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Abstract. Alzheimer’s disease (AD) is a devastating neurodegenerative disorder affecting millions of people worldwide.
Laboratory research and longitudinal clinical studies have helped to reveal various information about the disease but the exact
causal process is not known yet. Patterns from alteration of neurochemicals (e.g., glutathione depletion, etc.), hippocampal
atrophy, and brain effective connectivity loss as well as associated behavioral changes have generated important characteristic
features. These imaging-based readouts and neuropsychological outcomes along with supervised clinical review are critical
for developing a comprehensive artificial intelligence strategy for early predictive AD diagnosis and therapeutic development.
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Alzheimer’s disease (AD) is an irreversible
progressive neurodegenerative disorder manifested
by cognitive deterioration as a variety of neu-
ropsychiatric symptoms and associated behavioral
disturbances leading to impairment of activities of
daily living [1, 2]. Every year an estimated 9.9 million
new dementia cases worldwide are being populated
with one new AD case in every 3.2 seconds [3].
At present, precise diagnostic confirmation of AD
is only possible by autopsy. Extensive research is
being carried out for the non-invasive identification
of associated changes in brain to understand the cause
of neurodegeneration in AD for accurate preventive
treatment.
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Distinct imaging modalities such as positron emis-
sion tomography (PET) [4], magnetic resonance
imaging (MRI) [5], functional imaging (fMRI) [6],
and spectroscopy (MRS) [7] in the clinical setting
are intrinsic to delineate AD. Neuropsychological
screenings such as the Mini-Mental State Examina-
tion (MMSE) [8], the Geriatric Depression Scale –
Short Form (GDS-SF) [9], the Hachinski Ischemic
Score (HIS) [10], the Functional Assessment Ques-
tionnaire (FAQ) [11], and Trail making test A and
B (TMT-A and TMT-B) [12] provide critical asso-
ciative behavioral information. There are exhaustive
neuropsychological assessments like forward and
backward digit span test (Wechsler memory scale,
WMS-III), immediate and delayed recall (WMS-
III), and Boston naming test (BNT) [13] used for
cohort studies [14]. MRI generated information of
brain has a role in finding robust biomarkers for
early AD detection non-invasively. Available tools
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such as FreeSurfer [15] and SPM [16] have been
useful for most of the anatomical and functional activ-
ity analysis [17]. Huge supportive imaging studies
have reported anatomical atrophy [5] and disrupted
functional activities [6] in associated brain regions
such as frontal, temporal and occipital lobes, hip-
pocampus, corpus callosum, cortical and thalamic
regions involved in cognitive dysfunction as the
promising biomarkers for early AD diagnosis. Recent
susceptibility imaging studies have also reported
iron accumulation on parietal cortex, motor cortex,
hippocampus, and basal ganglia as possible influen-
tial effect in AD progression [18, 19]. Although in
present clinical practice, MRI provides the support-
ive information used for the clinician’s observation
and diagnosis, specific anatomical conversion from
normal control to mild cognitive impairment (MCI)
may not be identified based on MRI data.

The fundamental molecular etiology which leads
to neuronal loss resulting in cognitive decline in
AD is still unknown, and some studies reported the
supportive results for oxidative stress to be linked
with molecular change and anatomical atrophy to
initiate the pathocascade of AD [20]. PET scans
also demonstrated significant impact of characteris-
tic patterns of glucose metabolism on brain, which
can help in differentiating AD from overlapping
symptoms of frontotemporal dementia and demen-
tia of Lewy body (DLB); however, it involves oral
or intravenous administration of radiolabeled tracer
[4, 21]. The non-invasive MRS imaging techniques
are being used to investigate metabolic alteration and
understanding the impact of neurochemical imbal-
ance in the AD pathogenesis [7]. Identification and
quantitation of the distinctive, specific, and robust
surrogate biomarkers in the brain regions are criti-
cal in case of overlapping diagnostic symptoms for
early diagnosis of AD patients. State-of-the-art MRS
research in brain metabolic alteration with precision
have gained improved response due to availability
of advanced MR pulse sequence and signal process-
ing packages/toolboxes like LCModel [22], jMRUI
[23], Gannet [24], and KALPANA [25], which pro-
vide absolute quantitation of neurometabolites in a
selected region of brain. Over the years, various
neurochemicals N-acetyl aspartate (NAA) [26] and
myo inositol (mI) and or NAA/mI ratio modulation
have been followed and clinically correlated with
the behavioral changes [27]. Apart from these spe-
cific neurochemicals, antioxidant glutathione (GSH)
[28] and neurotransmitter gamma-aminobutyric
acid (GABA) [29] detected using specialized

MEGA-PRESS [30] pulse sequence have added new
scientific information to AD diagnosis.

GSH as a free radical scavenger plays key role
in maintaining the oxidative and redox balance in
human cells. The concentration of antioxidant GSH
has been studied in different regions of brain to show
its variability with disease progression. Extended and
closed (stable) forms of GSH were hypothesized
based on state-of-the-art-NMR reports [31]. Close
scrutiny of metabolic patterns through advanced
processing of in vivo MRS data has validated the
existence of two conformers, extended and closed
(stable) forms of GSH in human brain, which has been
first time investigated and found with its exclusive-
ness from well-established other metabolites such as
NAA and aspartate. Detailed clinical study involv-
ing autopsy brain of AD, Parkinson’s disease (PD)
and DLB disease have reported that the GSH level
in the cingulate cortex brain region of AD patients
is reduced (49%) compared to age-matched control
subjects, while this specific change is not found in PD
and DLB patients [32]. It is required to demonstrate
that depletion of GSH in the hippocampus is a dom-
inant marker for the conversion from normal control
subject to MCI or MCI to AD. The limitations of
the MRS studies are the large time requirement for
data acquisition from multiple brain regions as well
as the availability of hardware setup (e.g., multinu-
clear MRS amplifiers, dual tuned coils and special
pulse sequence, etc.) in the clinical setting.

In the last few years, the scientific literature has
accumulated on predictive AD diagnosis based on
only MRI specific outcomes to learn and classify
the detection of microstructural white matter degen-
eration, cerebrospinal fluid, and atrophic changes in
brain as the possible biomarker for disease [33–36].
The MRS driven clinical research outcome, in spite
of their detailed cellular information for AD diag-
nosis, has not yet been incorporated for predictive
disease modeling. A recent work on early predic-
tive diagnostic system presented 1H (proton) single
voxel MRS information with region specific spec-
troscopic metabolite concentrations available using
LCModel signal processing tool in combination to the
tissue content in selected voxel [37]. However, other
important neurochemicals like antioxidant GSH and
neurotransmitter GABA obtained using specialized
MEGA-PRESS sequence have not yet been included
in predictive AD diagnostic system. Clinical studies
have demonstrated the influence of GSH in the cogni-
tive decline in AD. Inclusion of the high quality and
diverse MRS information for different neurometabo-



P.K. Mandal and D. Shukla / Pattern Recognition from In Vivo MRS 937

lite requires a dedicated tool to process and analyze
different MRS data types generated from different
scanners. Most of the available MRS processing
tools are restrictive to their data types and MEGA-
PRESS data handling features. In order to bridge
the gap between spectroscopic data processing and
significant feature extraction (using “GAURI” frame-
work) for predictive diagnosis, we have developed
a KALPANA package [25] to perform the process-
ing and absolute metabolic quantitation for different
single voxel PRESS and MEGA-PRESS MRS data
acquired from different scanners.

Intrinsic diagnosis of AD in the present world
of technological hurl demands complete pathogen-
esis follow-up tracked from molecular process using
MR spectroscopy, anatomical changes from MR
imaging, and cognitive scores from neuropsycho-
logical evaluation. The present standalone mode of
the metabolic quantitation or the anatomical obser-
vation cannot provide high confidence of the derived
diagnostic measure and thus the entire scheme needs
to be expanded to form a close logical conclu-
sion from receiver operating characteristic (ROC)
curve and its admissibility in the clinical setting
[4, 38]. Figure 1 represents a complete spectrum
inclusive of multi-modal data involving anatomi-
cal atrophy, MRS-devised molecular profile, and
neuropsychological measures to extract sensitive dis-
ease specific biomarkers. Selected biomarker features
from the labeled training dataset are analyzed with
ROC curve and further classification (supervised) is

performed to get a pattern model representing the
disease specific changes in input modalities. This
trained data information from a large dataset can
be used to create an artificial intelligent system for
differential diagnostic outcomes, which would help
with the diagnosis of a new unknown case with the
use of self-learning neural network models using
machine learning approaches. Such type integrated
multi-modal predictive diagnostic system for AD
diagnosis would aid the clinician in early differential
diagnostics to deliver the most appropriate treatment.

In the neuroimaging field, pattern recognition and
machine learning promise improved disease diag-
nosis accuracy with their actuating objective in
decision-making process [35, 39–41]. Artificial intel-
ligence is likely to transform diagnostic imaging,
and expected to be capable of offering concrete
prospects for quantized predictive diagnosis mea-
sure at personalized level. Moving ahead from the
state-of-the-art quantitative imaging modalities, we
are developing an integrated framework “GAURI”
for generalized metabolic profile estimator with sta-
tistical and predictive diagnostic capability using the
advanced pattern classifier schemes. The system pro-
vides a complete view of brain atrophy, metabolic
change, behavioral change, sociodemographic for the
combined feature analysis. With AD being a pro-
gressive disorder, single-time point (cross-sectional)
data would unlikely suffice for the diagnostic needs
at an early stage and thus, necessitates longitu-
dinal assessment of the multi-modal imaging fea-

Fig. 1. A comprehensive artificial intelligence scheme for predictive AD diagnosis.
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tures. Longitudinal multi-modal imaging data from
different centers prompts increasing interests for
modeling the initial stage and progression of disease
(AD, frontotemporal dementia, vascular dementia,
DLB, and PD) with combined modality driven
analytics using machine learning. Automatic pat-
tern classification to analyze and observe inherent
disease-related patterns in a high-dimensional mul-
timodal neuroimaging data for dementia study
incorporates supervised learning to infer a model
function from a larger disease labeled training dataset
and uses this model to predict response output as a
specific disease class. Training data in the present
scenario will be the MRI derived outcomes for dif-
ferent regions of brain as volume, texture, entropy
and tissue content. The neurochemical information
would be in terms of area, concentration, height, and
line-broadening of individual metabolic peak, and
neuropsychological scores from MMSE, CDR, TMT-
A, and TMT-B tests provided as features, represent
the characteristics of supplied input information and
derived outcomes. A wide range of different clas-
sifiers such as support vector machines, principal
components analysis, and linear discriminate anal-
ysis can be used to discriminate AD patients from
healthy control subjects and to predict conversion
from MCI to AD. Further, feature reduction meth-
ods are applied to extract only the distinctive and
most relevant features in high-dimensional data for
estimating accurate prediction model. Such predic-
tive analysis of multi-model biomarkers will allow
differential-diagnosis both at the single-subject level
and between the healthy and pathological cohorts.

Artificial intelligence in clinical diagnosis requires
huge amount of training data to develop the intelli-
gence in neural networks, particularly deep networks
with their manifold learning parameters [40]. The
robust amount of healthcare data in clusters from dif-
ferent centers cannot be used for training purposes
because of hidden differences in acquisition proto-
cols, insufficient disease specifications, and unclear
diagnostic label information [41]. Therefore, a multi-
center collaboration with common imaging data
protocols for carefully annotated and case-specific
MRS and MRI databases are required urgently to
develop and validate diagnostic outcome to be well
suited to deep learning application in early predictive
AD diagnosis.

Integration of multi-modal information with
machine leaning is expected to help in diagnostic
accuracy in AD. Currently significant amount of
data from different streams (e.g., imaging, pathol-

ogy, genomics) for AD characterization mostly
remains unexplored for its deeper insights into dis-
ease processes and mechanisms [42]. This acquired
neuroimaging and health informatics big-data con-
taining cues on disease behavior and patient outcome
call for better, higher resolution technologies or
additional tests to uncover remaining knowledge-
base. Such an intelligent predictive diagnostic system
with integration of diagnostic radiology will pose
an astounding aid in better outcome-oriented clini-
cal decision-making for precise results in differential
diagnosis conditions. Observations from clinical trial
involving anti-oxidant GSH supplement to investi-
gate its subsequent neuro-protective effect may also
be helpful to get critical information on AD pathogen-
esis. This technology driven research outcome will
be a big boon for countries with serious crunch in
specialized clinicians. We strongly believe that these
technological developments in medical imaging will
assist clinicians with highly accurate tools to analyze
and detect AD as well as secernate the patient-specific
treatment.
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