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Abstract. Studies on the genetics of Alzheimer’s disease (AD) have revealed the complexity and heterogeneity of the disease.
All our studies have supported this evidence and contribute to the current understanding of the genetic architecture of AD.
This report reviews the success of our investigations, focusing on the implications and importance of the genetics of AD, and
demonstrates the relevance of research strategies embracing partnerships.

Keywords: Alzheimer ‘s disease, autosomal dominant, genetic mutation, genetic risk factor

FAMILIAL ALZHEIMER’S DISEASE: THE
BEGINNING

The qualitative and quantitative aspects of the
genetic population of Italy have provided evidence
that the country is a genetically heterogeneous nation.
According to recent studies [1, 2], there are several
genetic groups in different areas of Italy, thus allow-
ing us to study large families, affected by AD, living
in the north, central, and south of Italy with different
genetic traits. Our group started collaborating with
other centers in Italy in 1980 in order to create a DNA
bio-bank collecting samples, not only of patients
belonging to familial forms of Alzheimer’s disease
(FAD), but also from non-affected members of the
same families. Genetic studies on FAD have provided
evidence that AD is a genetically heterogeneous dis-
order and, over the last 30 years, several families have
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been described in which AD is caused by an auto-
somal dominant gene defect. The genetic history of
AD started in 1987 when, in collaboration with Peter
St. George-Hyslop, a linkage analyses discovered the
first chromosomal location of a defective gene on
chromosome 21, thus providing new insights into the
nature of FAD [3–7]. In the early 1990s, we studied
Italian FAD families through extensive clinical inves-
tigations of patients, interviews with relatives, studies
of medical records, pedigree analysis, and molecular
genetic studies of family members, thereby contribut-
ing to the discovery of the pathogenic variations in
all three AD candidate genes: Presenilin1 (PSEN1),
Presenilin 2 (PSEN2), and Amyloid precursor protein
(APP) [5–7].

In 1993, we found the APPVal717Ile mutation seg-
regating with the disease in the first Italian families
(FLO12 and FLO13) from central Italy [5]. The muta-
tion was found in all those affected as well as in
members below the age of onset of the disease, thus
allowing a preclinical diagnosis. Since 1991 [4], 51
different pathogenetic mutations have been described
in this gene in 121 families worldwide [8]; to date,
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38/51 families have been described as carrying the
APPVal717Ile mutation.

Thanks to collaboration with Amalia Bruni in
Lamezia Terme, in southern Italy, we have collected
samples from the large Calabrian family, FAD4,
which has been described in numerous generations
since the 1700s and led to the discovery in 1995 [6]
of PSEN1, the most important gene responsible for
FAD. To date, 215 pathogenic mutations have been
described in PSEN1 [8].

A collaborative effort in 2000 led to the identifi-
cation of Nicastrin protein [9] as modulator of the
presenilin-mediated notch/glp-1 signal transduction
and A�PP processing.

Moreover, thanks to collaboration with Gabriella
Marcon in Udine, in northern Italy, we started
collecting samples from several members of a
large Italian AD family living in Udine (FLO10)
described over several generations, associated with
methionine to valine substitution at residue 239
of PSEN2 [7]. The FLO10 family is character-
ized by some peculiarities regarding clinical and
neuropathologic phenotype compared to sporadic
AD [10].

PSEN2 mutations are rare and mutated patients
showed a remarkable variability in age of onset of
symptoms, disease duration, and clinical presenta-
tion. Today the diagnostic and predictive genetic
screening for causal mutations in APP, PSEN1, and
PSEN2 is already available for patients and their
relatives. In any case, causative mutations are only
responsible for a small portion of autosomal domi-
nant FAD patients. There are still other genetic factors
to discover as most of the families are negative, thus
an important proportion of genetic variants in AD
pathology are yet to be identified. However, it should
be considered that penetrance and gene expression
can influence the effect of a mutation.

In our neurogenetics laboratory, we have identified
pathogenetic mutations in 5% (5/98), 13% (13/98),
and 3% (3/98) of the collected families referred for
diagnostic screening for APP, PSEN1, and PSEN2,
respectively. Only after 25 years of the description
of the first pathogenetic mutation in the APP gene
[4] has an Italian consensus protocol for Genetic
Counseling and Testing for Alzheimer’s disease and
Frontotemporal Lobar Degeneration been reached
[11]. The protocol has been developed in the con-
text of the Italian Dominantly Inherited Alzheimer’s
and Frontotemporal Network (IT-DIAfN) project,
a national network of centers of excellence with
expertise in managing patients with familial AD

and frontotemporal dementia (FTD) [12] facilitating
research and clinical trials.

It is widely held that genetic counseling should
be provided by a multidisciplinary team including a
geneticist, a neurologist/geriatrician, and a psycholo-
gist/psychiatrist according to the following schedule:
1) initial consultation with tailored information on the
genetics of the dementias; 2) clinical, psychological,
and cognitive assessment; if deemed appropriate, 3)
genetic testing following a structured decision tree
for gene mutation search; 4) genetic testing result
disclosure; 5) psychological support follow-up. This
genetic counseling protocol provides Italian centers
with a line of shared practice for dealing with the
requests for genetic testing for familial AD and FTD
from patients and at-risk relatives, who may also
be eligible participants for novel prevention clinical
trials [11].

In recent years, new biomarkers, such as amyloid-
� (A�) accumulation in cerebrospinal fluid (CSF)
and positron emission tomography (PET) imaging,
have been included in AD diagnostic criteria [13] in
addition to genetic mutations. Their use in clinical
practice allows discrimination between healthy con-
trol subjects and AD but also could help to detect
preclinical and prodromal AD [14–16]. The combi-
nation of neuroimaging, biomarkers, and genetic tests
helps, in most cases, to clinically diagnose accurately.

However, we have recently described a case of
dementia clinically compatible with the FTD spec-
trum in an APP Ala713Thr-mutation carrier in which
both [18F] Florbetapir PET uptake and A�1-42 CSF
levels were normal [17]; thus the genetic diagno-
sis was in contrast with the lack of evidence of A�
pathology assessed by both CSF analysis and amy-
loid imaging. Even genetic analysis can sometimes
help or complicate the diagnosis. Moreover, muta-
tions in genes related to other types of dementia,
such as FTD, can be detected in patients with AD
phenotype [18–23].

For example, the mutation p.R406W in Micro-
tubule associated protein Tau (MAPT), a known
causal gene for FTD, has been repeatedly reported
in pedigrees with a clinical presentation of AD
[21]. Mutations in two other FTD genes, Progran-
ulin (GRN) and Chromosome 9 open reading frame
72 (C9orf72), have also been described in clini-
cal AD cohorts [22, 23]. It may be important to
include screening of these genes in the genetic diag-
nostic work-up, because APP, PSEN1, and PSEN2
account only for a small proportion of autosomal
dominant AD.
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GENETIC RISK FACTORS: A
CONTINUOUS DISCOVERY

Linkage studies on familial cases have revealed the
genetic bases associated with the disease; however,
they were not sufficient to explain late onset-sporadic
forms (LOAD). LOAD is complex and genetically
heterogeneous; genes and environmental risk factors
contribute together to the onset and progression of
the disease.

Technological advances in high-throughput geno-
typing and sequencing allow testing of several
thousands of samples (and patients and controls)
that can be used for genome-wide association
studies (GWAS). GWAS in fact report genetic
variants and loci that are enriched in popula-
tions with a disease trait compared with unaffected
individuals.

The most important results have been possible
thanks to collaborative strategies which have cre-
ated genetic consortia such as Alzheimer’s Disease
Genetics Consortium (ADGC), Genetic and Envi-
ronmental Risk in Alzheimer’s disease (GERAD),
European Alzheimer’s Disease Initiative (EADI),
Cohorts for Heart and Aging in Genomic Epi-
demiology (CHARGE), Genetic and Environmental
Risk for Alzheimer’s Disease (GERAD)/ Defin-
ing Genetic, Polygenic and Environmental Risk for
Alzheimer’s Disease (PERADES) Consortium, the
Alzheimer’s Disease Genetic Consortium (ADGC),
the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE), and the Euro-
pean Alzheimer’s disease Initiative (EADI). In 2013,
the International Genomics of Alzheimer’s Project
(IGAP) was launched with all the consortia joined
together.

GWAS and IGAP have significantly advanced
knowledge regarding the genetic heterogeneity of
AD by identifying 30 additional genetic risk
loci [24]. Several GWAS were performed [25–29]
and later combined in a meta-analysis [30, 31]
to report new AD susceptibility loci in Euro-
pean populations. A GWAS in African Americans
identified variants in Apolipoprotein E (APOE)
and ATP-binding cassette transporter (ABCA7)
as genome-wide significant [32]. A GWAS in
Asian populations identified AD-associated genome-
wide significant variants in or near APOE and
SORL1 [33].

Thanks to collaboration strategies, we have con-
tributed to identifying new genetic variants [25,
29, 31] implicated in AD. To date, there are 30 genes

associated with AD (27 loci associated with AD,
mostly through GWAS) distributed on 14 chromo-
somes [24] confirming the genetic heterogeneity of
the disease. Moreover, the GWA approach to the
genetics of AD has made it possible to discover
the implication of four biological pathways (immune
response, endocytosis, cholesterol transport, and
proteasome-ubiquitin activity) in the pathogenesis of
the disease and as prime targets for AD therapeutic
interventions.

The first and most important genetic risk factor
was identified in the 1990s when a particular APOE
genotype was associated to LOAD as it is involved
in the A� pathway [34]. In 1994, we analyzed the
APOE gene polymorphism in a sample of Italian AD
patients, confirming a significant association between
epsilon 4 allele and AD [35, 36]. Since then, the role
of APOE has been confirmed by hundreds of papers,
thus for 17 years the APOE gene on chromosome
19q13.2 was the only genetic risk factor for AD.
Moreover in 2011 a shift of category of the APOE
gene from ‘risk factor’ to ‘major gene’ was proposed,
with semi-dominant inheritance [37] increasing the
risk according to age in a collaborative study on 7,351
cases and 10,132 controls with Caucasian ancestry.
Since the beginning of this century, several genetic
variants in different genes have been analyzed.
Following the increasing evidence that suggests a
role for nerve growth factor (NGFB), brain-derived
neurotrophic factor (BDNF), nerve growth factor
receptor (NGFR), and neurotrophic tyrosine kinase
receptors 1 and 2 (NTRK1 and NTRK2) in the GRB-
associated binding protein 2 (GAB2) genes in AD, we
analyzed single nucleotide polymorphisms (SNPs)
within these genes in a population of Italian AD
patients and healthy controls. Our results suggested
that genetic variants of the neurotrophic system
and GAB2 genes might confer susceptibility to
AD [38, 39].

Neurotrophins are a family of proteins that are
essential for the development, differentiation, and
survival of neurons [40]. Polymorphisms in genes of
the neurotrophin system may determine an increased
risk for developing AD.

GRB-associated binding protein 2 (GAB2,
11q14.1) has been proposed as a candidate gene,
but with contrasting results. GAB2 is a scaffolding
protein [41], possibly affecting tau, amyloid, and
other AD-related pathological mechanisms.

Moreover, we also analyzed the genotype and
allele distributions of the Pro86Leu polymor-
phism of the Calcium homeostasis modulator 1
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(CALHM1) gene, rs5984894, in the protocad-
herin 11 X-linked (PCDH11X) gene and PICALM
(phosphatidylinositol-binding clathrin assembly pro-
tein) in Italian AD patients [42–44]. Our results did
not confirm an association between the CALHM1
variation, the PCDH11X or PICALM and AD, thus
suggesting a genetic heterogeneity among the var-
ious populations. Furthermore, we have provided
evidence of the importance of epistatic effect and epi-
genetics [45, 46] in the expression of genes involved
in the disease.

In 1995, we studied the relationship between ApoE
genotype and the clinical expression of the disease in
APP mutated families and found that ApoE genotype
influences the age at onset of the disease, provid-
ing evidence of epistatic effect [45]. In 2015, for the
first time, we studied, how epigenetic changes (DNA
methylation) in peripheral blood of AD patients can
influence disease expression [46]. In fact, the several
genetic factors (mutations and risk factors) already
described cannot fully explain the onset and progres-
sion of AD, especially for the sporadic form of the
disease [24]. The scientific community considers the
complex combination of genetic and environmental
factors the major modifier for risk of the disease [47].
Epigenetic modifications of the DNA may occur dur-
ing development or later during adult life and it is
one of the ways through which environmental fac-
tors interact with genetic ones [48]. Up to now, DNA
methylation changes have been investigated in brain
tissues in all genes associated with familial AD cases
(APP, PSEN1, PSEN2, and MAPT), but the results
are contradictory. In 1990, the first studies dealing
with DNA methylation levels in the brain of patients
with AD reported no significant difference between
brain DNA of AD patients compared with healthy
subjects [49, 50]. It is essential to take into account
that the results are conflicting due to the different
brain regions and the multiple cell types analyzed,
indeed DNA methylation is a dynamic process that
can produce tissue-specific changes [51] and differ-
ences are observed across different regions within
the brain [52]. Our study on lymphocytes found a
strong hypomethylation status (<20% methylation)
in the three gene promoters (APP, PSEN1, PSEN2)
in Italian AD patients with respect to healthy con-
trol subjects, with statistically significant differences.
Although our study analyzed lymphocytes, which
are not representative of the methylation levels in
the brain, this can complete the picture of the role
of epigenetic mechanisms and their relation to the
disease.

CELLULAR AND ANIMAL MODELS TO
STUDY AD: NEW STRATEGIES

The study of large AD-affected families carrying
genetic mutations in the three major causative genes
allowed discovery of the main biochemical pathways
involved in the disease. In fact, fibroblasts that express
a genetic defect can be obtained with a simple skin
biopsy from a mutated subject in order to study the
primary pathophysiological mechanisms by which
the disease develops.

Today, it is well known that oxidative stress and
reduced antioxidant defenses are early events in the
pathogenesis of AD. By analyzing peripheral cells
carrying APP and PSEN1 gene mutations, it has been
possible to show altered levels of oxidative markers
supporting the hypothesis that oxidative damage to
lipid, protein, and DNA is an important early event
in AD pathogenesis [53].

In one collaborative study, we demonstrated that
in APP-mutated fibroblasts oligomeric structures
of A�1-40 and A�1-42 accumulate quicker near
the plasma membrane, and are internalized faster
and mostly in APPV717I fibroblasts than in age-
matched healthy fibroblasts. This mechanism leads
to an increase in the production of reactive oxy-
gen species and subsequently to membrane-oxidative
injury with a significant impairment of cellular
antioxidant capacity [54].

The role of the cellular membrane in destabiliza-
tion and permeabilization is one of the crucial steps
to understanding amyloid cytotoxicity, which leads to
early alterations in intracellular redox status and ion
homeostasis that potentially culminate in cell death
Recent data on primary fibroblasts from familial AD
patients bearing APPVal717Ile, PS-1Leu392Val, or
PS-1Met146Leu gene mutations suggest a protective
role for raft cholesterol against amyloid toxicity in
AD [55].

Moreover, induced pluripotent stem cells derived
from skin fibroblasts from subjects carrying patho-
genetic mutations may be a useful resource for in vitro
modeling of familial AD [56], allowing the study of
new therapeutic strategies against the disease [57].

The triple transgenic mice model (3xTg), known
to develop three key characteristics of AD dys-
function (memory impairment, amyloid plaques, and
neurofibrillary tangles), has recently provided new
insight. In this model, the power of dietary polyphe-
nols against neurodegeneration has been studied
by investigating the effects of oleuropein aglycone
(OLE), the main phenol in extra virgin olive oil



B. Nacmias et al. / Genetics and AD 907

(EVOO). OLE administration ameliorates memory
dysfunction and promotes the proliferation of new-
born cells in the subgranular zone of the dentate
gyrus of the hippocampus [58]. Recent findings sup-
port a beneficial effect of EVOO consumption on
all major features of the AD phenotype (behavioral
deficits, synaptic pathology, A�, and tau neuropathol-
ogy) and demonstrate that autophagy activation is
the mechanism underlying these biological actions.
Thus, consumption of EVOO, a major component
of the Mediterranean diet, has been associated with
reduced incidence of AD [59].

In 2016, the AIRAlzh (Associazione Italiana
Ricerca Alzheimer) Network was launched in Italy to
create an Italian network of young researchers study-
ing AD and other dementias [60]. The main goal of
the network is to encourage collaboration between
national dementia research centers of excellence
to realize projects, proposed by young researchers,
focused on the identification of potentially modifiable
risk factors and mechanisms of AD and other demen-
tias. Scientific projects are based on these specific
fields: Biology (in vitro studies including genetics,
biomarkers, and pathological mechanisms); Clinical
studies (involving human subjects such as pilot stud-
ies of pharmacological treatments, neuropsychology,
imaging, and epidemiology); and Biotechnology
(application of advanced and emerging technolo-
gies for the diagnosis and monitoring of dementias).
The network encourages synergies and cooperation
between young researchers with different research
profiles to stimulate a concrete impact on the diagno-
sis and prevention of AD and other dementias.

In conclusion, network strategies in the field of AD
research have provided evidence of the complexity
and heterogeneity of the disease and contributed to
the understanding of the current genetic architecture
of AD. Moreover, genetic studies have allowed the
application of new methodologies based on the use
of cell and animal models of AD in order to study
new therapeutic approaches against the disease.
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L, Hampel H, Gallacher J, Hüll M, Rujescu D, Giegling I,
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