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Abstract.
Background: Non-demented cognitive aging trajectories are characterized by vast level and slope differences and a spectrum
of outcomes, including dementia.
Objective: The goal of AD risk management (and its corollary, promoting healthy brain aging) is aided by two converging
objectives: 1) classifying dynamic distributions of non-demented cognitive trajectories, and 2) identifying modifiable risk-
elevating and risk-reducing factors that discriminate stable or normal trajectory patterns from declining or pre-impairment
patterns.
Method: Using latent class growth analysis we classified three episodic memory aging trajectories for n = 882 older adults
(baseline Mage=71.6, SD=8.9, range = 53-95, female=66%): Stable (SMA; above average level, sustained slope), Normal
(NMA; average level, moderately declining slope), and Declining (DMA; below average level, substantially declining slope).
Using random forest analyses, we simultaneously assessed 17 risk/protective factors from non-modifiable demographic,
functional, psychological, and lifestyle domains. Within two age strata (Young-Old, Old-Old), three pairwise prediction
analyses identified important discriminating factors.
Results: Prediction analyses revealed that different modifiable risk predictors, both shared and unique across age strata,
discriminated SMA (i.e., education, depressive symptoms, living status, body mass index, heart rate, social activity) and
DMA (i.e., lifestyle activities [cognitive, self-maintenance, social], grip strength, heart rate, gait) groups.
Conclusion: Memory trajectory analyses produced empirical classes varying in level and slope. Prediction analyses revealed
different predictors of SMA and DMA that also varied by age strata. Precision approaches for promoting healthier memory
aging—and delaying memory impairment—may identify modifiable factors that constitute specific targets for intervention
in the differential context of age and non-demented trajectory patterns.
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INTRODUCTION

Non-demented aging populations show substan-
tial individual variability in level and slope of
longitudinal changes in multiple brain and cognitive
function indicators [1-6]. This dynamic heterogeneity
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includes patterns potentially linked to a spectrum
of clinical categories or outcomes, including cog-
nitively normal aging, mild cognitive impairment
(MCI), and an increased probability of Alzheimer’s
disease (AD). Dementia prevention researchers have
become increasingly interested in this diversity of
non-demented cognitive aging trajectories, reason-
ing that individualized trajectories may be partially
accounted for by differential patterns of risk and pro-
tective factors, some of which may be modifiable.
Specifically, these trajectory distributions may con-
stitute an understudied but promising platform for
discovery of risk-reducing and protection-enhancing
factors that moderate differential memory changes
during broad bands of aging (50s-90s) [6-10].
Moreover, it is conceivable that the distribution of
trajectories per se may be objectively clustered into
relative better functioning (higher level, sustained
slope), relatively normal functioning (mid-level,
moderate decline), and worse functioning (lower
level, steeper decline). It is also conceivable that dif-
ferent constellations of risk/protection factors may
discriminate the normal cluster from both the higher
and lower clusters. This possibility leads to a con-
verging goal for researchers interested in AD risk
detection, management, delay, or prevention [10-15].
Namely, in order to advance the cause of dementia
risk management, it may be profitable to discover fac-
tors that elevate risk for early exacerbated decline and
factors that enhance protection and sustained levels
of aging change. Furthermore, these outcomes may
not be produced by the same factors.

Episodic memory (EM) is a sensitive indicator
of neurobiological changes in normal aging and
neurodegenerative processes, producing differential
trajectories including exacerbated decline in MCI and
AD [3, 4, 16, 17]. Variability of memory change—and
the existence of preserved high and sustained levels
of performance—has been linked to several mech-
anisms associated with lifestyle factors that lead
to maintenance of brain functioning in older adult-
hood [4]. Concepts of cognitive reserve or cognitive
resilience can be operationalized as the existence of
preserved performance in the presence of risk (includ-
ing genetic risk and brain pathology) due to (perhaps)
risk-reducing or protection-enhancing factors [4, 18-
20]. Several studies support the reserve and resilience
hypotheses suggesting the potential for discriminat-
ing not only a normal memory aging group from a
declining or impaired group, but also from a higher
performing group [8, 21, 22]. For example, the Betula
Project used longitudinal EM trajectories to separate

maintainers (i.e., moderate to high baseline EM score
and better-than-average rate of change) from declin-
ers and those with age-typical change [3]. Being a
maintainer was predicted by higher education, being
female, living with someone, more physical activity,
and other non-modifiable factors. Concordant work
from the Northwestern SuperAging project [8, 21, 22]
and the Victoria Longitudinal Study (VLS) [23-26]
has been reported.

We implement the current observational study
with two coordinated steps. For step one, we
analyzed a distribution of actual memory trajectories
(over a 40-year band of aging) from non-demented
participants in the VLS. We used latent class growth
analyses (LCGA) to objectively separate neigh-
boring (but statistically distinguishable) classes
of trajectories based on an algorithm including
individualized level and slope values. The goal
was to determine objective classes of memory
aging trajectories—substantially supplementing
informally characterized, cross-sectionally tested, or
single-indicator estimated groups.

For step two, we extracted multiple VLS mea-
sures that reflected the broad range of relatively
modifiable risk and protection factors recently identi-
fied in reviews of observational and epidemiological
research as being associated with differential non-
demented and preclinical cognitive aging patterns and
outcomes [10, 12, 13, 15, 27]. Multiple risk factor
predictors of cross-sectional memory deficits, declin-
ing memory performance, or emerging memory (or
mild cognitive) impairment have been identified
[3, 9, 28-32]. Several reviews discuss risk factors
for cognitive impairment or dementia. For exam-
ple, reduction in seven potentially modifiable risk
factors (i.e., diabetes, midlife hypertension, midlife
obesity, smoking, depression, low education, physi-
cal inactivity) could decrease the number of AD cases
worldwide by millions [13]. Seven additional risk and
protection factors (i.e., cholesterol level, traumatic
brain injury, alcohol, social engagement, cognitive
engagement, fish intake. and pesticide exposure)
were reported that could identify low, moderate, and
high risk of AD [27]. Recently, an exhaustive review
of modifiable risk factors, identified early life (educa-
tion), mid-life (hearing loss, hypertension, obesity),
and late life (diabetes, smoking, depression, phys-
ical inactivity, social isolation) factors as potential
targets for dementia prevention [15]. Drawing from
both memory predictors and dementia risk literature
and focusing on relatively modifiable risk and protec-
tion factors, we assembled 17 factors from the VLS
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data base for this study [10, 12, 13, 15, 16]. We also
included other risk factors that have been related to
differential memory aging decline (i.e., peak expi-
ratory flow [33], grip strength [34], gait, balance
[35], subjective health [36], and self-maintenance
activities [37]). We simultaneously analyzed all 17
factors for predictive importance in discriminating
pairwise comparisons of the three expected trajec-
tory groups. In order to test the large number of
predictors (of unknown importance weight) in the
same model without the limitation of multiple test-
ing that occurs in more traditional analyses, we
selected the machine learning technique, Random
Forest Analysis (RFA) [17]. The technology is par-
allel to unbiased biomarker discovery approaches
(e.g., metabolomics) whereby even larger numbers
of putative biomarkers are compared (via RFA) in
discriminating neighboring clinical diagnoses. For
example, metabolomics biomarker analyses discrim-
inated normal aging from Parkinson’s disease with
incipient (but not yet diagnosed) dementia [38]. Sim-
ilar approaches have been applied to the discovery
of predictive biomarkers of AD and MCI [39]. We
note that it is arguably more challenging to dis-
criminate groups of non-demented older adults who
vary in preclinical characteristics of their memory
trajectories.

The present study has two main objectives. First,
we use longitudinal data of memory trajectories to
operationally define separable clusters. We expect
at least three main classes of memory trajecto-
ries, corresponding roughly to stable memory aging
(SMA), normal memory aging (NMA), and declining
memory aging (DMA). Second, we use a machine-
learning computational technology (i.e., RFA), to
test 17 risk predictors of memory status class. The
predictors derive from four AD risk domains: 1)
non-modifiable demographic (e.g., sex), 2) func-
tional biomarker (e.g., gait), 3) psychological (e.g.,
depressive symptoms), and 4) lifestyle (e.g., physical
activity). Given both age- and sex-related differences
in AD incidence, age and sex may be selective pre-
dictors. The number and specific predictors may also
vary within age strata. We expect that predictors of
SMA will differ from those of DMA.

MATERIALS AND METHOD

Participants

Participants were community-dwelling older adult
volunteers of the VLS, an ongoing, multi-cohort,

longitudinal-sequential study of biomedical, health,
cognitive, genetic, and lifestyle aspects of human
aging. All participants provided written informed
consent and all data collection procedures were in
full compliance with human research ethics. The
VLS includes three original samples aged 53-85 at
recruitment that are followed at approximately
4.5-year intervals. The source cohort (n = 955) had
three waves of longitudinal data. Using established
procedures for accelerated longitudinal designs [40,
41], we used age as the metric of longitudinal change,
converting from wave-based to age-based data. The
resulting accelerated longitudinal design [42, 43]
covers a 40-year band of aging (53-95 years). The
inclusionary criteria were longitudinal EM data and
English fluency. The following exclusionary crite-
ria were applied: 1) EM data missing from all three
waves (n = 12), 2) concurrent brain-related health
conditions (e.g., AD and dementia, n = 14), 3) Mini-
Mental State Examination score <24 (n = 26), 4)
recent (within the last five years) very serious head
injury (n = 2), and 5) moderately to very serious stroke
(but not transient ischemic attack; n = 19). No partici-
pants reported very serious depression or very serious
drug or alcohol dependence. The final study sample
(n=882) is described in Table 1 (M age at baseline
= 71.6, age range = 53-95, 65.9% female). Overall
retention rates for the two adjoining intervals are:
W1-W2 = 71%, W2–W3 = 73%.

Episodic memory

We used four measures from two standard tests of
EM, word recall and Rey Auditory Verbal Learning
Test (RAVLT) [26, 44]. For word recall, participants
were given two minutes to study a list of 30 English
words (6 from each of 5 taxonomic categories in ran-
dom order) and five minutes to write down as many as
they could remember [44]. Six equivalent lists exist
and were administered such that no participant saw
the same list twice. Participants received a maximum
score of 30 on each of two trials. This task provided
two manifest variables: 1) score on list 1 and 2) score
on list 2. For RAVLT, participants listened to fifteen
nouns and then recalled orally as many as possible
[45, 46]. This procedure was repeated five times (A1-
A5). Participants then listened to a second list (B1)
of 15 unrelated nouns and immediately recalled them
orally. Finally, participants recalled the first list (A6).
This task provided two manifest variables: 1) list B1
was used as a measure of free recall (maximum score
of 15) and 2) list A6 was used to measure recall after
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Table 1
Sample characteristics for entire sample and by memory status.

Measured Variable Whole Sample Proportion of Missing Data (%) SMA NMA DMA

n 882 3 276 415 191
Mi (SE) 0.004 (0.44) - 0.93 (0.02) -0.12 (0.01) -1.34 (0.02)
Ms (SE) -0.043 (0.059) - -0.026 (0.002) -0.043 (0.001) -0.056 (0.003)
Age (y) 71.6 (8.9) 0 70.8 (8.7) 71.9 (8.7) 72.2 (9.5)

Young-old (n=435) 64.1 (5.2) - 63.9 (5.2) 64.5 (5.2) 63.5 (5.2)
Old-old (n=447) 78.9 (4.5) - 78.5 (4.1) 79.0 (4.3) 79.3 (5.3)

Education (years) 15.1 (3.0) 0 15.8 (2.9) 14.9 (2.8) 14.5 (3.3)
Sex (% female) 65.9 0 77.2 63.6 54.5
Living status (% with) 65.0 1 63.4 64.9 67.7
CES-D score 7.9 (7.1) 2 7.0 (6.6) 8.4 (7.1) 8.2 (7.5)
Subjective healtha 1.83 (0.74) 1 1.79 (0.70) 1.81 (0.73) 1.94 (0.82)
Pulse pressure (mmHg) 53.2 (10.6) 4 53.1 (10.2) 53.0 (11.0) 54.0 (10.2)
Peak expiratory flow (L/min) 415.3 (116.0) 5 403.6 (110.8) 415.8 (119.4) 431.3 (114.6)
Grip strength (kg/f) 29.8 (9.7) 6 28.4 (8.5) 29.8 (9.6) 31.7 (11.0)
Body mass index (kg/m2) 26.6 (4.1) 2 26.8 (4.3) 26.6 (4.1) 26.3 (3.7)
Heart rate (beats/min) 68.5 (9.3) 6 68.8 (8.7) 68.3 (9.3) 68.6 (10.1)
Gait (s) 6.88 (1.93) 6 6.78 (1.85) 6.82 (1.78) 7.16 (2.31)
Balance (s) 3.07 (1.19) 5 3.02 (1.06) 3.02 (1.12) 3.27 (1.46)
Physical activity 15.4 (5.2) 2 15.7 (4.9) 15.4 (5.1) 15.1 (5.6)
Social activity 22.3 (6.8) 3 23.5 (6.5) 22.3 (6.6) 20.5 (7.4)
Novel cognitive activity 74.7 (17.0) 4 79.1 (15.6) 75.5 (16.3) 66.8 (17.9)
Self-maintenance activity 29.2 (5.9) 3 29.9 (5.3) 29.3 (5.6) 27.9 (7.3)
Self-reported eyesight 3.1% - - - -
Self-reported hearing 7.9% - - - -

Note. Results presented as Mean (Standard Deviation) unless otherwise stated. SMA, stable memory aging; NMA, normal memory aging;
DMA, declining memory aging; Mi, mean episodic memory intercept; Ms, mean episodic memory slope; CES-D, Center for Epidemiologic
Studies Depression scale; mmHg, millimeter of mercury; L, liters; min, minute; kg, kilograms; f , force; m2, meters squared; s, seconds.;
aSelf-reported health relative to perfect based on 1 = very good to 5 = very poor; b Self-reported eyesight and hearing relative to peers based
on 1 = very good to 5 = very poor in % of poor or very poor.

interference (maximum score of 15). Writing skill of
participants was not assessed, nor was sensory ability
controlled for (see Table 1 for percentage reporting
poor or very poor). However, all sensory aides (i.e.,
glasses, hearing aids) were allowed for testing, and all
participants experienced the same testing conditions
in all sessions.

Risk factor predictors of memory status
(SMA, DMA)

Four broad domains of 17 risk-related biomarkers
were tested together in the statistically competi-
tive context of a machine-learning computational
approach using random forest analyses (RFA). Most
of these markers have been investigated indepen-
dently as both risk factors for dementia and predictors
or covariates of memory performance and change.
Notably, the current RFA analyses uses single time
point predictors and the baseline measure of the
predictor is measured at the beginning of each
individual’s trajectory. Whereas the first category
included important precision factors, the remaining
domains were comprised of potentially modifiable

precision targets. First, two non-modifiable demo-
graphic factors were collected at baseline and
included participants’ 1) age (in years) and 2)
sex. Second, seven potentially modifiable functional
biomarkers included baseline 1) pulse pressure (PP;
equals systolic blood pressure (BP) – diastolic BP,
in mmHg) based on an average of eight BP readings
[26], 2) peak expiratory flow (largest volume of air
expired over three attempts, in liters/minute [33]), 3)
grip strength (average hand strength, in kilograms/
force [34]), 4) body mass index (BMI; equals
weight/height2, in kilograms/meters2 ), 5) heart rate
(average over eight sessions), and the average of wave
1 and wave 2 data for 6) balance (360 degree turn, in
seconds) and 7) gait (20 feet, in seconds).

Third, two potentially modifiable psychological
markers included baseline 1) depressive symptoms
(Center for Epidemiologic Studies Depression Scale)
[47], and 2) subjective health relative to a perfect
state of health on a 5-point Likert scale (from “very
good” = 1 to “very poor” = 5). Fourth, six potentially
modifiable lifestyle factors included baseline 1) edu-
cation (total years), 2) living status (living alone = 0,
living with someone = 1), and four other composite
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Fig. 1. We identified three memory classes based on episodic memory level and slope. The figure displays the raw trajectory data supplemented
by color coding that reflects the three observed classes. Red represents stable memory aging (SMA), blue represents normal memory aging
(NMA), and green represents declining memory aging (DMA). In addition, three overall mean trajectory lines (bolded lines) are displayed in
the same colors. The black line represents overall latent growth change. The inflection point for the overall sample = 73.4 years (calculated
using the “bede” function in R).

factors based on self-report questions from the VLS
Activities Lifestyle Questionnaire [48] which uses
a nine-point scale to rate frequency of participa-
tion (from “never” = 0 to “daily” = 8). We included
3) physical activity (n = 4 questions), 4) novel
cognitive activity (n = 27), 5) social activity (n = 7),
and 6) self-maintenance activity (n = 6).

Older age is a prominent risk factor for AD
and risk increases in intensity with advancing age.
Therefore, we tested age as both a predictor and a
stratification variable. Specifically, because of the
chronological breadth of the longitudinal sample
(40 years) and the observations of age differ-
ences in dementia prevalence and co-morbidities,
we stratified by age to investigate whether

predictors vary between age groups: young-old
(<72.5 years) and old-old (≥72.5 years) adults. The
baseline Median age (72.5) and the baseline Mean
age (71.8) were similar. Therefore, to maximize the
data points in both groups we chose 72.5 as the strat-
ification point of age in this sample.

Statistical approach: foundational statistical
analyses

For our foundational statistical analyses, we used
MPlus 7 [49] to conduct confirmatory factor analy-
sis of EM, longitudinal invariance testing, and latent
growth modeling. Model fit for all analyses was deter-
mined using the following standard indices [40, 50]:
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Fig. 2. Relative importance of predictors of stable memory aging (SMA) versus normal memory aging (NMA) status for Young-Old (YO)
and Old-Old (OO) adults. In both cases, ntree = 1000, mtry = 5. For YO, area under the curve = 0.60, n = 349. For OO, area under the curve
= 0.60, n = 342.

Fig. 3. Relative importance of predictors of declining memory aging (DMA) versus normal memory aging (NMA) status for Young-Old
(YO) and Old-Old (OO) adults. In both cases, ntree = 1000, mtry = 5. For YO, area under the curve = 0.61, n = 290. For OO, area under the
curve = 0.62, n = 316.

1) chi-square test of model fit (χ2) for which a good
fit would produce a non-significant outcome (p >
0.05), indicating that the data are not significantly
different from the estimates associated with the
model, 2) Akaike Information Criterion (AIC) for
which better fit is associated with a lower value, 3)
Bayesian Information Criterion (BIC; the sample-
size adjusted value of AIC), lower values imply better
model fit, 4) root mean square error of approximation
(RMSEA) for which a value of ≤0.05 is deemed good
fit and ≤0.08 is deemed adequate fit, 5) comparative
fit index (CFI) for which a value of ≥0.95 is deemed
good fit and ≥0.90 is deemed adequate fit, and 6)

standardized root mean square residual (SRMR), for
which a value of ≤0.08 is deemed as good fit. We used
-2 log likelihood (-2LL) difference statistic (D) for all
nested models. First, we computed the EM latent vari-
able. We used four EM measures as described above
(word recall lists one and two; RAVLT, free recall and
recall after interference) to test an EM latent variable
using confirmatory factor analyses. For best model
fit indexes, see Supplementary Table 1. Second, we
tested the one-factor EM latent variable for longi-
tudinal (three-wave) measurement invariance. The
tests examined included: 1) configural invariance (the
same indicator variables load onto the latent variable
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at each time point), 2) metric invariance (factor load-
ings are constrained as equal for each latent variable
to indicate that it is measuring the same construct),
and 3) scalar invariance (indicator intercepts are con-
strained to be equal which allows mean differences
to be evident at the latent level; [40]). For details,
see Supplementary Table 1. We estimated EM factor
scores and used these scores in all subsequent mod-
els. Third, we used latent growth modeling to examine
change patterns for the EM latent variable to establish
the baseline growth model. Chronological age was
used as the metric of longitudinal change to improve
interpretability and account for the effect of age as if
it were a covariate in the model [51]. We centered age
at 75 years (the approximate mean of the 40-year span
of data). We established the best fitting latent growth
model in the following sequence of tests (Supplemen-
tary Table 1): 1) fixed intercept model (assumes no
inter- or intra-individual variation), 2) random inter-
cept model (assumes no intra-individual differences
but models inter-individual variability), 3) random
intercept fixed slope model (allows inter-individual
variation in level, but assumes all individuals change
at the same rate), and 4) random intercept random
slope model (allows inter-individual variation in ini-
tial level and change) [52]. Due to data collected
up to a maximum of three times per individual par-
ticipant, no non-linear models were tested for the
growth model or for subsequent analyses. We did
not use latent growth modeling for interpreting level
or change based on predictors, but rather to create
classes of memory change.

Statistical approach: memory trajectory
classification

Using MPlus 7 [49], we objectively classified
participants into distinct EM trajectory groups by per-
forming LCGA for the entire sample (see [53]). EM
data were used to determine memory trajectory class
based on an algorithm that utilized both individual-
ized level and slope. Specifically, two- to five-class
models (two more than theoretically expected) [53]
were tested. For each of the class models tested,
we used the random intercept, random slope growth
model that was fully constrained within each class
(i.e., intercept and slope were constrained to be equal)
in order to determine group differences [54]. We used
recommended indices (AIC, BIC, -2LL, entropy) to
compare the class models with the most parsimo-
nious one-class model and assessed their relative
fit (Supplementary Table 2). As in previous work,

we identified a model with low AIC, BIC, and -
2LL values, a high entropy value, greater than 100
participants in each class, and that corresponded to
theoretical expectations [19]. Class membership was
used for prediction analyses.

Statistical approach: predictors of SMA and DMA

We used R 3.2.5 [55] to perform RFA, stratified
by age (young-old [n=435] and old-old [n=447]),
to determine the most important (of 17) predictors
of SMA and DMA status as compared with the
benchmark (NMA). See Table 1 and Supplementary
Table 3 for young-old, old-old distribution, and age.
We also examined predictors of SMA as compared
with DMA. As in previous work, RFA was selected
as the optimal technique to test all predictors simulta-
neously [19]. RFA accommodates multiple predictors
and variable sample sizes, and produces a ranking of
the determinants in terms of importance in predict-
ing memory status. Specifically, RFA is a recursive
partitioning multivariate data exploration technique
that combines predictions across multiple classifi-
cation and regression trees (ntree), each based on
a random sample of participants and predictor vari-
ables (mtry). We imputed missing predictor data (3%
overall, ranging from 1% to 6% across risk and pro-
tection factors) using the “missForest” package [56,
57]. “missForest” is particularly useful when using
mixed-type data as it can impute continuous and cat-
egorical data including complex interactions. It uses
a random forest trained on the data matrix to predict
missing values and can be run in parallel with other
random forest packages.

We conducted RFA using the “Party” package [58].
Each forest was comprised of ntree = 1000 (which is
sufficient for good model stability) and each potential
split evaluated a random sample of mtry = 5 predictors
(
√

# of predictors). To assess relative level of impor-
tance of each predictor, we used the cforest function
in the Party package. RFA makes binary decisions of
class membership based on the 5 randomly selected
predictors. Predictors were given an importance rank
based on their permutation accuracy importance.
Specifically, binary decisions continue to be made
until probability of class membership is high enough
or no more progress can be made. The algorithm then
averages the prediction weight of each of the variable
across all 1000 permutation and provides an output of
the most important predictors [59-61]. Each permu-
tation takes into consideration interactions between
predictors when variable importance is determined,
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Table 2
Predictors of stable memory aging and declining memory aging using pairwise comparisons

Risk Factor Predicting SMA/NMA1 Predicting SMA/DMA1 Predicting DMA/NMA1

Young-Old Old-Old Young-Old Old-Old Young-Old Old-Old

Non-modifiable Demographic
Age3 Younger
Sex2,6 Female Female Female Female

Functional
Pulse Pressure5

Peak Expiratory Flow2 Lower
Grip Strength4 Lower Higher
Body Mass Index2 Higher Higher
Heart Rate4 Higher Lower Higher
Gait4 Faster Slower
Balance5

Psychological
Depressive Symptoms2 Fewer
Subjective Health5

Lifestyle/Reserve
Living Status2 Cohabiting Cohabiting
Education2,6 More More More More
Physical Activity5

Novel Cognitive Activity4,6 More More Fewer Fewer
Social Activity4 More More Fewer
Self-Maintenance Activity4 More Fewer

1 Predicting the first status against the benchmark. 2 Unique to SMA. 3 Unique to DMA. 4 Both SMA and DMA. 5 Not a significant predictor.
6 Most common predictors. SMA, stable memory aging; NMA, normal memory aging; DMA, declining memory aging.

although specific interactions are not reported [60,
62]. As recommended [63], we relied on a descrip-
tive ranking of the predictor variables to define
importance. We reported area under the curve (AUC)
with 95% confidence interval for all models tested. In
psychological prediction analyses an AUC of 0.5 is
considered to be chance, between 0.6 and 0.7 is con-
sidered to be a medium effect size, and 0.8 or greater
is considered a strong effect size [64]. Direction of
predictor effects was determined using correlation
analyses.

RESULTS

Foundational statistical analyses

Initial analyses showed that a single-factor model
for EM fit the data well. There was support for
configural, metric, and partial scalar invariance (Sup-
plementary Table 1). The best fitting latent growth
model was a random intercept, random slope latent
growth model (Supplementary Table 1). These results
provide important evidence that 1) we are measuring
the same construct across time, 2) there is age-related
change in EM, and 3) there is considerable variability

among individuals around that change. This provides
further support for investigating objective classifica-
tion of subgroups within this population.

Research Objective 1: Memory status
classification

We first analyzed all (n = 882) individualized latent
memory trajectories. The LCGA identified a 3-class
model as the best-fitting solution (see Supplemen-
tary Table 2). Figure 1 displays the raw trajectory
data for each individual supplemented by color cod-
ing that reflects the three observed classes. Mean
trajectory lines for each class and for the overall sam-
ple are also provided. The model had a very good
entropy value (0.80) and each class had more than
5% of the sample. The specific characteristics for
each class are reported (see Supplementary Table 3).
The top class (SMA) is defined empirically by an
above-average, sustained memory trajectory charac-
terized by higher and maintained memory scores over
time (n = 276 [31%], intercept = 0.93, 95% CI [0.90,
0.96], slope = -0.03, 95% CI [-0.030, -0.022]). The
middle class (NMA) is characterized empirically by
mid-range or average level (intercept) and a declin-
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Fig. 4. Relative importance of predictors of stable memory aging (SMA) versus declining memory aging (DMA) status for Young-Old (YO)
and Old-Old (OO) adults. In both cases, ntree = 1000, mtry = 5. For YO, area under the curve = 0.70, n = 231. For OO, area under the curve
= 0.74, n = 236.

ing slope (n = 415 [47%], intercept = -0.12, 95%
CI [-0.16, -0.09], slope = -0.04, 95% CI [-0.047,
-0.039]). The lower class (DMA) is characterized
by low intercept (i.e., factor scores below 0) and a
steeper declining slope (DMA, n = 191 [22%], inter-
cept = -1.3, 95% CI [-1.38, -1.31], slope = -0.056,
95% CI [-.068, -.050]). We conducted LCGA within
our two established age groups (i.e., young-old, old-
old) that confirmed memory class membership (i.e.,
>90%). The trajectory analyses provided evidence
that within a group of non-demented older adults
there is a potential for objectively detectable sub-
classes of performance. This supports undertaking
prediction analyses to identify the risk/protection fac-
tors that discriminate these subclasses. See Table 1 for
description of the 17 risk factors in full sample and
for each of the three memory status groups.

Research Objective 2: Risk predictors of SMA
and DMA

Using RFA, we computed the relative predictive
importance of 17 risk factors in discriminating SMA
from NMA as stratified by age (Fig. 2). Results
showed that important predictors varied by age
strata. For young-old adults, in order of importance,
SMA was predicted by more education, female sex,
more social activity, living with someone, and higher
BMI (AUC = 0.60, 95% CI [0.54, 0.66]). For old-old
adults, in order of importance, SMA was predicted
by fewer depressive symptoms, more education,
female sex, and higher heart rate (AUC = 0.60, 95%
CI [0.54, 0.66]).

We then assessed predictors discriminating DMA
from NMA status (Fig. 3) as stratified by age. Results
showed that the important predictors also varied
by age group and included factors that were both
observed and not observed as predictors of SMA.
For the young-old group, in order of importance,
DMA was predicted by less novel cognitive activity,
less self-maintenance activity, higher grip strength,
younger age, and higher heart rate (AUC = 0.61, 95%
CI [0.54, 0.69]). For old-old adults, DMA was pre-
dicted by less novel cognitive activity, slower gait,
and less social activity (AUC = 0.62, 95% CI [0.55,
0.69]).

We then assessed predictors discriminating SMA
from DMA status (Fig. 4) as stratified by age. For
young-old adults, in order of importance, SMA group
membership was predicted by more novel cognitive
activity, female sex, lower grip strength, more edu-
cation, more self-maintenance activity, higher BMI,
living with someone, and lower heart rate (AUC =
0.70, 95% CI [0.63, 0.78]). For old-old adults, in
order of importance, SMA group membership was
predicted by more novel cognitive activity, female
sex, more social activity, more education, lower peak
expiratory flow, and faster gait (AUC = 0.74, 95% CI
[0.68, 0.80]).

DISCUSSION

The overall goal of this study was to link trajectory
analyses of non-demented memory aging with estab-
lished modifiable AD risk factors tested as predictors
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of both stable (relatively high) and declining (rel-
atively low) memory classes. The purpose was to
explore whether identified and potentially modifi-
able AD risk and protective factors were important
predictors of non-demented memory change pat-
terns. Future research could examine these factors
to determine efficacy in promoting healthier memory
aging or delaying (preventing) early and impairment-
related memory decline. We emphasized modifiable
risk and protective factor, considering only two non-
modifiable biological risk variables (age and sex),
influence in the competitive quantitative (machine
learning) context of each other. Prediction analyses
were conducted separately on young-old (55-72.4)
and old-old (72.5-95) groups, reflecting the age-
graded increase in AD risk and probability of
multi-factorial involvement.

Integrating memory trajectory and prediction
analyses

The selective risk prediction insights were built on
the foundation provided by the first research objective
results. Specifically, for this objective, we extended to
a latent variable of memory the observation that there
is dramatic inter-individual variability in level and
slope of longitudinal trajectories in non-demented
aging. This variability (Fig. 1) was essential to the
premise that actual memory aging could be multi-
directional and multi-factorial. Multiple influences
and mechanisms could determine individualized tra-
jectories and imply the need for precision intervention
protocols. A latent variable has several advantages
over single manifest variables that are often used
in both observational and intervention research in
dementia. By incorporating more than one indicator
representing the same domain and integrating their
shared common variance, the underlying construct
can be more adequately estimated—a process that
minimizes measurement error and establishes con-
struct validity [40].

The subsequent analyses of the actual full-sample
distribution of individualized trajectories produced
three neighboring but statistically discriminable
classes of memory aging status. These trajectory
classes were distinguished by an algorithm including
both level and slope information for each individ-
ual. The results of this analysis established that the
expected broad distribution of memory trajectories in
non-demented aging could be objectively classified
in three neighboring, discriminable and interpretable
phenotypes (i.e., SMA and DMA groups, with the

intermediate NMA as the largest group). Although as
yet not known from this study, these three classes may
reflect predictably different probabilities of conver-
sion to later impairment (perhaps especially amnestic
impairment) and AD dementia. In addition to these
observed “phenotypes” of dynamic memory aging,
the prediction results demonstrated that these classes,
although continuously distributed in level and slope,
could be significantly discriminated by associated
individual differences in AD-related risk and pro-
tective factors. We turn now to a brief discussion of
prediction patterns.

Prediction results and potential mechanisms

Overall, for the second objective, the results indi-
cated that a substantial number of modifiable risk
factors predicted SMA or DMA status but the pre-
dictors of SMA largely differed from those of DMA.
The latter result indicates that the predictors (and
mechanisms) underlying low and rapidly declining
memory aging are not necessarily the same as (nor
simply the opposite of) those predicting higher and
stable memory aging. As can be seen in Table 2, both
non-modifiable demographic factors (age, sex) also
played a significant but selective role in the prediction
results. Sex was an important predictor of SMA, with
female sex a favorable attribute for healthier memory
aging. Notably, sex did not predict DMA. Within the
age strata, however, actual chronological age (limited
in range) was not an important predictor of SMA but
was for DMA in the young-old strata only. Notably,
with some similarities, different predictors were sig-
nificant for the young-old and the old-old strata. For
comparison purposes, we depict the highlights of the
age strata differences in SMA and DMA prediction
patterns in Figure 5. More of the risk/protection fac-
tors predicted SMA than DMA and these predictors
varied for young-old and old-old. Twelve of the 17
risk factors predicted SMA, 4 in young-old only, 3
in old-old only, and 5 in both age strata. Seven of
the 17 risk factors predicted DMA, 4 in young-old
only, 2 in old-old only, and 1 for both age strata.
Notably, we may have identified more predictors for
SMA than DMA because none of the risk/protection
factors used in the present models were AD-specific
genetic or biological markers potentially sensitive
to preclinical memory decline. The precision mod-
ifiable predictors, although different for young-old
and old-old, may be especially beneficial for SMA.
One implication is that targets for promoting healthy
memory aging may differ from targets for delaying
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Fig. 5. Prediction patterns of risk and protection factors for Stable Memory Aging and Declining Memory Aging based on Young-Old (YO)
and Old-Old (OO) stratum.

exacerbated memory decline. Moreover, these targets
may also vary for younger aging adults as com-
pared with older aging adults and, in some cases, for
females as compared with males.

Our prediction analyses were conducted with pow-
erful machine learning technology. RFA permits the
evaluation of multiple predictors in a competitive
context, accounts for correlations among predictors,
identifies the relatively important predictors in order,
and shows model performance advantages over logis-
tic regression [65]. Although RFA is used in many
unbiased biomarker discovery and validation studies,
it does not provide information regarding the under-
lying mechanisms or interactive influences through
which a given significant predictor exerts discrim-
inating power for clinical groups. As discussed in
multiple reviews, the mechanisms associated with
many of the risk and protective factors we exam-
ined are as yet unknown. Such predictors reflect an
accumulation of morbidity or protection and rela-
tively broad and interactive influences. We consulted
recent reviews to offer additional perspectives on how
these dementia risk factors might also be influen-
tial in predicting differential non-demented memory
trajectories [10, 12, 13, 15].

Sex and age

Our results highlight two precision non-modifiable
markers that are relevant in select circumstances. Sex
was included as a predictor because it is an estab-
lished and important moderator of risk-dementia
associations [66]. The Alzheimer’s Association [67]
reported that higher prevalence of AD in females may
be related to increased vulnerability as a function of
1) sex-related biological and genetic variations [68-
72] and 2) gender-related risk factors [68, 73-75].
That sex (female) was an important predictor of SMA
[19, 76] may be linked to frequent observations of
sex differences in memory aging, AD prevalence,
and AD-related neuro-genetic underpinnings [63].
Several dementia-related examples include memory
performance [77], memory resilience [19], genetic
(APOE) vulnerability [70] and protection [72], bio-
logical variation [67], lifestyle factors [68, 73-75],
and neuritic plaque burden [69, 71, 78]. Together,
these suggest different mechanisms and potential
interventions across sex. In contrast, chronological
age (within the strata) was not a significant predictor.
Age is the most important AD risk factor and older
age is associated with greater co-morbidities [70]. For



S112 G. Peggy McFall et al. / Trajectory and Prediction Analyses Inform Prevention

the three prediction models, we stratified the sample
by age due to the wide band of aging for which there
are multiple (and potential different) risk factors and
mechanisms underlying memory trajectories. In this
restricted context, we found that actual age was not a
robust predictor of memory trajectory class.

Modifiable SMA or DMA predictors

A well-known factor, education, measured in years
and representing a general and cumulative (over the
lifespan) variable, was confirmed as an important
discriminative predictor of SMA for both young-
old and old-old adults, but not for DMA. Not
surprisingly, higher education is often linked with
cognitive reserve and higher cognitive performance
(but not decreased rates of decline) in older adult-
hood [10, 12, 13, 15, 79, 80]. Recent research reported
that 12 months of late-life post-secondary education
increased cognitive reserve in older adults [81]. It is
also important to note that persons with higher edu-
cation may engage in healthier lifestyles than their
less educated colleagues. Two risk factors uniquely
predicting SMA for young-old (but not old-old), were
higher BMI and cohabitation. Although weight status
literature is mixed regarding the effects of high BMI
on memory aging [82], generally higher levels of BMI
have been shown to negatively affect cognitive trajec-
tories, including memory in older adults [83, 84]. Our
findings support the observation that midlife obesity,
not late-life obesity, is a greater risk factor for exac-
erbated memory decline in older adulthood [13, 82,
85]. Midlife obesity has been linked to pre-diabetes
and metabolic syndrome that affect memory through
decreased brain insulin production that is linked to
amyloid clearance, inflammation, and lower levels of
brain glucose [15]. The living status finding was con-
sistent with literature that most often reports living
with someone associated with better cognitive out-
comes [3, 6]. Fewer depressive symptoms uniquely
predicted SMA for old-old. Notably, there were no
clinically significant depression cases in the present
sample. Clinical depression, and perhaps depressive
symptoms, are related to 1) brain pathology [86], 2)
impaired cognitive ability [10, 87], and 3) demen-
tia [12, 13, 15, 88]. Depressive symptoms in late life
are not uncommon but are also potentially treatable
and perhaps preventable. Assuming no progressive
or degenerative condition, this result emphasizes the
importance of promoting positive mental health in
late life, as a potential moderating or preventive factor
in the maintenance of exceptional brain and cognitive

health [89, 90]. There were no additional modifiable
predictors of DMA.

Modifiable predictors of both SMA and DMA

For young-old, lower heart rate predicted SMA
and higher heart rate predicted DMA. In contrast,
for old-old adults, higher heart rate predicted SMA.
Although higher heart rate has been associated with
lower cognitive performance in young-old adults
[91], aging-related declines in maximum heart rate
are common [92]. Exercise interventions that target
increased heart rate have been shown to improve
memory and increase hippocampal volume [93].
Social activity (more) predicted SMA in young-old
and old-old adults whereas fewer social activities
predicted DMA in old-old. This pattern supports
research reporting that more social activity is consis-
tently associated with lower risk of AD and dementia
[10, 12].

Modifiable predictors of SMA versus DMA
comparison

As expected, five additional predictors of SMA
beyond those identified in the SMA-NMA analyses
were detected. These results included exemplars of
functional (grip strength, expiratory flow, gait) and
lifestyle (novel cognitive activity, self-maintenance
activity) factors. An implication for replication or
extension for interventions aimed at promoting
healthy memory aging is that a larger set of potential
memory support factors may be relevant. Notably,
this direct SMA-DMA comparison identified more
predictors in both age strata (young-old 4 more; old-
old 3 more) and these additional predictors were
different. This suggests that more precision may be
required for intervention in later ages. One preci-
sion marker potentially important to young-old adults
in promoting SMA and delaying DMA was grip
strength. Lower grip predicted SMA and higher grip
predicted DMA. Although grip strength is a marker of
muscle strength and has been considered a marker of
biological vitality, previous grip strength associations
to memory are mixed, possibly due to the mem-
ory measures being investigated [34]. Lower peak
expiratory flow uniquely predicted SMA for old-old
adults. These findings contrast the generally reported
lower midlife pulmonary function associated with
lower cognitive scores and higher risk of MCI and
dementia 23 years later [33]. Improvement of pul-
monary function may be associated with increased
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levels of oxygen in the brain resulting in improved
cognitive function and less dementia risk. Gait was
an additional marker important in promoting SMA
and delaying DMA unique to old-old. Faster gait pre-
dicted SMA and slower gait predicted DMA. Change
in walking speed has previously been linked to fluid
cognition changes [34] and may be a prodromal
indicator of dementia [94]. Notably, interventions
targeting both respiration and mobility have shown
promising benefits for improving or maintaining cog-
nitive function in aging [35, 95].

Across both age strata, less novel cognitive activ-
ity was a leading predictor of DMA and more novel
cognitive activity was predictive of SMA. Research
has shown that increased novel cognitive activity
has been associated with cognitive resilience [19]
and may enhance cognitive reserve or compen-
sate for other risk factors associated with memory
deficits [15, 48, 96, 97]. Novel cognitive activ-
ity is relevant to promoting healthy memory aging
(i.e., SMA) and for preventing decline (i.e., DMA).
Self-maintenance activities were potentially impor-
tant for promoting SMA (more) and delaying DMA
(fewer) for young-old adults only, supporting findings
that fewer self-maintenance activities are predic-
tive of mild cognitive performance [37]. That this
predictor was only identified in young-old adults
indicates early intervention may be advisable for
self-maintenance.

Limitations and strengths

Six limitations are noted. First, by design our par-
ticipants are relatively healthy, predominantly white
(non-Hispanic), and (deliberately) non-demented. As
such, they represent a pool of older adults for whom
interventions including modifiable risk or protective
factors for memory may be objectively identified and
profitably tested. Although they are not representa-
tive of the full population of worldwide aging adults,
this sample reflects a large segment of older adults
in some industrialized countries and it is similar in
composition to other studies investigating memory
trajectories of normal, exceptional, stable, resilient,
or pre-impaired adults [3, 9, 98]. Second, although
we tested 17 predictors as derived from related liter-
atures, not all risk and protection factors identified in
the literature were included. Some of the risk factors
were available in the data set but were not suffi-
ciently represented in the sample to be included in the
analyses (i.e., diabetes, smoking, alcohol, and hear-
ing loss). In addition, some of the risk factors from the

literature were not available in the VLS battery (i.e.,
cholesterol level, fish intake, and pesticide exposure).
Due to the planned analyses that take into account
a band of aging between 53 and 95 years, modifi-
able predictors measured at baseline are necessarily
recorded at different ages according to the first time
point of each individual’s trajectory. Third, this VLS
sample does not have full genetic or AD biomarker
data. Accordingly, our goal in this study was to con-
duct prediction analyses using a set of non-invasive
and relatively modifiable risk factors commonly
found in observational studies and easily translatable
to non-demented populations. We recommend further
research integrating other modalities of biomarkers
and risk factors for the prediction of non-demented
memory trajectory classes. For the present study, we
concentrated on identifying a variety of memory-risk-
related participant characteristics, many of which
are modifiable, and examined them in a competi-
tive context as stratified by age. Fourth, the AUC
values for our RFAs were moderate (range = 0.6 to
0.7), which may reflect our focus on mostly mod-
ifiable predictors from three domains of memory
risk and the fact that the participants were non-
demented. Our present purpose was not to derive the
best set of diagnostic biomarkers but to generate an
empirically supported list of important predictors for
future evidence-based research and intervention pro-
tocols focused on non-demented populations. Future
research with less modifiable biomarkers (e.g., APOE
genetic risk) could absorb more of the predictive
variance of our analyses, although genetic variations
of normal memory aging are inconsistent [99, 100].
Such analyses could also point to a likely smaller set
of modifiable predictors that emerge in the context of
AD biomarkers. Fifth, our DMA group is not classi-
fied according to mild cognitive impairment criteria,
and we do not have outcome information for their pro-
gression beyond the present final wave. The DMA
classification is, however, based on key informa-
tion often lacking (or estimated) in MCI approaches;
namely, level of performance on multiple memory
measures (represented as a factorially valid latent
variable) and on actual trajectories of change. Sixth,
for applied and prevention work, the operative and
modifiable risk factors (and intervention targets) var-
ied in this study by late-life age group, indicating the
importance of designing precision-based protocols.
Although examining these precision targets at midlife
was beyond the scope of this study, midlife risk
and protection factors should be considered in future
research.
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Among strengths, we note our novel and objec-
tive classification of SMA and DMA status using
a robust and reliable latent EM variable (confirmed
for measurement invariance over three waves). Our
approach to identifying an SMA group was based
on LCGA specifications of individualized level and
slope information in the context of a large distribu-
tion of memory trajectories. Quantitative analyses of
longitudinal memory level and change data produced
objective classifications corresponding to a contin-
uum of non-demented and not-known-to-be impaired
memory aging. Second, we used a substantial, well-
characterized sample spanning a 40-year band of
aging and employed an integrated set of powerful
statistical techniques. Third, the availability of a com-
paratively large NMA control group was leveraged to
develop the notable predictor comparisons between
the SMA group and both the NMA and DMA group.
This provides useful knowledge for interpretation
and potential intervention plans. Fourth, we used age
information in three ways. Actual age in years was
the metric along which the trajectories were plotted
and the LCGA were conducted. This was the equiv-
alent of including age as a covariate in the analyses,
but permitted the accelerated design employed in this
study. Shifting to the prediction analyses, age group
was a stratification variable, with all analyses con-
ducted separately within the two 20-year strata. Given
the broad band of aging represented in this design,
this approach permitted the specific evaluation of the
potential differences in memory trajectory predictors
for younger-old and older-old adults. As shown in
Figure 5, this provided important and precision-based
insight into the differential associations—and likely
intervention targets—for these two subsets of older
adults. Finally, within each stratum actual age was
included as a predictor in order to assess whether it
predicted trajectory status even within the restricted
range of an age strata.

In summary, we provide evidence that three mem-
ory classes or phenotypes can be derived objectively
from a broad distribution of non-demented memory
trajectories. Moreover, substantial variance associ-
ated with a sustained healthy memory aging class
and a rapidly declining memory class can be pre-
dicted by standard (i.e., present in most longitudinal
studies) risk markers from four common domains
(non-modifiable demographic, functional, psycho-
logical, lifestyle). In addition, all domains contributed
predictors in at least some models. Whereas adults
who experience severe cognitive decline have a
greater risk of disease and death [101-103], cognitive

maintenance is demonstrably associated with func-
tional independence, increased quality of life, and
decreased risk of death [104, 105]. Our predic-
tion results identified selective modifiable risk or
protective factors that could be converted to poten-
tial intervention targets for the twin purposes of
1) promoting healthy memory aging or 2) prevent-
ing or delaying accelerated decline, impairment, and
perhaps dementia. Notably, these factors predicting
stable memory performance are different from the
factors associated with declining memory trajecto-
ries. That these also vary by age strata (within aging)
supports the notion that precision health solutions
may be carefully tailored to specific detectable and
relevant categories of older adults, namely age cat-
egory and memory trajectory class. That sex is a
prominent predictor for SMA (but not DMA) points
to future observational disaggregation and precision
targeting of intervention goals for males and females.

ACKNOWLEDGMENTS

Roger Dixon acknowledges support for this
research by grants from the National Institutes
of Health (National Institute on Aging; R01
AG008235), the Canadian Consortium on Neurode-
generation in Aging (with funding from the Canadian
Institutes of Health Research and partners), and the
Canada Research Chairs program. We appreciate the
many important contributions of VLS staff and par-
ticipants.

Authors’ disclosures available online (https://
www.j-alz.com/manuscript-disclosures/18-0571r2).

SUPPLEMENTARY MATERIAL

The supplementary material is available in the
electronic version of this article: http://dx.doi.org/
10.3233/JAD-180571.

REFERENCES

[1] Dixon RA, Small BJ, MacDonald SWS, McArdle JJ.
(2012) Yes, memory declines with aging—but when, how,
and why? In Memory and aging: Current issues and future
directions, Naveh-Benjamin M, Ohta N, eds. Psychology
Press, New York, NY, pp. 325–347.

[2] Hochstetler H, Trzepacz PT, Wang S, Yu P, Case M,
Henley DB, Degenhardt E, Leoutsakos J-M, Lyketsos
CG (2016) Empirically defining trajectories of late-life
cognitive and functional decline. J Alzheimers Dis 50,
271–282.



G. Peggy McFall et al. / Trajectory and Prediction Analyses Inform Prevention S115

[3] Josefsson M, Luna X, Pudas S, Nilsson LG, Nyberg L
(2012) Genetic and lifestyle predictors of 15–Year longi-
tudinal change in episodic memory. J Am Geriatr Soc 60,
2308–2312.
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[44] Dixon RA, Wahlin Å, Maitland SB, Hultsch DF,
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