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Abstract. Tau protein, which was discovered in Prof. Kirschner’s laboratory in 1975, has been the focus of my research
over the last 40 years. In this issue of the Journal of Alzheimer’s Disease commemorating its 20th year of publication, I will
provide a short review of some of the features of my relationship with tau.
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INTRODUCTION

Cellular shape is determined mainly by a
cytoskeletal component, namely microtubules. These
are fibrillar polymers composed of tubulin and
their polymerization-depolymerization is a highly
dynamic process (for a review, see [1]). If the prob-
ability of polymerization or depolymerization were
equal in every direction inside a cell, the resulting
shape would be a sphere [1]. However, when micro-
tubules are stabilized without depolymerization in a
specific direction, a cytoplasmic extension forms [2].
In cells with a complex morphology, like neurons,
these cytoplasmic extensions are known as axons and
dendrites, and they are characterized by the pres-
ence of stable (less dynamic) microtubules. Thus, it
was of interest to determine the reason why neuronal
microtubules show greater stability.

Tubulin is the main protein found in brain cells
(Fig. 1), accounting for around 20% of the total sol-
uble protein present in a brain homogenate. This
huge amount of protein facilitates the in vitro poly-
merization of microtubules from a brain extract [3].
Protein characterization of these polymerized brain
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microtubules revealed the presence of tubulin
and some microtubule-associated proteins (MAPs).
Later, it was shown that MAPs, which are responsi-
ble for brain microtubule stabilization, can maintain
the assembled polymers [4]. Among these MAPs, the
one with the fastest electrophoretic mobility is known
as tau factor [5].

BINDING OF TAU TO TUBULIN

In 1986, it was found that the C-terminal region
of tubulin subunits are cleaved by digestion with the
protease subtilisin and that the resulting truncated
tubulin is unable to bind MAPs, including tau pro-
tein [6]. This C-terminal region of tubulin is rich
in acidic residues and is thus negatively charged.
Two years later, tau cDNA was cloned and the
sequence of tau protein was revealed. It was then
shown that the tau region involved in the binding
to tubulin contained some similar, but not identi-
cal, repeated sequences enriched in basic (positively
charged) residues [7]. On the basis of these observa-
tions, it was proposed that the tau-tubulin interaction
was an ionic interaction between a basic and an acidic
region of the tau and tubulin molecules, respectively
(Fig. 2).
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Fig. 1. In vitro polymerization of brain microtubules. Protein characterization. A) A porcine brain extract shows that tubulin (Tb) is the
major protein present. Also, actin (Ac) is found in a high proportion. B) Electron micrograph of in vitro polymerized microtubules from
porcine brain. C) Protein characterization of porcine brain polymerized microtubules by gel electrophoresis.

Fig. 2. Interaction tubulin-tau. The C-terminal (–, anionic) region
of tubulin can bind to the tau (+, cationic) repeats present in the
C-terminal half of tau protein.

THE BINDING OF TAU ISOFORMS TO
TUBULIN

Human tau is expressed from a single gene (mapt)
located at chromosome 17 that is translated into
nuclear RNA and, after RNA splicing, it yields 16
exons. However, two of these (0 and 14) are not trans-
lated into protein [8]. Mapt nuclear RNA is spliced
in different ways and results in the appearance of
various protein isoforms. This alternative splicing is
regulated by several proteins [9].

Tau in the central nervous system contains iso-
forms that include exons 1, 4, 5, 7, 9, 11, 12, and
13. In addition, some isoforms contain or lack exons
2, 3, and 10 [8]. Those containing exon 10 are known

as tau 4R isoforms while those lacking it are referred
to as tau 3R. Tau present in the peripheral nervous
system contains exons 4a, 6, and 8 [8].

Tau protein has various isoforms that are trans-
lated from different mRNAs generated by alternative
splicing [10]. To test the tubulin-binding capacity
of the different isoforms, we used gel electrophore-
sis to fractionate all the isoforms isolated from a
brain cell extract and that arose from alternative
splicing or by post-translational modifications. We
were able to fractionate tau isoforms into eight dis-
tinct electrophoretic bands (Fig. 3A). The nature
of each band was further characterized. Curiously,
those with a lower electrophoretic mobility (odd
numbers) (Fig. 3B) showed a higher affinity for
microtubules than the others (even numbers). These
microtubule-binding isoforms are probably modi-
fied by phosphorylation, since their electrophoretic
mobility increases upon phosphatase treatment and
the isoforms with odd numbers become even num-
bers. However, the site modified and the kinase
involved in the modification remain unknown. This
preferential binding [11] could be explained by the
modification causing the opening of the so-called tau
paper-clip confirmation [12]. However, other con-
formational changes, involving the ends of the tau
molecule, cannot be excluded [13].

LOCALIZATION OF TAU IN NEURONS

Tau, a microtubule-binding protein, is found
mainly in the cytoplasm, although its presence in the



J. Avila / Our Working Point of View of Tau Protein 1279

Fig. 3. Binding of tau isoforms to polymerized microtubules. A) Porcine brain tau isoforms can be fractionated by gel electrophoresis into
eight distinct peptides. The odd-numbered residues are phosphorylated whereas the even-numbered ones are not. B) Odd-numbered tau
peptides can bind to microtubules and they become even-numbered upon alkaline phosphatase treatment (see [11]).

cell nucleus [14, 15], where it can bind to nucleic
acids [16, 17], and at the membrane [18, 19] has also
been reported.

In neurons, tau is found mostly in the axon
[20], although its localization in the somatodendritic
compartment, including dendritic spines, has been
described [21].

In axons, tau regulates the localization and func-
tion of end-binding protein 1 and 3 (EB1/3), a protein
involved in axonal navigation [22], and also mito-
chondrial axonal transport [23].

TAU BINDING TO OTHER MOLECULES

We have analyzed the binding of tau to tubulin
or to itself, but also its interaction with actin [24],
heparin [25–27], muscarinic receptors M1/M3 [28],
zeta 14-3-3 protein [29], EB 1/3 [22, 30], deacetylase
HDAC6 [31, 32] and ferritin [33]. A scheme of the
tau regions involved in some of these interactions is
shown in Fig. 4.

TAU IN PAIRED HELICAL FILAMENTS

From 1975 (tau discovery [5]) to 1986, only a
small number of groups worldwide were working on
tau. However, the seminal discovery made by Iqbal’s
group in 1986 [34] describing the presence of tau
in the paired helical filaments (PHFs) of the brains
of Alzheimer’s disease (AD) patients—an observa-
tion that was rapidly confirmed [35, 36]—changed
the scenario. To determine whether tau is a PHF-
associated protein or the core protein of PHFs, it
was then tested whether highly purified tau protein
in vitro was able to polymerize into filaments simi-
lar to PHFs. Thus, in 1986, we achieved a positive
result indicating the assembly of highly purified tau
into PHF-like structures [37, 38]. Later on, this result
was confirmed [39], and it was also reported that the
main component of PHFs isolated from AD patients
is tau protein [40, 41].

Two laboratories almost simultaneously showed
that tau polymerization is facilitated by the presence
of heparin [26, 42] and also that the tubulin binding-

Fig. 4. Other tau-associated proteins. Map of the interaction of tau regions with various molecules, such as actin, heparin, muscarinic receptor,
zeta 14-3-3 protein, EB1/3 proteins, deacetylase HDAC6 and ferritin.
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tau region is involved in tau self-assembly [26].
We reported that VQIVYK hexapeptide (residues
306–311) or the similar one VQIINK (residues
275–280) plays an important role in tau self-
assembly. However, in the presence of heparin, we
found that peptide KSKIGSTENLKHQPGGGKV
(residues 257–275), which lacks these hexapeptides,
forms fibrillar polymers [26].

Furthermore, we described that another post-
translational modification, namely glycation, facil-
itates the assembly of PHFs into larger structures
[43], like neurofibrillary tangles, one of the two
main aberrant structures found in the brains of AD
patients [44].

TAU TOXICITY

A main feature of some tauopathies, like AD, is
an increase in the level of intracellular tau [39]. In
some of these tauopathies, aging is a major risk factor.
During aging, a decrease in tau protein turnover may
result in protein accumulation—which in turn favors
post-translational modifications, such as phosphory-
lation (see below) and/or protein aggregation—and
leads to increased proteotoxicity. At the level of pro-
tein aggregation, it has been widely debated whether
smaller tau aggregates are more toxic than larger ones
[45]. The jury is still out on this question.

EXTRACELLULAR TAU

The brains of AD patients show an increase in
tau protein (in the unmodified and phosphorylated
or aggregated form) [46]. This increase could occur
mainly though a decrease in tau turnover rather than
tau expression. It was proposed that such an increase
results in cell death or tau secretion to the extracel-
lular medium [47, 48]. Tau secretion occurs through
membrane vesicles or in a nacked form [48]. In both
cases, the result is the presence of extracellular tau
[47]. This extracellular protein (in monomeric form)
binds to neuron receptors; an interaction that results
in increased the levels of intracellular calcium [28].
The neuronal receptors that bind to tau protein were
identified as muscarinic (M1, M3) receptors [28, 49].

On the other hand, extracellular aggregated or trun-
cated tau is also toxic for neurons [50, 51] and can
propagate from one brain region to another [51]. In
this case, the entry of extracellular tau to the neuron
may occur via macropinocytosis [52] (Fig. 5).

Fig. 5. Tau endocytosis. A) Macropinocytosis could be the way
by which aggregated tau interacts with neurons to go into the cell
whereas (B) soluble tau may interact with the M1/M3 muscarinic
receptors present in neurons (see text and [28, 52]).

Indeed, in 2006, we proposed that extracellular tau
propagates from neuron to neuron [47], a research
field (tau propagation) in which we have also been
working [28, 47, 53] (Bolos M et al., unpublished).

TAU PHOSPHORYLATION

One of the main features of AD is increased tau
phosphorylation [46, 54]. Several protein kinases
are involved in this process [55], but one of them,
GSK3�, also known as tau kinase I [56], is the one that
modifies a greater number of sites in the tau molecule
[57]. In this regard, we raised a conditional transgenic
mouse overexpressing GSK3�, under a promoter
that facilitates the expression of the kinase at the
forebrain [58].

In this transgenic mouse, tau was phosphorylated
and clear age-related damage at the dentate gyrus was
found [58]. This damage correlated with cognitive
impairment [59] and some morphological changes in
the newborn neurons present at the dentate gyrus [60].
The morphological changes in dendrites of granular
cells (present at dentate gyrus) led to decreased con-
nectivity of the newborn neurons with the neuronal
network [60]. Also, a clear decrease in the number of
dendritic spines was observed [60], although when
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the transgenic mice were placed in an enrichment
environment some spine loss was reversed [60, 61].

Thus, an increase in the level of intracellular or
extracellular tau is toxic for neurons. In this regard,
a therapeutic strategy to decrease (or eliminate?) the
presence of tau would be valuable.

THE CONSEQUENCES OF TAU ABSENCE

To date, mainly two tau knockout (KO) models
have been used [62, 63]. While general changes in
phenotype were not observed in either, clear dif-
ferences between the expression of phosphorylated
(non-functional) tau in transgenic (Tg GSK3) mice
and the lack of tau in tau KO mice were found. With
respect to the newborn neurons of the tau KO, no
major alterations in dendritic morphology were found
[64], but some changes in the number and localiza-
tion of dendritic spines were observed [64]. However,
these changes differed to those reported for the Tg
GSK3 mouse model [60, 64]. In Tg GSK3 mice,
the loss of dendritic spines was reversed when these
animals were exposed to an enrichment environment
[60]. However, the absence of tau impaired the adap-
tation of newborn neurons to such an environment
and, also, tau protected newborn neurons from acute
stress-induced impairments that may affect spine
number [64]. In other words, tau protein is necessary
to allow the plastic modulation of adult hippocampal
neurogenesis (which takes place in the dentate gyrus)
exerted by both positive and negative external stimuli.
This lack of synaptic plasticity in tau KO mice corre-
lates with a decrease in the number of spines at the dis-
tal region of the apical dendrites of newborn granule
neurons (Fig. 6) [64, 65] (see also Kimura et al. [66]).

It is known that tau localizes in spines [21] and
that the absence of tau in spines bearing glutamate
(NMDA) receptor subunit GluN2B prevents the toxic
effect of amyloid-� peptide (A�) when it binds to
these NMDA receptors [21]. Curiously, not only does
the absence of tau prevent A� toxicity but also tau
phosphorylation by GSK3 [67, 68] or another kinase
(p38k) [69] at a specific residue (serine 205) [69].
More recently, it has been proposed that phosphory-
lation of tyrosine 18 of tau by fyn kinase also blocks
A� toxicity [70].

Also, it has been shown that tau deletion does not
result in lethality or in neurodegeneration. At the level
of the whole organism, the lack of tau can result in an
increase in the duration of wakefulness and a decrease
in NREM sleep time [71], brain insulin resistance

Fig. 6. Loss of dendritic spines in some neurons of tau KO mice.
Distal regions of apical dendrites of newborn granule neurons from
tau KO mice show a decrease in dendritic spines compared to
wild-type mice.

[72] (see also the pioneer work of Planel et al. [73] and
the comment on it [74]), and the development of some
features related to Parkinson’s disease [75]. However,
I do not wish to focus this review on the role of tau in
this or other disorders like Huntington’s disease [76]
or other tauopathies. What I will briefly mention is a
recent study involving the presence of a specific SNP
of tau gene in educational attainment [77]. It has been
suggested that the presence of this SNP facilitates
the expression of a non-coding RNA (ncRNAMAPT-
AS1) [78] that may regulate (decrease) tau RNA level
[79]. This notion would support the idea that low
levels of tau preserve cognition [80]. However, to
maintain protein homeostasis [81], not only should
the amount of tau be considered but also the “quality”
or origin of the tau. Recently, the possible causes for
the exceptional vulnerability of humans to AD have
been discussed [82]. Given that one of these causes is
postulated to be the presence of a specific feature in
the structure of human tau, we are currently analyzing
these structural differences, testing tau from human,
cow, mouse syrian hamster, etc. [83], following the
studies of other laboratories [84, 85].

TAU AT THE SYNAPSES

Intracellular tau, present at the dendritic spines,
facilitates A� toxicity [21], and extracellular tau may
have a toxic effect on the presynaptic region [86, 87].

Furthermore, other compounds, in addition to
tau or A� peptide, may be involved in synaptic
dysfunction or, in general, in the development of
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AD. In this regard, recent studies are looking into the
involvement of somatic mutations in the onset of the
disease [88]. Preliminary results in brain tissue from
AD patients have indicated the presence of mutations
in some genes related to protein degradation [89].
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