3.20.9).

Finally, study compatibility analysis was investi-
gated through the R package “MetaOmics” (version
0.1.13). This package uses DEGs, co-expression, and
enriched biological pathways analysis to generate
six quantified measures that are used to generate
a PCA plot. The direction of each quality control
(QC) measure is juxtaposed on top of the two-
dimensional PC subspace using arrows. Datasets
in the negative region of the arrows were classed
as outliers [34] and were removed from further
analysis.

Meta-analysis

Datasets were grouped by the primary cerebral cor-
tex lobes (TL, FL, PL) and the CB. Meta-analysis
was performed using a “combining p-values” method
known as “Adaptively Weighted with One-sided
Correction” (AW.OC), implemented through the R
package “MetaDE” (version 1.0.5) [34]. A com-
bining p-value method was chosen to address the
biases introduced from different platforms. AW.OC
was chosen as it permits missing information across
datasets which are introduced by combining data
generated from different microarray platforms and

https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://doi.org/10.5281/zenodo.823256
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expression chips. This avoids the need to subset indi-
vidual datasets to common probes, which essentially
allows for the maximum number of genes to be ana-
lyzed. Furthermore, the method provides additional
information on which dataset is contributing towards
the meta-analysis p-value, and has been shown to be
amongst the best performing meta-analysis methods
for combining p-values for biological associations
[35]. The meta-analysis method does not provide
an overall directional change for each gene; there-
fore, the standard error (SE) was calculated from
the DE logFC values of each gene across the AW
assigned significant datasets and used for standard
meta-summary estimate analysis using the R pack-
age “rmeta” (version 2.16). This served as the “meta
expression” change in downstream analysis where
positive values represent a gene being upregulated
in AD and negative values as being downregulated in
AD. Selecting DEGs based on an arbitrary expression
change significantly influences the interpretation of
DE results [36]. At least half of differential expres-
sion based studies incorporate a fold change cut-off
typically between 2–3; however, informative RNAs
and expressed transcripts have been shown to have a
fold change less than 2 [37], and genes with low fold
change have been demonstrated to influence biologi-
cal effects in signaling cascades and pathways [36]. In
addition, gene expression is heavily influenced by tis-
sue, and as this study performs meta-analysis across
multiple inter-related tissues within larger brain com-
partments, we do not employ an arbitrary fold
change cut-off to determine if a gene is differentially
expressed; however, we do require the gene to be con-
sistently expressed across these tissues. If a gene was
significantly DE according to the meta-analysis (FDR
adjusted meta p-value ≤0.05), but at least one con-
tributing dataset (according to AW.OC weights) had
directional logFC discrepancy (i.e., upregulated in
one dataset and downregulated in another dataset), the
gene was deemed to be discordant and was excluded
from further analysis. This ensured we only captured
robust, and consistently reproducible expression
signatures.

Generation of disease-specific meta-analysis
expression profiles

Meta-analysis was performed across all AD
datasets, followed by a separate meta-analysis
across the non-AD disorder datasets. Using these
meta-analysis results we generated three expression
profiles: 1) “AD expression profile”, 2) “AD-specific

expression profile”, and 3) “common neurological
disorder expression profile”.

The first expression profile, “AD expression pro-
file”, is a direct result of the meta-analysis performed
on AD studies, which represents the changes typi-
cally observed from an AD and cognitively healthy
control study design. The second expression profile,
deemed as the “AD-specific expression profile”, is
produced by subtracting significantly DEGs found
in the non-AD meta-analysis results from the “AD
expression profile”. This profile represents transcrip-
tomic changes specifically observed in AD and not
in any other neurodegenerative or mental health
disorder used in this study. The third expression pro-
file, deemed as the “common neurological disorder
expression profile”, represents genes which are sig-
nificantly DE in all disorders used in this study,
including AD.

Replication of significant microarray genes in
RNA-Seq data

The genes significantly DE and deemed to be of
biological significance in this study were queried
in the curated web-based database Agora (data ver-
sion 9, accessible at https://agora.ampadportal.org),
which provides expression change of genes in AD
based on RNA-Seq of 2100 human brain samples.

Functional and gene set enrichment analysis

Gene set enrichment analysis (GSEA) and Gene
Ontology (GO) analysis was conducted using an
Over-Representation Analysis (ORA) implemented
through the ConsensusPathDB web platform (version
32) [38] in May 2017. ConsensusPathDB incor-
porates numerous well-known biological pathway
databases including BioCarta, KEGG, Reactome, and
Wikipathways. The platform performs a hypergeo-
metric test while integrating a background gene list,
which in this case is a list of all the genes that pass
quality control in this study, compiles results from
each database and corrects for multiple testing using
the false discovery rate (FDR) [38]. A minimum over-
lap of the query signature and database was set to 2,
and a result was deemed significant if the q-value was
≤0.05.

Network analysis

Protein-protein interaction (PPI) networks were
created by uploading the meta-analysis DEG

https://agora.ampadportal.org
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lists (referred to as seeds in network analy-
sis) along with their meta logFC expression
values to NetworkAnalyst’s web-based platform
http://www.networkanalyst.ca/faces/home.xhtml in
June 2017. The “Zero-order Network” option was
incorporated to allow only seed proteins directly
interacting with each other, preventing the well-
known “Hairball effect” and allowing for better
visualization and interpretation [39]. Sub-modules
with a p-value ≤0.05 (based on the “InfoMap” algo-
rithm [40]) were considered significant key hubs, and
the gene with the most connections within this hub
was regarded as the key hub gene.

RESULTS

The AD microarray datasets

We Identified and acquired nine publicly avail-
able AD studies from ArrayExpress and AMP-AD,
of which seven studies contained samples extracted
from differing regions of the brain. The basic char-
acteristics of each study and dataset are provided in
Table 1. Separating the nine studies by brain regions
resulted in 46 datasets. Here a “dataset” is defined by
brain region and study origin. For example, ArrayEx-
press study E-GEOD-36980 consists of diseased and
healthy samples extracted from three different tissues
(temporal cortex, hippocampus, and frontal cortex).
All samples originating from the same tissue were
classified as one dataset; therefore, study E-GEOD-
36980 generated three datasets, representing the three
different tissues.

The 46 AD datasets contained both AD samples
and healthy controls, were assayed using seven dif-
ferent expression chips over two different microarray
platforms (Affymetrix and Illumina) and consisted
of a total 2,718 samples before QC. Briefly, the
MetaOmics analysis identified study syn4552659 as
an outlier and was therefore removed from further
analysis (see the Supplementary Material), result-
ing in 1,501 samples (746 AD, 755 controls) in the
remaining 22 datasets after QC.

Summary of the AD meta-analysis DEG counts
The AD meta-analysis was performed on the 22

AD datasets and independently identified differen-
tially expressed genes within the TL, FL, PL, and
CB brain regions. A summary of the number of
datasets in each brain region and the number of sig-
nificant DEGs identified is provided in Table 2. The
complete DE results are provided in Supplementary

Table 1. As mentioned in the methods, due to gene
expression being influenced by tissue source and as
this study incorporates different brain regions, we do
not employ an arbitrary cut-off value to determine
genes that are highly or lowly expressed, but primar-
ily focus on genes consistently perturbed. However,
we provide the meta expression values in the Sup-
plementary tables and advise readers to consider
the expression distribution of all DEGs within each
brain region independently, if determining whether a
gene is highly/lowly expressed. For instance, the CB
meta expression ranges from –0.53 to 0.54 with an
interquartile range (Q1–Q3) of –0.1 to 0.1. In con-
trast, the PL has a larger meta expression range of
–1.5 to 1.35, with an interquartile range (Q1–Q3) of
–0.53 to 0.29. Therefore, as gene expression distribu-
tion varies across brain regions, a sensible cut-off (if
one was to be used) for highly and lowly expressed
genes may lie at the 1st and 3rd quartiles, respectively,
with quartiles calculated per tissue.

The non-AD disorder microarray datasets

Nine non-AD studies were identified and acquired,
of which four studies consisted of samples generated
from multiple disorders and brain regions. Separat-
ing the studies by disease and tissue equated to 21
datasets consisting of 8 SCZ, 6 BD, 4 HD, 2 MDD,
and 1 PD dataset with a total of 1,166 samples after
QC. The demographics of the non-AD datasets is
provided in Table 3.

Summary of non-AD brain disorder
meta-analyses DEG counts

A second meta-analysis was performed on all
non-AD disorders, and similarly to the AD meta-
analysis, datasets were grouped into the TL, FL, PL,
and CB brain regions. An overview of the non-AD
meta-analysis results are provided in Table 4, and a
complete list of DEGs is provided in Supplementary
Table 2. SCZ and BD were the only disorders with
expression data available across all four brain regions,
and the FL brain region was the only region with
expression data available from all non-AD disorders
identified in this study.

The meta-analysis expression profiles

As described in the methods, three primary expres-
sion signatures were derived from the meta-analyses
for each of the four brain regions: 1) “AD expression
profile”, 2) “AD-specific expression profile”, and 3)

http://www.networkanalyst.ca/faces/home.xhtml
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Table 1
Characteristics of individual AD studies processed in this meta-analysis

Data Accession Microarray BeadArray Tissue source (as stated Meta-Analysis Number of samples after QC
repository details platform in the original study brain region

(Publication) publication) mapping
AD (M/F) Control (M/F)

ArrayExpress E-GEOD-118553 Illumina HumanHT-12 v4 Entorhinal Cortex Temporal Lobe 35 (14/21) 21 (12/9)
Cerebellum Cerebellum 38 (10/28) 19 (5/14)
Frontal Cortex Frontal Lobe 38 (13/25) 22 (11/11)
Temporal Cortex Temporal Lobe 51 (21/30) 29 (21/8)

ArrayExpress E-GEOD-48350
([76])

Affymetrix Human Genome
U133 Plus 2.0

Entorhinal Cortex Temporal Lobe 11 (6/5) 38 (21/17)

Hippocampus Temporal Lobe 15 (8/7) 41 (22/19)
Postcentral Gyrus Parietal Lobe 19 (11/8) 33 (20/13)
Superior Frontal Gyrus Frontal Lobe 17 (8/9) 38 (22/16)

ArrayExpress E-GEOD-29378
([7])

Illumina HumanHT-12 v3 Hippocampus CA1 Temporal Lobe 16 (9/7) 16 (11/5)

Hippocampus CA3 Temporal Lobe 15 (9/6) 16 (11/5)
ArrayExpress E-GEOD-36980

([8])
Affymetrix Human Gene

1.0 ST
Frontal Cortex Frontal Lobe 14 (7/7) 17 (9/8)

Hippocampus Temporal Lobe 7 (3/4) 10 (5/5)
Temporal Cortex Temporal Lobe 10 (5/5) 19 (8/11)

ArrayExpress E-GEOD-28146
([19])

Affymetrix Human Genome
U133 Plus 2.0

Hippocampus CA1 Temporal Lobe 15 (4/11) 8 (5/3)

ArrayExpress E-GEOD-1297
([77])

Affymetrix Human Genome
U133A

Hippocampus Temporal Lobe 19 (4/11) 9 (6/3)

ArrayExpress E-GEOD-5281
([21])

Affymetrix Human Genome
U133 Plus 2.0

Entorhinal Cortex Temporal Lobe 10 (4/6) 13 (11/2)

Hippocampus CA1 Temporal Lobe 10 (4/6) 13 (10/3)
Medial Temporal Gyrus Temporal Lobe 16 (10/6) 12 (8/4)
Posterior Cingulate Parietal Lobe 9 (4/5) 13 (10/3)
Superior Frontal Gyrus Frontal Lobe 23 (13/10) 11 (7/4)

AMP syn3157225
([78])

Illumina Whole-Genome
DASL HT

Temporal Cortex Temporal Lobe 189 (93/96) 186 (116/70)

Cerebellum Cerebellum 169 (87/82) 171 (113/58)
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AMP syn4552659
([79])

Affymetrix Human Genome
U133A

Frontal Pole Frontal Lobe 25 (6/19) 7 (4/3)

Precentral Gyrus Frontal Lobe 20 (5/15) 3 (1/2)
Inferior Frontal Gyrus Frontal Lobe 19 (5/14) 4 (1/3)
Dorsolateral Prefrontal Cortex Frontal Lobe 19 (4/15) 8 (4/4)
Superior Parietal Lobule Parietal Lobe 11 (2/9) 5 (2/3)
Prefrontal Cortex Frontal Lobe 23 (7/16) 4 (2/2)
Parahippocampal Gyrus Temporal Lobe 18 (5/13) 7 (3/4)
Hippocampus Temporal Lobe 20 (5/15) 5 (2/3)
Inferior Temporal Gyrus Temporal Lobe 20 (5/15) 6 (3/3)
Middle Temporal Gyrus Temporal Lobe 15 (4/11) 7 (4/3)
Superior Temporal Gyrus Temporal Lobe 15 (3/12) 8 (4/4)
Temporal Pole Temporal Lobe 25 (7/18) 6 (3/3)

AMP syn4552659
([79])

Affymetrix Human Genome
U133B

Frontal Pole Frontal Lobe 26 (8/18) 7 (4/3)

Precentral Gyrus Frontal Lobe 18 (4/14) 3 (1/2)
Inferior Frontal Gyrus Frontal Lobe 21 (5/16) 5 (2/3)
Dorsolateral Prefrontal Cortex Frontal Lobe 20 (5/15) 8 (4/4)
Superior Parietal Lobule Parietal Lobe 16 (5/11) 5 (3/2)
Prefrontal Cortex Frontal Lobe 23 (7/16) 4 (2/2)
Parahippocampal Gyrus Temporal Lobe 19 (7/12) 7 (3/4)
Hippocampus Temporal Lobe 22 (6/16) 5 (2/3)
Inferior Temporal Gyrus Temporal Lobe 21 (6/15) 7 (4/3)
Middle Temporal Gyrus Temporal Lobe 23 (8/15) 7 (4/3)
Superior Temporal Gyrus Temporal Lobe 23 (4/19) 8 (4/4)
Frontal Pole Frontal Lobe 26 (8/18) 7 (4/3)

Nine publicly available AD studies were identified and acquired for this study. Separating the studies by tissue resulted in 46 datasets, each containing AD and healthy control samples. The brain
tissue in each of the 46 datasets was mapped to their corresponding cerebral cortex (temporal lobe, frontal lobe, or parietal lobe) or the cerebellum. Due to limited phenotypic information in
publicly available data, the reported gender was predicted from gene expression if clinical gender was unavailable. M, male; F, female.
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Table 2
Summary of AD study meta-analysis DEGs

Brain region Number of Number of AW.OC Significant DEGs
datasets samples (FDR adjusted p ≤ 0.05)

(case/control)

Temporal lobe 14 850 (419/431) 323
Frontal lobe 4 180 (92/88) 460
Parietal lobe 2 74 (28/46) 1736
Cerebellum 2 397 (207/190) 867

Twenty-two AD datasets containing a total of 1,501 samples remained in this study after
QC. The case/control numbers represent the total number of AD/healthy controls subjects
across all datasets within a particular brain region. The number of significant genes was
identified through a combining p-value method known as Adaptively Weighted with One-
sided Correction (AW.OC).

“common neurological disorder expression profile”.
The numbers of significant DEGs in each of the three
expression signatures are provided in Table 5.

The DEGs from the “AD expression profile” in
the TL brain region were not significantly DE in any
other disorder included in this study. Hence, the “AD
expression profile” and the “AD-specific expression
profile” contained the same 323 genes for the TL
brain region. The “AD-specific expression profile”
for all four brain regions is provided in Supplemen-
tary Table 3.

The “common neurological disorder expression
profile” within the four brain regions consisted of
very little or no DEGs (except for the PL); hence,
the downstream analysis did not yield any statisti-
cally significant results of biological relevance. We
find little robust evidence of shared biology based on
this data analysis and therefore, exclude all results
generated from the “common neurological disorder
expression profile” from this paper; however, we pro-
vide the complete list of significantly DEGs within
this profile in Supplementary Table 4.

Common differentially expressed genes across
multiple brain regions in AD

AD is known to affect all brain regions through
the course of the disease, although not to the same
degree, similar transcriptomic changes across all
brain regions were deemed disease-specific, while
perturbations in a single brain region were considered
to be tissue-specific. We were particularly interested
in disease-specific transcriptomic changes and there-
fore decided to focus on genes that were found to be
consistently DE across multiple brain regions.

Meta-analysis of the AD datasets identified a total
of 2,495 unique genes as significantly DE. The dis-
tribution of these genes across the four brain regions
is shown in Fig. 1. Forty-two genes were found to

be perturbed across all four brain regions and can be
grouped into three sets (Fig. 2). The first group (Gene
set 1) are expressed consistently in the same direction
across all four brain regions and can be regarded as
disease-specific. The second group (Gene set 2) are
expressed in the same direction in the TL, FL, and PL,
but expression is reversed in the CB brain region, a
region suggested to be spared from AD pathology [4,
5]. This expression pattern suggests these genes may
be involved in AD pathology. Finally, the third group
(Gene set 3) are inconsistently expressed across the
four brain regions are most likely tissue-specific or
even false-positives.

From the forty-two genes significantly differen-
tially expressed across all brain regions, seven genes
were DE in the same direction and belong to the
“AD-specific expression profile”, that is, these seven
genes (downregulated NDUFS5, SOD1, SPCS1 and
upregulated OGT, PURA, RERE, ZFP36L1) were
consistently perturbed in all AD brain regions and not
in any other brain region of any other disorder used in
this study and can be considered unique to AD brains.
The expression of these seven genes across AD brains
is shown in Fig. 3.

Differentially expressed genes in brain regions
affected by AD histopathology

In AD, the TL, FL, and PL are known to be affected
by both plaques and tangles, while the CB brain
region is rarely reported to be affected. In addition
to identifying genes DE across all brain regions and
reversed in the CB brain region, we were also inter-
ested in genes perturbed in the TL, FL and PL and
not the CB. These genes may also play a role in gen-
eral AD histopathology and could be new therapeutic
targets in preventing or curing AD.

Fifty-five genes were found to be significantly DE
in TL, FL and PL but not the CB, of which sixteen
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Table 3
Characteristics of individual non-AD studies included in this meta-analysis

Data ArrayExpress Microarray BeadArray Disorder Sample source (as Mapping to Number of samples after QC
repository Accession details Platform stated in the original brain region

(Publication) study publication) AD (M/F) Control (M/F)

ArrayExpress E-GEOD-12649
([43])

Affymetrix Human Genome
U133A

Bipolar Disorder Prefrontal Cortex Frontal Lobe 33 (16/17) 34 (25/9)

Schizophrenia Prefrontal Cortex Frontal Lobe 33 (25/8) 32 (24/8)
ArrayExpress E-GEOD-17612

([44])
Affymetrix Human Genome

U133 Plus 2.0
Schizophrenia Prefrontal Cortex Frontal Lobe 27 (18/9) 22 (11/11)

ArrayExpress E-GEOD-20168
([45])

Affymetrix Human Genome
U133A

Parkinson’s Disease Prefrontal Cortex Frontal Lobe 14 (7/7) 16 (11/5)

ArrayExpress E-GEOD-21138
([46])

Affymetrix Human Genome
U133 Plus 2.0

Schizophrenia Prefrontal Cortex Frontal Lobe 25 (21/4) 28 (23/5)

ArrayExpress E-GEOD-21935
([47])

Affymetrix Human Genome
U133 Plus 2.0

Schizophrenia Temporal Cortex Temporal Lobe 22 (12/10) 19 (10/9)

ArrayExpress E-GEOD-35978
([48])

Affymetrix Human Gene
1.0 ST

Bipolar Disorder Cerebellum Cerebellum 32 (16/16) 46 (29/17)

Schizophrenia Cerebellum Cerebellum 43 (31/12) 46 (29/17)
Bipolar Disorder Parietal Lobe Parietal Lobe 40 (24/16) 45 (32/13)
Schizophrenia Parietal Lobe Parietal Lobe 51 (37/14) 36 (26/10)

ArrayExpress E-GEOD-3790
([49])

Affymetrix Human Genome
U133A

Huntington’s Disease Frontal Lobe Frontal Lobe 36 (22/14) 27 (19/8)

Huntington’s Disease Cerebellum Cerebellum 38 (22/16) 27 (16/11)
Human Genome

U133B
Huntington’s Disease Cerebellum Cerebellum 38 (23/15) 27 (16/11)

Huntington’s Disease Frontal Lobe Frontal Lobe 37 (21/16) 29 (19/10)
ArrayExpress E-GEOD-5388

([50])
Affymetrix Human Genome

U133A
Bipolar Disorder Prefrontal Cortex Frontal Lobe 30 (16/14) 29 (23/6)

ArrayExpress E-GEOD-53987
([51])

Affymetrix Human Genome
U133 Plus 2.0

Bipolar Disorder Prefrontal Cortex Frontal Lobe 17 (10/7) 19 (11/8)

Major Depressive Disorder Prefrontal Cortex Frontal Lobe 16 (9/7) 18 (10/8)
Schizophrenia Prefrontal Cortex Frontal Lobe 14 (7/7) 19 (11/8)
Bipolar Disorder Hippocampus Temporal Lobe 18 (11/7) 17 (9/8)
Major Depressive Disorder Hippocampus Temporal Lobe 16 (9/7) 17 (9/8)
Schizophrenia Hippocampus Temporal Lobe 15 (9/6) 18 (10/8)

Nine publicly available non-AD studies were identified and acquired. Separating the studies by tissue resulted in 21 datasets. Each dataset contained both diseased and complimentary healthy
controls. The brain tissue in each of the 21 datasets was mapped to their corresponding cerebral cortex (temporal lobe, frontal lobe, or parietal lobe) or the cerebellum. Due to limited phenotypic
information in publicly available data, the reported gender was predicted from gene expression if clinical gender was unavailable. M, male; F, female.
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Table 4
Summary of non-AD study meta-analysis DEGs

Brain region Number of BD Number of Number of HD Number of Number of PD Total number of AW.OC Significant
datasets Schizophrenia datasets MDD datasets datasets datasets DEGs (FDR

(case/control) datasets (case/control) (case/control) (case/control) (case/control) adjusted
(case/control) p ≤ 0.05)

Temporal lobe 1 (18/17) 2 (37/37) 0 1 (16/17) 0 4 (71/71) 51
Frontal lobe 3 (80/82) 4 (99/101) 2 (73/56) 1 (16/18) 1 (14/16) 11 (282/273) 149
Parietal lobe 1 (40/45) 1 (51/36) 0 0 0 2 (91/81) 2611
Cerebellum 1 (32/46) 1 (43/46) 2 (76/54) 0 0 4 (151/146) 177

The table illustrates the non-AD dataset and sample distribution across the four brain regions. The case/control numbers represent the total
number of diseased and healthy control subjects within a disease group and brain region. For instance, “3 (80/82)” for BD datasets in the
Frontal lobe region indicates three BD datasets with a combined total of 80 BD and 82 complimentary healthy control subjects. The number of
significant DEGs was identified through a combining p-value method known as Adaptively Weighted with One-sided Correction (AW.OC).
BD, bipolar disease; HD, Huntington’s disease; MDD, major depressive disorder; PD, Parkinson’s disease.

Table 5
Summary of DEGs in each expression signature and brain region

Expression Cerebellum Frontal Parietal Temporal Total
Profile lobe lobe lobe (unique)

AD 867 460 1736 323 2494
Non-AD 177 149 2611 51 2809
AD-specific 828 435 1023 323 1994
Common 39 25 713 0 755
Total (unique) 1005 584 3642 374 –

The “AD” expression profile represents genes identified as DE in the AD vs control meta-analysis.
The “non-AD” expression profile represents genes identified as DE in the non-AD meta-analysis.
The “AD-specific” expression profile is a list of genes DE in AD and no other disorder, and the
“common” expression profile is a list of genes DE in all mental disorder used in this study. Each
expression profile is brain region specific. The “Total (unique)” represents a unique list of the total
number of genes identified as significantly DE across brain regions or expression profiles.

Fig. 1. Overlap of DEGs in the AD expression profile across brain
regions. Forty-two genes were observed to be significantly differ-
entially expressed across all four AD brain regions.

were expressed in the same direction and were not
DE in the other brain disorders used in this study.
Ten of these genes (ALDOA, GABBR1, TUBA1A,
GAPDH, DNM3, KLC1, COX6C, ACTG1, CLTA,

SLC25A5) were consistently downregulated, and six
genes (PRNP, FDFT1, RHOQ, B2M, SPP1, WAC)
were consistently upregulated in AD.

Furthermore, from the forty-two genes identified as
significantly DE across all four AD brain regions, ten
genes were in consensus in their expression across
the TL, FL, and PL brain region but expression is
reversed in the CB. Only 3 of these genes (UBA1,
EIF4H, and CLDND1) belong to the “AD-specific
expression profile”, and all three genes were signif-
icantly downregulated in the TL, FL, and PL, but
significantly upregulated in the CB brain region (see
Gene set 2 in Fig. 2).

Microarray gene expression profiling in
RNA-Seq data

The 7 genes (NDUFS5, SOD1, SPCS1, OGT,
PURA, RERE, ZFP36L1) consistently expressed
across all brain regions and the 19 genes (ALDOA,
GABBR1, TUBA1A, GAPDH, DNM3, KLC1,
COX6C, ACTG1, CLTA, SLC25A5, PRNP,
FDFT1, RHOQ, B2M, SPP1, WAC, UBA1,
EIF4H, CLDND1) consistently expressed in the TL,
FL, and PL and not in the CB or reversed in the
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Fig. 2. Expression pattern of genes significantly differentially expressed across all four AD brain regions. The expression values for each
gene was obtained from the meta-summary calculations. Red cells represent downregulated genes, and green cells represent upregulated
genes. Forty-two genes were observed to be significantly perturbed across all four AD brain regions and can be grouped into three “sets”.
Gene set 1 represents genes which are perturbed consistently in the same direction across all AD brain regions and can be considered
disease-specific. Gene set 2 represents genes consistent in expression in the temporal lobe, frontal lobe, and parietal lobe brain regions, but
reversed in the cerebellum brain region; a region often referred to be free from AD pathology. Finally, Gene set 3 represents genes which
are significant DE across all four brain regions, however, directional change is not consistent across the brain regions and may represent
tissue-specific genes or even false positive. The gene names highlighted in red are genes perturbed in AD and not in any other disorder used
in this study and are deemed “AD-specific”.

CB, were queried in the web-based platform Agora
to compare RNA-Seq based expression profiling.
The results are provided in Table 6. Agora failed to
provide expression profiling for 17/26 genes; how-
ever, from the data available, the genes observed to
be consistently expressed across all brain regions
based on microarray data are relatively mirrored in

RNA-Seq data, specifically genes SPCS1, PURA
and ZFP36L1.

RNA-Seq data was available for only 6/19 genes
(DNM3, COX6C, ACTG1, CLTA, RHOQ, and
B2M) expressed in brain regions affected by hall-
mark AD pathology (TL, FL, and PL), and were all
relatively consistent in directional change across AD
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Fig. 3. Seven genes consistently significantly differentially expressed in the same direction in all regions of AD brains but not in schizophrenia,
bipolar disorder, Huntington’s disease, major depressive disorder, or Parkinson’s disease brains. These seven genes can be assumed to be
unique to AD brains and may play an important role in disease mechanisms.

brain regions, including the CB, a characteristic unde-
sired by genes which may be associated with hallmark
AD pathology.

“AD Expression Profile” functional gene set
enrichment and GO analysis

Gene set enrichment analysis of the “AD expres-
sion profile” identified 205, 197, 98, and 45
biological pathways significantly enriched in the
TL, FL, PL, and CB brain regions, respec-
tively (Supplementary Table 5). There were ten
pathways significantly enriched in all four brain
regions, of which eight are involved in the
“metabolism of protein” (specifically the transla-
tion process, the most significant being in CB brain
region with a q-value = 1.11e-7), one involved in
“adenosine ribonucleotides de novo biosynthesis”
(TL q-value = 0.007, FL q-value = 7.56e-5, PL q-
value = 0.04, CB q-value = 0.03) and one involved
in the “digestive system” (TL q-value = 0.02, FL q-
value = 0.02, PL q-value = 0.01, CB p-value = 0.02).

When excluding the CB brain region, 42 path-
ways were significantly enriched in the remaining
three brain regions, of which five pathways

obtained an FDR adjusted significance p-value of
≤0.01. The five pathways are “Alzheimer’s dis-
ease” (TL q-value = 6.53e–4, FL q-value = 0.02,
PL q-value = 0.01), “Electron Transport Chain”
(TL q-value = 0.006, FL q-value = 2.95e–5, PL
q-value = 3.69e–5), “Oxidative phosphorylation”
(TL q-value = 1.77e–4, FL q-value = 4.99e–8, PL
q-value = 4.18e–05), “Parkinson’s disease” (TL
q-value = 8.57e–4, FL q-value = 1.59e–6, PL q-
value = 1.77e–6), and “Synaptic vesicle cycle” (TL
q-value = 5.19e–4, FL q-value = 3.82e–7, PL q-
value = 2.03e–4).

The biological GO analysis identified 384, 417,
216, and 72 biological components as significantly
enriched in the TL, FL, PL, and CB brain region
respectively (Supplementary Table 6). There were
36 pathways significantly enriched across all four
brain regions at a p-value threshold of ≤0.05 and
nine at an FDR adjusted significant p-value thresh-
old of ≤0.01. These nine processes are “cellular
component biogenesis” (TL q-value = 1.38e–4,
FL q-value = 0.002, PL q-value = 5.86e–4, CB q-
value = 0.006), “cellular component organization”
(TL q-value = 1.96e–8, FL q-value = 1.04e–8, PL
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Table 6
Microarray gene expression compared to RNA-Seq gene expression

The 7 genes consistently expressed across all brain regions and the 19 genes consistently expressed in the TL, FL and PL and not/reversed
in the CB were queried in the web-based platform Agora to compare RNA-Seq expression. Only significantly DEGs are shown. Red cells
represent downregulated genes in AD, green cells represent upregulated genes in AD, white cells represent genes not significantly DE, and
grey cells are when data is not available. TL, temporal lobe; FL, frontal lobe; PL, parietal lobe; CB, cerebellum; TCX, temporal cortex; STG,
superior temporal gyrus; PHG, parahippocampal gyrus; IFG, inferior frontal gyrus; FP, frontal pole; DLPFC, dorsolateral prefrontal cortex.

q-value = 3.35e–5, CB q-value = 0.004), “inter-
species interaction between organisms” (TL
q-value = 1.85e–4, FL q-value = 8.73e–5, PL
q-value = 5.59e–5, CB q-value = 0.002), “multi-
organism cellular process” (TL q-value =1.12e–4,
FL q-value = 4.72e–5, PL q-value = 8.04e–5, CB
q-value = 0.002), “nervous system development”

(TL q-value = 1.64e–7, FL q-value = 5.90e–14, PL
q-value = 3.82e 8, CB q-value = 0.01), “organon-
itrogen compound metabolic process” (TL
q-value = 0.002, FL q-value = 1.56e–5, PL q-
value = 1.02e–5, CB q-value = 0.002), “symbiosis,
encompassing, mutualism through parasitism”
(TL q-value = 4.04e–4, FL q-value = 1.92e–4, PL q-
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value = 3.18e–4, CB q-value = 0.004), “translational
initiation” (TL q-value = 0.007, FL q-value = 0.006,
PL q-value = 2.41e–4, CB q-value = 5.24e–6),
and “viral process” (TL q-value = 2.82e–4, FL
q-value = 1.17e–4, PL q-value = 3.18e–4, CB q-
value = 0.002). Excluding the CB brain region
resulted in 84 common biological components being
significantly enriched across the remaining three
brain regions.

“AD-specific expression profile” functional gene
set enrichment and GO analysis

Analysis of the “AD-specific expression profile”
identified 205, 196, 40, and 42 pathways as sig-
nificantly enriched in the TL, FL, PL, and CB
brain region respectively in the GSEA analysis (Sup-
plementary Table 7). The analysis identified six
significantly enriched pathways across all four brain
regions, and all are involved in “metabolism of pro-
tein” (specifically the translation process, with the
most significant pathway being in the PL brain region
with a q-value = 8.92e–7). The same six pathways
were identified when the CB region was excluded.

The GO analysis identified 384, 344, 36, and 72
significantly enriched biological components for the
TL, FL, PL, and CB brain region, respectively. Only
four common biological components were signifi-
cantly enriched across all four brain regions, and
all are indicative of interspecies interactions includ-
ing viral. Excluding the CB identifies only “neural
nucleus development” (TL q-value = 5.35e–5, FL q-
value = 0.007, PL q-value = 0.003) as an additional
component being enriched. The complete biological
GO analysis results are provided in Supplementary
Table 8.

Network analysis hub gene identification

PPI networks were generated for each expression
profile and in each of the four brain regions (TL, FL,
PL, and CB) to identify genes whose protein product
interacts with other protein products from the same
expression profile. Genes with more interactions than
expected are referred to as hub genes and may be of
biological significance.

Temporal lobe hub genes
PPI network analysis was performed on the

expression profiles of the TL brain region to iden-
tify key hub genes. The “AD expression profile”
and the “AD-specific expression profile” both con-
sisted of the same 323 DEGs which represented

282 seed proteins with 716 edges (interactions
between proteins). Two significant key hub genes
were identified; the downregulated Polyubiquitin-
C (UBC, p-value = 1.57e–30) and the upregulated
Small Ubiquitin-related Modifier 2 (SUMO2, p-
value = 3.7e–4).

Frontal lobe hub genes
The FL “AD expression profile” consisted of

460 DEGs which represented 272 seed proteins
and 620 edges. Two significant key hub genes
were identified; upregulated Amyloid Precursor
Protein (APP, p-value = 1.98e–08) and downregu-
lated Heat Shock Protein 90-alpha (HSP90AA1,
p-value = 0.003). Using the “AD-specific expression
profile” identified the same two key hub genes, with
APP reaching a significant p-value of 2.11e–09.

Parietal lobe hub genes
The PL “AD expression profile” consisted of 1,736

DEGs which represented 1,437 seed proteins and
5,720 edges. Similar to the TL and FL, two significant
key hub genes were identified; downregulated Cullin-
3 (CUL3, p-value = 1.84e–10) and downregulated
UBC (p-value = 1.84e–10). Using the “AD-specific
expression profile” (1,023 DEGs, 810 seed proteins,
and 2,351 edges) identified UBC as the only key hub
gene, with a more significant p-value of 1.84e–10.
The CUL3 gene is no longer a significant key hub
gene in the network.

Cerebellum hub genes
The CB “AD expression profile” consisted of

867 DEGs which represented 548 seed pro-
teins and 1419 edges. Four significant key
hub genes were identified: upregulated APP
(p-value = 4.24e–26), downregulated Ribosomal Pro-
tein 2 (RPS2, p-value = 4.24e–26), downregulated
SUMO2 (p-value = 4e–05), and upregulated Glycyl-
TRNA Synthetase (GARS, p-value = 0.0207). Using
the “AD-specific expression profile” for the same
brain region identified APP (p-value = 3.44e–26),
RPS2 (p value = 6.61e–06), and SUMO2 (p-
value = 3.78e–06) as the key hub genes only. The
GARS gene is no longer a key hub gene in the net-
work.

DISCUSSION

In this study, we acquired eighteen publicly avail-
able microarray gene expression studies covering
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six neurological and mental health disorders; AD,
BD, HD, MDD, PD, and SCZ. Data was gen-
erated on seven different expression BeadArrays
and across two different microarray technologies
(Affymetrix and Illumina). The eighteen studies con-
sisted of 3,984 samples extracted from 22 unique
brain regions which equated to 67 unique datasets
when separating by disorder and tissue. However,
due to study and sample outlier analysis, only 43
datasets (22 AD, 6 BD, 4 HD, 2 MDD, 1 PD,
and 8 SCZ) totaling 2,667 samples passed QC. We
grouped the AD datasets by tissue, into the TL, FL,
PL, and CB brain regions to perform the largest
microarray AD meta-analysis known to date to our
knowledge, which identified 323, 460, 1,736, and
867 significant DEGs, respectively. Furthermore, we
incorporated transcriptomic information from other
neurological and mental health disorders to subset
the initial findings to 323, 435, 1,023, and 828 sig-
nificant DEGs that were specifically perturbed in the
TL, FL, PL, and CB brain regions respectively of
AD subjects.

Genes specifically perturbed across AD brain
regions

Seven genes (downregulated NDUFS5, SOD1,
SPCS1 and upregulated OGT, PURA, RERE,
ZFP36L1) were DE in AD brains and not DE in the
other disorders used in this study. We deemed these
seven protein-coding genes as “AD-specific”. The
expression patterns of three genes (SPCS1, PURA,
and ZFP36L1) were relatively mirrored in RNA-Seq
data; however, it is important to note the RNA-
Seq data does not contain expression profiling for
the PL region, and it also contains three specific
brain regions within the TL (temporal cortex, supe-
rior temporal gyrus, and parahippocampal gyrus) and
FL (Inferior frontal gyrus, frontal pole, and dorso-
lateral prefrontal cortex). Nevertheless, the SPCS1
gene was observed to be consistently downregulated
across all hierarchical AD brain regions available in
both the microarray and RNA-Seq data. In addition,
based on a network of genomics and epigenomic
elements in the region of this genes, in combina-
tion with phenotypes, the AMP-AD consortia have
nominated SPCS1 as a druggable target for AD
treatment.

Three of the “AD-specific” genes (NDUFS5,
SOD1, and OGT) have been previously associated
with AD. Down-regulated NADH Dehydrogenase
Ubiquinone Fe-S Protein 5 (NDUFS5) gene is

part of the human mitochondrial respiratory chain
complex; a process suggested to be disrupted in
AD in multiple studies [41]. A study investigat-
ing blood-based AD biomarkers identified 13 genes,
including NDUFS5, which was capable of pre-
dicting AD with 66% accuracy (67% sensitivity
and 75% specificity) in an independent cohort of
118 AD and 118 control subjects [42]. The per-
turbation in NDUFS5 expression in the blood and
brains of AD subjects suggests this gene may have
potential as an AD biomarker and warrants further
investigation.

Downregulated Superoxide Dismutase 1 (SOD1)
gene encodes for copper and zinc ion binding proteins
which contribute to the destruction of free super-
oxide radicals in the body and is also involved in
the function of motor neurons [provided by Ref-
Seq, Jul 2008]. Mutations in this gene have been
heavily implicated as causes of familial amyotrophic
lateral sclerosis (ALS) [43] and have also been
associated with AD risk [44]. A recent study dis-
covered SOD1 deficiency in an amyloid precursor
protein-overexpressing mouse model accelerated A�
oligomerization and also caused tau phosphoryla-
tion [45]. They also stated SOD1 isozymes were
significantly decreased in human AD patients, and
we can now confirm SOD1 is significantly under-
expressed at the mRNA level in human AD brains
as well.

The upregulated O-Linked N-Acetyl Glucosamine
Transferase (OGT) gene encodes for a glycosyltrans-
ferase that links N-acetylglucosamine to serine and
threonine residues (O-GlcNAc). O-GlcNAcylation is
the post-translational modification of O-GlcNAc and
occurs on both neuronal tau and A�PP. Increased
brain O-GlcNAcylation has been observed to pro-
tect against tau and A� peptide toxicity [46]. A
mouse study has demonstrated a deletion of the
encoding OGT gene causes an increase in tau
phosphorylation [47]. In this study, we observe a sig-
nificant increase in OGT gene expression throughout
human AD brains, including the CB where tan-
gles are rarely reported, suggesting OGT gene is
most likely not solely responsible for the formation
of tangles.

OGT and O-GlcNAcase (OGA) enzymes facilitate
O-GlcNAc cycling, and levels of GlcNAc have also
been observed to be increased in the PL of AD brains
[48]. Appropriately, OGA inhibitors have been tested
for treating AD with promising preliminary results
[49], prompting further investigation into targeting
OGT for AD treatment.
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Genes involved in AD histopathology

The CB brain region is known to be free from
tau pathology and occasionally free from plaques.
We exploited the CB brain region as a sec-
ondary control to identify sixteen genes (ALDOA,
GABBR1, TUBA1A, GAPDH, DNM3, KLC1,
COX6C, ACTG1, CLTA, SLC25A5, PRNP,
FDFT1, RHOQ, B2M, SPP1, WAC) DE specifi-
cally in TL, FL, and PL and not the CB brain region
of AD subjects. RNA-Seq data was available for 6
of these genes (DNM3, COX6C, ACTG1, CLTA,
RHOQ, and B2M) and all 6 genes failed to repli-
cate expression patterns observed with microarray
data. Nevertheless, DNM3 gene has been previously
associated with AD pathology based on proteomic
data. DNM3 gene encodes a member of a family
of guanosine triphosphate (GTP)-binding proteins
that associate with microtubules and are involved
in vesicular transport. A proteomic study identified
a module of co-expressed proteins, which included
DNM3, as negatively correlated with BRAAK stag-
ing [50]. Although DNM3 gene expression based on
microarray and RNA-Seq data are in disagreement in
the CB brain region, a region used in this study to
aid in determining whether a gene may be involved
with AD pathology, an independent proteomic study
demonstrated DNM3 might indeed be association
with AD pathology. This suggests all 6 genes which
failed replication in RNA-Seq data may still be
associated with AD pathology and require further
confirmation.

An additional 9 genes (GABBR1, GAPDH,
PRPN, FDFT1, KLC1, TUBA1A, CLTA, COX6C,
and SLC25A5), where expression profiling based
on RNA-Seq data was unavailable, have also been
previously associated with AD, of which four genes
(GABBR1, GAPDH, PRPN, and FDFT1) have indi-
vidually been suggested to be involved with the
pathogenesis of the disease. GABBR1 gene encodes
a receptor for gamma-aminobutyric acid (GABA),
which is the primary inhibitory neurotransmitter in
the human central nervous system. As observed
in this study, the GABBR1 gene has been previ-
ously reported to be downregulated in AD brains
[16]. GABBR1 receptors are prominent in neuronal
soma, where neurofibrillary tangle (NFT) forma-
tion is known to accumulate. A study examined the
immunohistochemical localization and distribution
of GABABR1 protein in the hippocampus of AD
subjects and observed a negative correlation with
NFT formation and suggested an increase or stable

expression of GBBR1 could contribute to neuronal
resistance to the disease process [51].

GAPDH gene encodes for a member of the
glyceraldehyde-3-phosphate dehydrogenase protein
family, which catalyzes an essential step in the car-
bohydrate metabolism. GAPDH has been shown to
interact with A�PP but not cleaved A�, and has
been proposed to be directly involved in tau aggrega-
tion and NFT formation in AD [52–54]. The PRNP
gene encodes for the prion protein, a membrane
glycosylphosphatidylinositol-anchored glycoprotein
that tends to aggregate into rod-like structures. Muta-
tions in the PRNP gene has been associated with
AD and prion protein has also been suggested to be
involved in the pathogenesis of AD [55]. FDFT1 gene
encodes a membrane-associated enzyme located at
a branch point in the mevalonate pathway, which
generates isoprenoids that have been found to be
positively correlated with tau pathology [56]. KLC1
gene encodes for Kinesin Light Chain 1 which
transports various cargos such as vesicles, mitochon-
dria, and the Golgi complex along microtubules. An
immunoblotting study observed decrease expression
of kinesin light chains (KLCs) in the frontal cor-
tex of AD subjects but not in the CB of the same
subjects [57]. TUBA1A gene encodes for Tublin
Alpha 1a, which has been observed to be perturbed
in AD [58], and CLTA gene encodes for clathrin
Light Chain A, which has been observed to be per-
turbed in AD as well [59]. COX6C and SLC25A5
gene encodes for products which interact with mito-
chondria and mitochondrial dysfunction in AD has
been suggested on numerous occasions [41, 60,
61].

We identified an additional three AD-specific
genes (UBA1, EIF4H, and CLDND1) which were
significant DE in all four brain regions. How-
ever, the genes were downregulated in the TL
FL and PL but upregulated in the CB brain
region. Ubiquitin-Like Modifier Activating Enzyme
1 (UBA1) encodes for a protein that catalyzes the
first step in ubiquitin conjugation to mark cellu-
lar proteins for degradation. Eukaryotic Translation
Initiation Factor 4H (EIF4H) encodes for a transla-
tion initiation factors, which functions to stimulate
the initiation of protein synthesis at the level of
mRNA utilization and Claudin Domain Contain-
ing 1 (CLDND1) is a transmembrane protein of
tight junctions found on endothelial cells [62]. As
the CB is the only brain region spared from tangle
formation and occasionally from plaque, we sug-
gest these 19 genes (ALDOA, GABBR1, TUBA1A,
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GAPDH, DNM3, KLC1, COX6C, ACTG1, CLTA,
SLC25A5, PRNP, FDFT1, RHOQ, B2M, SPP1,
WAC, UBA1, EIF4H, and CLDND1) could poten-
tially be associated with AD histopathology.

Translation of proteins perturbed specifically in
AD brains

Functional gene set enrichment analysis of the “AD
expression profile” revealed more pathways were
significantly perturbed in the TL, followed by the
FL, PL, and CB, which is the general route AD
pathology is known to spread through the brain. We
originally observed ten biological pathways being
enriched across all AD brain regions, which included
biological pathways likely to be irrelevant such as the
“digestive system”. However, when incorporating
transcriptomic information from non-AD disorders,
we were able to refine the AD expression signature
to specific genes perturbed in AD only. This resulted
in the enrichment of pathways only involved in the
“metabolism of proteins”, specifically the transla-
tion process which has been previously suggested in
be associated with AD on numerous occasions [10,
11, 14–17]. We now suggest this may be a biological
process specifically disrupted in AD brains, and not
BD, HD, MDD, PD, or SCZ brains.

Previous biological perturbations observed in
AD are only associated with the temporal lobe
brain region

Previous AD studies have consistently suggested
the immune response [10–13], protein transcrip-
tion/translation regulation [10, 11, 14–17], calcium
signaling [10, 18, 19], MAPK signaling [7, 16],
chemical synapse [7, 18, 19], neurotransmitter [11,
18, 19], and various metabolism pathways [11, 16,
17, 20–23] are disrupted in AD. We observe the
same pathways enriched in our meta-analysis, how-
ever, only in the TL brain region, a brain region often
heavily investigated in AD. Except for “metabolism
of proteins”, we did not observe any of these path-
ways significantly enriched across all of the four brain
regions, suggesting these pathways observed to be
perturbed in previous studies may be tissue-specific
rather than disease-specific.

Interspecies interactions possibly involved in AD

Gene Ontology analysis on the “AD expression
profile” identified nine different biological compo-

nents enriched across all four brain regions. However,
when we remove genes perturbed in other neurolog-
ical or mental health disorders, we only observe four
biological components as significantly enriched, and
all four were indicative of interspecies interactions.
AD brains have a prominent inflammatory compo-
nent which is characteristic of infection, and many
microbes have been implicated in AD, notably herpes
simplex virus type 1 (HSV1), Chlamydia pneumo-
nia, and several types of spirochete [63]. A very
recent study also identified common viral species in
normal and aging brains, with an increased human
herpesvirus 6A and human herpesvirus 7 in AD brains
[64]. Furthermore, A� has been suggested to be an
antimicrobial peptide and has been shown to protect
against fungal and bacterial infections [65]. Thus, the
accumulation of A� may be part of the brains defense
mechanism against infections. Although a controver-
sial theory, we also observe a viral component in AD
brains, and as a result of this meta-analysis, further
suggest this maybe AD-specific and warrants further
investigation.

Network analysis identifies AD-specific APP
UBC and SUMO2 hub genes

Network analysis identified five (APP,
HSP90AA1, UBC, SUMO2, and RPS2) sig-
nificant hub genes specific to AD brain regions.
APP, UBC, and SUMO2 gene appear as hub genes
in multiple brain regions. The APP gene encodes for
a cell surface receptor transmembrane A�PP that is
cleaved by secretases to form a number of peptides.
Some of these peptides are secreted and can bind
to the acetyltransferase complex APBB1/TIP60
to promote transcriptional activation, while others
form the protein basis of the amyloid plaques in
AD brains. In addition, two of the peptides are
antimicrobial peptides, having been shown to have
bacteriocidal and antifungal activities [provided by
RefSeq, Aug 2014]. Changes in A�PP functions
have been suggested to play an essential role in
the lack of A� clearance, ultimately leading to the
formation of plaques [66].

UBC (ubiquitin-C) gene encodes for a
Polyubiquitin-C protein which is part of the
ubiquitin-proteasome system (UPS), the primary
intracellular protein quality control system in
eukaryotic cells. UPS has an immense impact on the
amyloidogenic pathway of A�PP processing that
generates A� [67]. A recent genome-wide associa-
tion study identified UBC as a novel late-onset AD
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gene, and through network analysis also identified
UBC as a key hub gene. The study validated their
findings in a UBC C. elegans model to discover UBC
knockout accelerated age-related A� toxicity [68].
We also observe the UBC gene being downregulated
and as a key hub gene in multiple regions of human
AD brains, further providing evidence of its key role
in AD.

Small Ubiquitin-Like Modifier 2 (SUMO2) gene
encodes for a protein that binds to target proteins
as part of a post-translational modification system, a
process referred to as SUMOylation [69]. However,
unlike ubiquitin, which targets proteins for degrada-
tion, this protein is involved in a variety of cellular
processes, such as nuclear transport, transcriptional
regulation, apoptosis, and protein stability [provided
by RefSeq, Jul 2008]. Early studies have indicated
that the SUMO system is likely altered with AD-
type pathology, which may impact A� levels and tau
aggregation [69]. Genetic studies have supported this
theory with a genome-wide association study linking
SUMO-related genes to late-onset AD [70], with fur-
ther studies showing that the two natively unfolded
proteins, tau and �-synuclein, are sumoylated in vitro
[71]. We identified SUMO2 as a significant key
hub gene in both the human TL and the CB brain
region. However, what makes this discovery inter-
esting is that SUMO2 is significantly upregulated
in the TL, a region where both plaques and tangles
can be observed, but significantly downregulated in
the CB, where only plaques have been occasionally
observed, but tangles never reported. The upregula-
tion of SUMO2 gene may play a vital role in the
formation of tangles, and further investigation into
this gene is warranted.

Limitations

Although this study presents novel insights to
AD-specific transcriptomic changes in the human
brain, limitations to this study must be addressed.
Firstly, we meta-analyzed a total of 22 AD and
21 non-AD datasets, and many of these datasets
lacked necessary experimental processing or basic
phenotypic information such as technical batches,
RNA integrity numbers (RIN), age, NFT, clinical
gender, or ethnicity, all of which can have con-
founding effects. To address this, we incorporated
recommended best practices to estimate and cor-
rect for both known and hidden batch effects using
SVA and COMBAT to ensure data is comparable

between experiments and studies. However, this does
not guarantee that all technical variation is completely
removed.

Secondly, the terminology used to label brain tis-
sue varied across studies, with some reporting a broad
region such as the “hippocampus” used in study E-
GEOD-48350, while others were particular to the
tissue layer, such as “hippocampus CA3” in study
E-GEOD-29378. We, therefore, decided to map all
brain tissue as mentioned in each dataset publica-
tion to their hierarchical cerebral cortex lobe (TL,
FL, and PL) and the CB. The mapping procedure
was completed using publicly available literature
defined knowledge, and we assume tissues within
these brain regions are relatively comparable to infer
AD-associated histopathological changes.

Thirdly, this study relied on publicly available tran-
scriptomic data, and as previous research has heavily
investigated brain regions known to be at the fore-
front of disease manifestation, this led to unbalanced
datasets per brain region in both the AD and non-AD
meta-analysis. Subsequently, the AD meta-analysis
consisted of 14, 4, 2, and 2 datasets for the TL, FL,
PL, and CB brain regions respectively, with the PL
brain region consisting of only 74 samples (28 AD
and 46 controls) in total. In addition, the non-AD
meta-analysis lacked expression signatures form all
non-AD diseases across all brain regions (except for
FL). Nevertheless, the brain regions most affected
by each disorder was captured in this study, suggest-
ing we most likely were able to capture key brain
transcriptomic changes relating to each disorder. Fur-
thermore, as AD is known to affect all brain regions,
albeit not to the same extent, we focus on transcrip-
tomic changes observed across all brain regions that
are also not observed in any brain region of the
non-AD subjects, ensuring we capture transcriptomic
signatures unique to AD brains.

Fourthly, the advances in next sequencing tech-
nologies (RNA-Seq) which are capable of profiling
the whole transcriptome, thus not limited by the pre-
defined probes based on known sequencing, would
be ideal for disease discoveries. However, AD and
mental health studies profiled through RNA-Seq is
somewhat limited in the public domain, and those
that have published DE results are based on small
sample numbers, which would fail our selection cri-
teria, such as [72–75]. In addition, these studies lack
the same brain regions and mental health disorders
covered in this meta-analysis. Nevertheless, we were
able to query our genes of interest in the largest known
AD RNA-Seq web-based database (Agora) which
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contains DE results from over 2100 human brain sam-
ples; however, expression profiling was unavailable
for 17/26 genes, and DE on the PL was unavailable.
Therefore, this study was unable to validate all find-
ings in RNA-Seq data.

Finally, we assume the non-AD datasets are com-
parable through meta-analysis, and by identifying
common expression signatures that are not associated
with individual disease mechanisms may represent
false positives or even a general signature for “brain
disorder”. Removing this signature from the AD
meta-analysis expression profile may result in tran-
scriptomic changes specific to AD brains, revealing
more relevant changes to the underlying disease
mechanism rather than general diseases. Under this
assumption, we observe more relevant and refined
biological enrichment results. For example, we orig-
inally observed ten biological pathways enriched
across all AD brain regions, including biological
pathways such as the “digestive system”. However,
by refining the AD expression signature by removing
genes perturbed in non-AD disorders, only pathways
involved in the “metabolism of proteins” remain,
which has been previously suggested in be associated
with AD on numerous occasions [10, 11, 14–17]. This
observation provides strong evidence of our assump-
tion of incorporating non-AD diseases in this study
to infer AD-specific changes as valid.

Conclusion

We present the most extensive human AD brain
microarray transcriptomic meta-analysis study to
date, incorporating, brain regions both affected and
partially spared by AD pathology, and utilize related
non-AD disorders to infer AD-specific brain changes.
This led to the identification of seven genes specifi-
cally perturbed across all AD brain regions and are
considered disease-specific, nineteen genes specifi-
cally perturbed in AD brains which could play a role
in AD neuropathology, and the refinement of GSEA
and GO analysis results to identify specific biologi-
cal pathways and components specific to AD. These
AD-specific changes may provide new insights into
the disease mechanisms, thus making a significant
contribution towards understanding the disease.
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