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Abstract.
Background: Despite decades of research on the optimization of the diagnosis of Alzheimer’s disease (AD), its biomarker-
based diagnosis is being hampered by the lack of comparability of raw biomarker data. In order to overcome this limitation,
the Erlangen Score (ES), among other approaches, was set up as a diagnostic-relevant interpretation algorithm.
Objective: To validate the ES algorithm in a cohort of neuropathologically confirmed cases with AD (n = 106) and non-AD
dementia (n = 57).
Methods: Cerebrospinal fluid (CSF) biomarker concentrations of A�1-42, T-tau, and P-tau181 were measured with commer-
cially available single analyte ELISA kits. Based on these biomarkers, ES was calculated as previously reported.
Results: This algorithm proved to categorize AD in different degrees of likelihood, ranging from neurochemically “normal”,
“improbably having AD”, “possibly having AD”, to “probably having AD”, with a diagnostic accuracy of 74% using the
neuropathology as a reference.
Conclusion: The ability of the ES to overcome the high variability of raw CSF biomarker data may provide a useful diagnostic
tool for comparing neurochemical diagnoses between different labs or methods used.
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INTRODUCTION

Alzheimer’s disease (AD) is one of the most fre-
quently occurring neurodegenerative disorders in the
Western population and decades of research on the
optimization of AD diagnosis has led to the discovery
of a validated cerebrospinal fluid (CSF) biomarker
profile that reflects the presence of AD pathology in
the brain [1, 2]. This biomarker profile is character-
ized by lowered CSF levels of amyloid-� peptide
of 42 amino acids (A�1-42) in combination with
elevated levels of total tau-protein (T-tau) and/or tau-
protein phosphorylated at threonine 181 (P-tau181)
as described in the IWG-2 criteria and is being
used in clinical work-up as well as for research
purposes [3, 4]. Although these biomarkers demon-
strate sensitivities and specificities of 100% and 91%,
respectively, for confirmation of AD against healthy
controls, sensitivity and specificity values still only
reach the 80% threshold to differentiate AD against
other neurodegenerative disorders (80% and 93%) [1,
5]. The optimization of the stratification of patient
populations would benefit the success rate of clin-
ical trials with potential disease-modifying drugs
against AD.

However, further improvement of the biomarker-
based diagnosis of AD is being hampered by the
lack of comparability of raw biomarker data [6].
These raw data are subjected to interlaboratory vari-
ances due to a lack in standardization of sample
collection, handling and storage protocols, and due
to laboratory-specific cutoff values or different labo-
ratory platforms used [7–11]. This has already been
partially addressed by providing standard operating
procedures for pre-analytical sample handling [12] as
well as recommendations for analytical processes to
improve standardization [13–15]. Despite these steps,
and provided the ongoing evolution in biomarker
research, currently used methods and platforms may
be modified. Therefore, much could still be gained by
introducing a diagnostic-relevant interpretation algo-
rithm for raw biomarker data.

Accordingly, the Erlangen Score (ES) was set
up and previously validated across different patient
cohorts, different pre-analytical operating procedures
and different analytical platforms as an algorithm
to standardize and improve the biomarker-based
diagnosis of AD [16, 17]. In order to further vali-
date the diagnostic utility of this algorithm for its
use in differential AD diagnosis, this study with
a neuropathologically confirmed cohort of AD and
non-AD dementia patients was set up.

METHODS

Study population

The study cohort consists of 106 patients with a
definite diagnosis of AD, either with concomitant
but minor non-AD pathology or AD pathology in
pure forms, and 57 patients with a definite diag-
nosis of non-AD, all confirmed by postmortem
neuropathological examination. Non-AD is defined
as clinical dementia with a pathological diagno-
sis not attributed to AD, meanwhile excluding
concomitant AD pathology, consisting of definite
frontotemporal lobar degeneration (FTLD; n = 28),
vascular dementia (n = 13), Lewy body disease (LBD;
n = 8), corticobasal degeneration (CBD; n = 1), or
other including hippocampal sclerosis, arteriosclero-
sis, cerebral amyloid angiopathy, and cases without
specific neuropathological findings (n = 7). Definite
diagnosis was attained by neuropathological exami-
nation of the right hemisphere of the brain, performed
at the Institute Born-Bunge (Antwerp, Belgium)
by two neuropathologists (JJM and AS). Definite
AD was diagnosed based on AD neuropathologi-
cal changes scored using the Montine criteria [18],
whereas definite LBD was evaluated using the McK-
eith classification [19]. Definite vascular disease
was rated using the Deramecourt criteria [20]. Def-
inite diagnosis of FTLD was established through
the criteria of Cairns [21] and Mackenzie [22, 23].
A definite diagnosis of CBD was confirmed by
visual assessment of pathological hallmarks of CBD
[24].

The study was conducted according to the revised
Declaration of Helsinki and good clinical prac-
tice guidelines. This study was approved by the
ethics committee of UAntwerp, Antwerp, Belgium
(B300201420406). Informed consent was obtained
from all subjects.

CSF sampling and analysis

All CSF samples were obtained following standard
collection protocols as previously described [4]. CSF
was collected by lumbar puncture (LP) at the L3/L4
or L4/L5 interspace [12] into polypropylene vials.
Samples were either frozen immediately and shipped
on dry ice to the BIODEM lab or shipped unfrozen
within 24 h after the puncture. Samples were stored
at –80◦C until analysis.

CSF biomarker concentrations of A�1-42, T-tau,
and P-tau181 were measured with commercially
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available single analyte ELISA kits (INNOTEST®

�-Amyloid(1-42), INNOTEST® hTau-Ag, and
INNOTEST® PhosphoTau(181P), respectively;
Fujirebio Europe, Ghent, Belgium) following
manufacturer’s instructions as previously described
[1]. The concentration ranges of the test kits,
determined as the highest and lowest calibrator
concentration, are described in the package inserts
(A�1-42: 125–2000 pg/mL, T-tau: 75–1200 pg/mL,
P-tau181: 15.6–500 pg/mL). Interpretation of the
biomarker levels was based on cutoffs previously
determined in a cohort of autopsy-confirmed AD
patients and cognitively healthy elderly [25]. Levels
of A�1-42 < 638.5 pg/ml, T-tau > 296.5 pg/ml, and
P-tau181 > 56.5 pg/ml were defined as abnormal.

Erlangen score

The ES was proposed as an algorithm taking
into account the core CSF biomarkers, as previ-
ously described [16]. The ES suggests a classification
into four diagnostic groups. Depending on the pat-
tern of the biomarker alterations, the CSF results of
a given patient are scored between 0 and 4 points
(Fig. 1). A CSF result with all biomarkers normal is
scored 0 points; a pattern with marginal alterations
in one biomarkers group (either A� or Tau, but not
both) results in the score of 1; a CSF result with
the alterations in either A� metabolism (decreased
A�1-42 concentration or A�1-42/A�1-40 ratio) or
tau metabolism (increased concentrations of T-tau
and/or P-tau181) but not both is scored 2 points; a
result with clear alterations in one biomarkers’ group
(either A� or Tau) accompanied by marginal alter-
ations in the other group is scored 3 points; clear
alterations in both A� and T-tau/P-tau181 result in
4 points.

Statistical analysis

Descriptive statistics on all data were performed
using SPSS of IBM Statistics, version 24, with sig-
nificance level defined as p < 0.05. In spite of an
adequate sample size, non-parametric testing was
selected as the variances across the groups was
heteroscedastic. Demographic data and biomarker
concentrations were compared between the groups
with Mann-Whitney test. To compare gender and
APOE genotype distributions, Chi-square test was
performed. Logistic regression was then used to
model the probability of having AD pathology at

Fig. 1. ES classification pattern based on the CSF biomarker alter-
ations. Points appointed to each biomarker alteration is given
between brackets.

the postmortem examination as a function of the
ES, whereupon the score was recoded, due to the
small number of observations in some categories,
into: neurochemically improbable AD (ES = 0 or 1,
the reference category), neurochemically possible
AD (ER = 2 or 3), or neurochemically probable AD
(ES = 4), which is in agreement with the wording
in the routine laboratory report presented to clini-
cians. The model was fitted with maximal likelihood,
adjusting for gender (with female as the reference cat-
egory), age, and the time between the LP and death
(TLPD). After having the model fitted, marginal
probabilities, odds ratios to have AD-pathology on
neuropathological examination, and the ROC curve
were post-estimated. Statistical modelling was per-
formed with Stata 14.2 (StataCorp, College Station,
TX, USA).

RESULTS

All demographic data and biomarker concentra-
tions are summarized in Table 1. Patient groups
differed in age at LP (p < 0.001), but not in gen-
der distribution (p = 0.156) or TLPD (p = 0.083). All
biomarkers differed significantly between the groups
(p < 0.001). Of the 106 definite AD patients, 69 were
classified as neurochemically probable AD (ES = 4),
34 as neurochemically possible AD (ES = 2 or 3),
and 3 as neurochemically improbable AD (ES = 0 or
1). On the other hand, 13 of the 57 definite non-AD
patients were classified as neurochemically probable
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Table 1
Descriptive table of demographic and biomarker data

AD Non-AD p

N 106 57
Gender (f/m) 47/59 18/39 0.156
Age at CSF sampling (y) 77 (72–85)a,c 70 (60–76)a,b <0.001*
TLPD (y) 0.2 (0.1–1.5)c 0.7 (0.1–2.1)b 0.083
AD suggestive IWG-2 algorithm 84 22 <0.001*
ES *0.001*

0 2 8
1 1 4
2-3 34 32
4 69 13

A�1-42 (pg/ml) 389 (290–493)a,c 585 (407–774)a,b <0.001*
T-tau (pg/ml) 570 (361–927)a,c 336 (214–547)a,b <0.001*
P-tau181 (pg/ml) 65.0 (44.6–94.3)a,c 39.0 (27.2–55.2)b <0.001*
APOE �4 (carrier/non-carrier) 37/37 12/24 *0.148*

All data are presented as median values and corresponding interquartile ranges between brackets.
Significant differences between groups are marked as asignificant difference with control group,
bsignificant difference with AD group, csignificant difference with Non-AD group. The level of
significance was set at a p-value below 0.05 (*). Only a fraction (67%) of cases had APOE genotyping
by cause of blood sample availability. AD, Alzheimer’s disease; APOE, apolipoprotein E; ES,
Erlangen Score; TLPD, time between LP and death.

Table 2
Logistic regression model of the probability to have AD-pathology on the neuropathological examination

Predictors � Std. Error z p 95% CI

ES (ref. 0 or 1)
2 or 3 1.439 0.732 1.97 0.049* 0.004 to 2.873
4 2.921 0.757 3.86 <0.001* 1.438 to 4.405

Age (y) 0.074 0.020 3.73 <0.001* 0.035 to 0.114
Male gender –0.815 0.423 –1.93 0.054* –1.643 to 0.014
TLPD (y) 0.052 0.152 0.34 0.734* –0.0247 to 0.350
Constant –6.292 1.643 –3.83 <0.001* –9.513 to –3.071

The logistic regression model was performed as a function of the ES, gender, and TLPD. The level of signifi-
cance was set at a p-value below 0.05 (*). Log likelihood = –78.72; Pseudo R2 = 0.2539; Wald χ2(5) = 53.57,
p < 0.0001. AD, Alzheimer’s disease; CI, confidence interval; ES, Erlangen Score; TLPD, time between LP
and death.

AD (ES = 4), 32 as neurochemically possible AD
(ES = 2 or 3), and 12 as neurochemically improbable
AD (ES = 0 or 1).

The logistic regression model is presented in
Table 2. Compared to the reference category (ES = 0
or 1, i.e., neurochemically improbable), both cate-
gories, (ES = 2 or 3, i.e., neurochemically possible)
and ES = 4 (i.e., neurochemically probable) were
significant positive predictors for the probability
of having AD pathology postmortem (p < 0.05 and
p < 0.001, respectively). Compared to the reference
category (ES = 0 or 1), the group classified as neu-
rochemically possible AD (ES = 2 or 3) had odds
4.22 times greater to have AD pathology on the
postmortem examination, and the group classified as
neurochemically probable AD (ES = 4) had odds 18.6

times greater. Compared to the neurochemically pos-
sible group, the odds of the neurochemically probable
group were 4.4 times greater (Fig. 2). Of the explana-
tory variables, only age showed significant positive
effect (p < 0.001), with every year of age increasing
the odds by 8%, while the effect of gender was border-
line insignificant (p = 0.054), and the effect of TLPD
was insignificant.

The ROC curve comparing the two groups, post-
estimated from the above logistic model, resulted in
an area under the curve (AUC) of 0.821 [95%CI:
0.750 to 0.893], which was significantly larger
(p < 0.05) compared to the AUC (0.737 [95%CI:
0.656 to 0.819]) of the ROC curve, resulting
from the model with ES as the sole explanatory
variable.
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Fig. 2. Marginal predictions of the probability to have AD pathol-
ogy at the postmortem examination. Predications were made at the
fixed values of the overall average of age and TLPD and the overall
proportion of females across the groups. The level of significance
was set at a p-value below 0.05 (*).

DISCUSSION

In order to enable comparison of interpretations
of AD biomarkers measurements across laboratories
applying different preanalytical handling procedures,
analytical methods, cut-offs or even different sets of
the biomarkers, the ES interpretation algorithm was
proposed in a previous study [16] and validated on
two other large-scale multicenter cohorts [17]. In the
current study, the ES algorithm enabled a correct
prediction of the postmortem neuropathological out-
come on the ground of the intra vitam CSF results
of three core AD biomarkers. The probabilities to
have AD pathology postmortem in contrast to non-
AD pathologies including mainly FTLD, vascular
dementia, and LBD increased almost linearly with
increasing ES ordered categories. To this end, the
results presented here are entirely in line with the
previously published report showing prediction of the
disease progression based on the ES outcome [17].

Less than 3% of the neuropathologically defi-
nite AD patients (3 out of 106) were categorized
as neurochemically improbable AD (ES = 0 or 1).
Foremost, these patients were in the earlier stages of
AD pathology based on the Montine criteria (Supple-
mentary Table 1). According to the amyloid cascade
hypothesis, the prevailing theory of AD etiology,
A�1-42 is attributed a central role as an initiator of

AD pathology. This implies that A�1-42 is the first
biomarker to change in the CSF, before changes
reflecting neurofibrillary tangles and neurodegener-
ation (CSF P-tau181 and T-tau) can be detected [26].
Also, borderline values in the “normal” range and rel-
ative longer TLPD may have contributed to lower ES
than expected. Further, it should be taken into consid-
eration that neuropathological alterations in different
areas of the brain may be reflected in the CSF to
different extents, depending on their distance to the
CSF space and the dynamic pathway the molecules
need to diffuse to reach the CSF. Yet another poten-
tial explanation is that only A�1-42 was included in
this study as a biomarker of amyloidosis, without
considering A�1-42/A�1-40, which was unavailable.
Therefore, it is plausible to speculate that some cases
without alterations in A�1-42, and hence interpreted
as not having amyloid-related alterations, may have
turned into amyloid-positive if A�1-42/A�1-40 had
been measured [27].

On the other hand, we observed that 23% (13 out of
57) of the definite non-AD patients, which were cat-
egorized as neurochemically probable AD (ES = 4).
This, in turn, is in line with the presence of con-
comitant AD pathology in non-AD dementia patients,
as reported previously [28–30]. Indeed, many of the
non-AD cases in this study that had an ES suggestive
for AD pathological findings (n = 7), presented with
AD-related neuropathological changes that may have
had a higher impact than expected. Although these
cases seemingly decrease diagnostic accuracy of the
CSF biomarkers, and in consequence the ES, their
inclusion is most representable for the general pop-
ulation. P-tau181 has previously demonstrated to be
the most specific marker for AD, in contrast to T-
tau [4, 5, 31], and hence it must be stressed that the
current version of the ES, treating all three (or four)
CSF biomarkers equally weighted, shows a consider-
able limitation from the point of view of specificity,
favoring diagnostic sensitivity. Lack of studies on
the harmonization of CSF biomarker interpretation
in light of the differentiation of AD against non-AD
dementias makes this study potentially interesting
particularly in the scenarios where biomarker results
must be compared across centers, the more so as a
large cohort of neuropathologically confirmed AD
and non-AD cases was included.

Despite lack of A�1-40 results in this cohort, which
is probably the strongest limitation of the study, the
ES proved to correctly categorize the vast majority
of the patients, reconfirming its utility as an inter-
pretation algorithm. As A�1-40 is the most abundant
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and stable isoform, its addition obviously further
increases the diagnostic performance by eliminating
the inter-individual variability of high or low content
of total A� peptides [27, 32–38] and correcting for
other non-AD-specific subcortical changes that may
alter the overall A� levels in the brain [39].

Other biomarker combinations have also been
shown to have an accurate differential diagnostic
performance for the discrimination of AD from
non-AD dementia with high AUC values. Our pre-
vious study showed that the diagnostic accuracy
for the differentiation of autopsy-confirmed AD
from autopsy-confirmed non-AD, achieved AUC val-
ues of 0.647 for A�1-42 alone, 0.670 for T-tau
alone, and 0.676 for P-tau181 alone, while for their
ratios AUC values of 0.635 for the A�1-42/T-tau
ratio and 0.734 for the A�1-42/P-tau181 ratio were
obtained [4]. However, these ratios may not over-
come biomarker variability as (pre-) analytical effects
on both biomarkers included in such ratios may
still differ [40], even when analyses are performed
by automated methods that increase standardization
and precision of CSF biomarker measurements [41].
The introduction of certified reference material cal-
ibrated ELISA kits may therefore provide further
improvement for standardization of CSF biomarker
measurements and may eventually enable the intro-
duction of worldwide, biomarker-specific instead of
center-specific cutoffs [42–44].

Conclusion

In light of improving the differential diagnosis
of AD, this validation of the ES demonstrated the
categorization of AD and non-AD subjects with rea-
sonable diagnostic accuracy. The ability of the ES to
overcome the high variability of raw CSF biomarker
data may provide a useful diagnostic tool for com-
paring neurochemical diagnosis between different
labs or methods used, independently of their specific
cutoffs.
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