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Abstract. Amyloid-f3 (AB) plaques are a neuropathological hallmark of Alzheimer’s disease (AD); however, a significant
number of cognitively normal older adults can also have A plaques. Thus, distinguishing AD from cognitively normal individ-
uals with A plaques (NwA) based on A plaque detection is challenging. It has been observed that butyrylcholinesterase
(BChE) accumulates in plaques preferentially in AD. Thus, detecting BChE-associated plaques has the potential as an
improved AD biomarker. We present Af3, thioflavin-S, and BChE quantification of 26 postmortem brain tissues; AD (n =8),
NwA (n=06), cognitively normal without plaques (n = 8), and other common dementias including corticobasal degeneration,
frontotemporal dementia with tau, dementia with Lewy bodies, and vascular dementia. Pathology burden in the orbitofrontal
cortex, entorhinal cortex, amygdala, and hippocampal formation was determined and compared. The predictive value of A3
and BChE quantification was determined, via receiver-operating characteristic plots, to evaluate their AD diagnostic perfor-
mance using sensitivity, specificity, and area under curve (AUC) metrics. In general, A and BChE-associated pathology were
greater in AD, particularly in the orbitofrontal cortex. In this region, the largest increase (9.3-fold) was in BChE-associated
pathology, observed between NwAR and AD, due to the virtual absence of BChE-associated plaques in NwA[ brains.
Furthermore, BChE did not associate with pathology of the other dementias. In this sample, BChE-associated pathology pro-
vided better diagnostic performance (AUC = 1.0, sensitivity/specificity = 100%/100%) when compared to AR (AUC =0.98,
100%/85.7%). These findings highlight the predictive value of BChE as a biomarker for AD that could facilitate timely
disease diagnosis and management.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
cause of dementia and its prevalence is predicted
) : X to dramatically rise over the next decades with con-
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disease-modifying interventions for AD have been
hampered, in part, by the lack of an early and defini-
tive diagnosis [4]. Currently, a definitive diagnosis
of AD requires a clinical syndrome of dementia [5],
confirmed by postmortem brain examination for the
presence of amyloid- (AB) plaques and tau neu-
rofibrillary tangles (NFTs), two hallmarks of the
disease [6-8].

In AD, the neocortex is one of the earliest areas
for accumulation of AR pathology [9]. As AB depo-
sition increases, the entorhinal region, insula, and
hippocampal formation become involved. Eventu-
ally, other subcortical regions, such as the amygdala,
basal ganglia, thalamus, and brainstem are affected.
Thus, the progression of AP deposition occurs in
an ‘outward-in’ direction [9], thereby offering the
cerebral cortex as a prime region to target for early
detection of AD pathology. Tau NFTs, on the other
hand, are first detected in the transentorhinal cor-
tex, progress to involve entorhinal and hippocampal
regions, followed by neocortex of the fusiform and
lingual gyri, then to neocortical association areas,
and, in advanced stages, to primary cortex such as
the striate cortex of the occipital lobe [10].

At present, three positron emission tomography
(PET) imaging agents have been approved to visu-
alize AP deposition in the human brain [11]. In
addition, several experimental tau PET radiotrac-
ers are being explored as potential agents for AD
diagnosis [12]. Although AP plaques and NFTs are
considered hallmarks of AD, they are also found
in the brains of up to 40% of cognitively normal
older adults [13-16]. Therefore, other markers that
are more indicative of AD, than AP or NFTs alone,
are desirable to facilitate a more accurate diagnosis
of this disease during life.

Butyrylcholinesterase (BChE) has a widespread
distribution in the human body. In the brain it is
found in glia, white matter, and specific populations
of neurons in the amygdala and hippocampal forma-
tion [17], as well as the thalamus [18]. Although
the functions of BChE have not been fully eluci-
dated, it has been shown to be involved, along with
acetylcholinesterase (AChE), as a co-regulator of
cholinergic neurotransmission [19, 20]. Furthermore,
BChE has been shown to be involved in a number
of processes including drug metabolism [21], lipid
metabolism [22], neurodevelopment [23], inflamma-
tion [24], diabetes mellitus [25], and cancer [26].

Changes in the cholinergic system have long
been shown to be associated with AD [27-29].
Cholinesterases, in particular BChE, are also found

to associate with AP plaques and NFT's in human AD
brain tissue [30-36] as well as in AP plaques in AD
mouse models [37-39]. Although the role of BChE
in AD pathology has not been fully elucidated, it may
be responsible for the maturation of these structures
into presumed neurotoxic species, thus, leading to
neurodegeneration and subsequent clinical manifes-
tations of the disease [35, 36]. On the other hand, it
has been suggested that BChE may attenuate plaque
deposition [40]. However, when the BCHE gene is
knocked out from an AD mouse model, there is reduc-
tion in fibrillar A plaque deposition suggesting that
this enzyme may be involved in accumulation of AD
pathology [38, 39]. Thus, BChE may represent a spe-
cific marker indicative of AD pathology.

The present study was undertaken to confirm
earlier qualitative reports [36], and extend these
observations to provide quantitative data related to
the association of BChE with AD pathology. Here
we quantify BChE and A plaque burden in cor-
tical and subcortical regions of human postmortem
AD brains and compare that with cognitively normal
individuals with and without A3 plaque pathology. In
addition, we also examined whether BChE associates
with pathology in other dementias to determine speci-
ficity of this enzyme for AD pathology. The present
study aims to determine the suitability of BChE as
a diagnostic and therapeutic target for AD and that
visualization of this enzyme associated with AD
pathology, using imaging techniques [41, 42], may
offer a definitive diagnosis of the disease during life.

MATERIALS AND METHODS

Brain tissues

A total of 26 postmortem human brains were
obtained from the Maritime Brain Tissue Bank
(Halifax, Nova Scotia, Canada) after approval from
the Nova Scotia Health Authority Research Ethics
Board. These included brains from eight AD, six
cognitively normal with amyloid plaques (NwAf),
eight cognitively normal without AP plaque pathol-
ogy (herein referred to as normal), one corticobasal
degeneration (CBD), one frontotemporal dementia
with tau (FTD-tau), one dementia with Lewy bod-
ies (DLB), and one vascular dementia (VaD) cases.
These were compared with respect to AR plaque
pathology detected by immunohistochemistry, fibril-
lary AR plaque pathology detected with thioflavin-S
(Th-S) histofluorescence, and BChE-associated
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plaque pathology detected through histochemistry.
Case demographics are summarized in Table 1. AD
cases chosen were those with moderate to high Braak
stages (IV-VI), as reported by the neuropathologist as
well as with a clinical history consistent with AD, in
order to have a high certainty of diagnostic accuracy.
NwAP cases had reported neuropathology, includ-
ing the presence of A3 plaques; however, no clinical
indication of a dementing process was noted. All
neuropathologically normal cases had no reported
clinical history of dementia. Neuropathologically,
the CBD brain showed neuronal loss with many
of the remaining neurons demonstrating cytoplas-
mic chromatolysis (ballooned neurons). In addition,
throughout both the grey and white matter, immunos-
taining with tau 4R antibodies revealed abundant
tau-positive neuropil threads irregularly distributed
and occasionally clustered. 4-Repeat isoform ED4 of
tau (tau 4R) immunostaining showed many neurons
with tau inclusions and abundant tau-positive neu-
ropil threads. The FTD-tau brain exhibited scattered
swollen neurons immunopositive for tau protein.
Immunostaining with the 3-repeat isoform ED3 of tau
(tau 3R) antibodies demonstrated a number of pos-
itive neuropil threads situated in all cortical layers.
In the DLB brain, the cingulate cortex had sev-
eral neurons containing cortical Lewy bodies which
was confirmed with a-synuclein immunostaining. No
NFTs or Pick bodies were seen with tau immunos-
taining and there was no AP deposition in vessels
with immunostaining. In the hippocampus, there
were a-synuclein positive dystrophic neurites (Lewy
neurites). Lewy bodies were seen in the hypothala-
mus, the basal ganglia, nucleus basalis, thalamus,
and subthalamus. In the brainstem, the substantia
nigra showed moderate neuronal depletion with Lewy
bodies in several remaining neurons. These observa-
tions were in keeping with neuropathological criteria
for diffuse Lewy body disease [43]. The VaD brain
demonstrated subcortical arteriopathy with exten-
sive confluent areas of myelin pallor with ischemic
changes that were confined to the white matter. There
were no cortical infarcts, no neuritic plaques, and only
scattered NFTs in the neocortex.

Hemisected brains used in this study were immer-
sion fixed in 10% formalin in 0.1 M phosphate
buffer (pH 7.4; PB) at 4°C between 1.9-5 days,
cryoprotected, and stored in PB containing 40%
sucrose and 0.6% sodium azide. Blocks of tissue
from the orbitofrontal cortex, amygdala, hippocam-
pal formation, and entorhinal cortex were removed
and cut into 50 wm coronal sections using a Leica

Table 1
Demographic data for Alzheimer’s disease (AD), cognitively nor-
mal with amyloid-B (AB) plaques (NWAP), cognitively normal
without AP plaques (normal), corticobasal degeneration (CBD),
frontotemporal dementia with tau (FTD-tau), Dementia with Lewy
bodies (DLB), and vascular dementia (VaD) human postmortem
brain tissues

Age (Y)

AD 88

58

72

92

86

70

84

91

NwAR 69

61

86

63

61

71

Normal 72

59

63

55

80

80

59

91

CBD 74

FTD-Tau 89

DLB 69

VaD 82

Braak Staging
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SM2000R microtome (Leica Microsystems Inc.,
Nussloch, Germany) with a Physitemp freezing stage
and PFS 30TC controller (Physitemp Instruments,
Inc., Clifton, NJ). Adjacent brain tissue sections
from all brains (5 sections/stain/region of inter-
est) were stained using histochemical techniques
for BChE activity, thioflavin-S histofluorescence that
stains fibrillar B-sheets, or A immunohistochem-
istry using an antibody specific for 4 to 5-kDa
amyloid peptide [44]. Brain tissue sections from non-
AD neurodegenerative disorders were also stained
using immunohistochemical techniques for corre-
sponding neuropathological hallmarks, including tau
antibodies, corresponding to amino acids 209-224
of tau 3R (CBD) and amino acids 275-291 of 4R
(FTD-tau), and an a-synuclein antibody (DLB).

Butyrylcholinesterase histochemistry

BChE histochemical staining was performed using
a modified Karnovsky-Roots method [34, 45]. All
reagents were purchased from Sigma-Aldrich (St.
Louis, MO). The substrate used for visualization of



494 LR. Macdonald et al. / Butyrylcholinesterase as an AD Biomarker

BChE activity was butyrylthiocholine, where AChE
activity was inhibited by BW 284C 51 (1,5-bis
[4-allyl dimethylammonium phenyl] pentan- 3-one
dibromide). Briefly, tissue sections were rinsed in
0.1M maleate buffer (MB, pH 7.4) for 30min
then quenched in 0.15% hydrogen peroxide in MB
for 30min and rinsed in MB for an additional
30min. Sections were incubated between 1.75 to
3.5h, depending on the fixation time of individual
cases, in 0.1M MB (pH 6.8) containing 0.5 mM
sodium citrate, 0.47mM cupric sulfate, 0.05mM
potassium ferricyanide, 0.8 mM butyrylthiocholine
iodide, and 0.0l mM BW 284C 51. All sections
were rinsed for 30 min in distilled water (dH,O) and
placed in 0.1% cobalt chloride solution in dH,O for
10 min. Following another rinse in dH,O sections
were placed in 0.1 M PB containing 1.39 mM 3,3’-
diaminobenzidine tetrahydrochloride (DAB). After
5 min, 50 pL of 0.15% hydrogen peroxide in dH,O
was added per mL of DAB solution and the reaction
was carried out for approximately 5 min. Sections
were then washed in 0.01 M acetate buffer (pH 3.3),
mounted on slides, coverslipped, and examined with
brightfield microscopy. In control experiments, no
staining occurred when substrate was omitted. Speci-
ficity of this method for BChE has been demonstrated
previously [34].

Thioflavin-S histofluorescence

Brain tissues were rinsed in 0.1 M PB (pH 7.4) for
30 min, 0.15% hydrogen peroxide in PB for 30 min
and rinsed again in PB. Sections were mounted onto
glass slides, air-dried overnight, rehydrated in dH, O,
dehydrated in a series of ethanol washes, cleared
in xylene, and rinsed in 50% ethanol. The mounted
sections were placed in a0.05% Th-S (T1892, Sigma-
Aldrich, St. Louis, MO) in 50% ethanol solution and
were incubated overnight (16 h) at room temperature.
Sections were rinsed in 80% ethanol and coverslipped
with an aqueous mounting medium.

Immunohistochemistry

Standard immunohistochemical staining proce-
dures were performed using primary antibodies to
detect for AR (polyclonal rabbit anti-Af3; 1:400;
71-5800, Life Technologies, Rockford, IL), tau
3R (monoclonal mouse anti-tau, 3-repeat isoform
RD3, clone 8E6/C11; 1:1000; 05-803, Milli-
pore, Temecula, CA), tau 4R (monoclonal mouse
anti-tau, 4-repeat isoform RD4, clone 1E1/A6;

1:1000; 05-804, Millipore, Temecula, CA), and
Lewy body (monoclonal mouse anti-a-synuclein;
1:200; 18-0215, Life Technologies, Frederick, MD)
deposits.

Briefly, sections were rinsed in 0.1 M PB (pH 7.4)
for 30 min. Sections to be stained for AP and tau iso-
forms were rinsed for 5 min in 0.05M PB followed
by a final rinse in dH,O for 15 min. These sections
were gently agitated in 95% formic acid for 2 min
to improve AP and tau immunohistochemical stain-
ing and were subsequently rinsed 5 times in dH,O
for 1 min each and twice in 0.1 M PB for 15 min.
All sections were placed in 0.3% hydrogen peroxide
in 0.1 M PB for 30 min to quench endogenous per-
oxidase activity and rinsed again for 30 min in PB.
Sections to be stained for a-synuclein were incubated
in 0.01 M citrate buffer at 80°C for 30 min to improve
staining. All sections were then incubatedin0.1 M PB
containing 0.1% Triton X-100, normal goat serum
(1:100), and primary antibody overnight (16h) at
room temperature. After rinsing with 0.1 M PB for
30 min, sections were incubated in PB with 0.1%
Triton X-100, the corresponding secondary antibody
(1:500), and normal goat serum (1 : 1000) for 1 h at
room temperature. Tissues were rinsed in PB, then
placed in PB with 0.1% Triton X-100 and Vectastain
Elite ABCkit (1 : 182; PK-6100, Vector Laboratories,
Burlingame, CA), according to the manufacturer’s
instructions, for 1h at room temperature. Sections
were rinsed and developed in a solution of in 0.1 M
PB containing 1.39 mM DAB. After 5 min, 50 pL of
0.3% hydrogen peroxide in dH,O was then added per
mL of DAB solution. The sections were incubated
for 5 min and the reaction was stopped by rinsing the
sections in 0.01 M acetate buffer (pH 3.3). In con-
trol experiments, no staining was observed when the
primary antibody was omitted.

Data analysis

All microscopes used in this study were located
in the Cellular Microscopy and Digital Imaging
CORES facility at Dalhousie University. Sections to
be analyzed for plaque load quantification were pho-
tographed using a Zeiss Axio Imager Z2 microscope
with a Zeiss Axiocam HRc digital camera and Axio-
Vision 4.8 software (Carl Zeiss Canada Ltd., Toronto,
Canada). Separate images within each brain section
were stitched together using the AxioVision 4.8 soft-
ware. Remaining slides were photographed using a
Zeiss Axioplan 2 motorized microscope with a Zeiss
Axiocam HRc digital camera using AxioVision 4.6
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software (Carl Zeiss Canada Ltd., Toronto, Canada).
These images were assembled using Adobe Photo-
shop (CS 5 version 12.0) and the brightness of images
was adjusted to match the background of different
images.

Stained plaque loads were quantified using
National Institutes of Health ImageJ 1.51g soft-
ware and recorded as a percentage of the total
area as described previously [37-39, 46]. Gray-scale
images of adjacent sections stained for AP, Th-
S, and BChE activity were taken throughout the
orbitofrontal cortex, amygdala, hippocampal forma-
tion, and entorhinal cortex. The color of Th-S images
was inverted for quantification. An intensity thresh-
old level was set such that positive staining, but not
background, was selected. Three of the authors, in
a blinded independent fashion, assessed and arrived
at a consensus for a suitable threshold for each
brain section. Regions of interest were used to define
boundaries for orbitofrontal cortex, entorhinal cortex,
amygdala, and hippocampal formation in each tissue
section and the plaque burden, defined by the percent-
age of area covered by A3, Th-S, or BChE-associated
plaque pathology, was measured and averaged for
each brain and compared.

Statistical analysis

Comparison of mean AP, Th-S, and BChE
plaque loads between groups (normal, NwAp,
and AD) were performed for each brain region
via a one-way analysis of variance (ANOVA)
followed by Tukey honest significant difference
post-hoc tests. Significant differences are denoted
as follows: *p<0.0167; **p<0.01; ***p<0.001;
**%%p <0.0001. Intra-group comparisons of plaque
burden between structures were also made by one-
way ANOVA. Theratio of BChE to A3 was compared
in each brain structure between NwA( and AD
groups using a two-tailed independent samples 7-test,
assuming unequal variances with significance level
of p<0.05. Significant differences were denoted with
** for p<0.01. All statistical comparisons were per-
formed using SPSS (SPSS IBM, Inc.).

To determine the diagnostic performance of Af,
Th-S, and BChE plaque load metrics for AD,
receiver-operating characteristic (ROC) plots [47]
were generated using clinical [5] and neuropatho-
logical [7] criteria as the gold standard. True- and
false-positive/negative classifications were assigned
to the range of values for each quantification metric
(AB, Th-S, and BChE) and ROC curves (sensitivity

versus 1-specificity) were generated and compared.
The area under the curve (AUC) is a common sum-
mary measure of a diagnostic test’s performance,
interpreted as the average sensitivity for all possible
values of specificity [47]. AUC represents the overall
performance and diagnostic accuracy of a test, with
values approaching 1 indicating perfect accuracy. The
optimal cutoff value of each quantification metric was
determined from the ROC curve and corresponding
diagnostic sensitivities and specificities were deter-
mined (Table 2). ROC analysis was performed using
SPSS (SPSS IBM, Inc.) and fitted ROC curves were
generated using ROC-KIT ROC analysis software
[48, 49].

RESULTS

In the present study, three staining approaches
involving AR, Th-S, and BChE were used to exam-
ine pathology abundance in normal, NwAf, and AD
brains (Fig. 1). Areas of the brain examined included
the orbitofrontal cortex, entorhinal cortex, amyg-
dala, and hippocampal formation, regions commonly
affected in AD.

Amyloid- immunohistochemistry

All AD and NwAQ brains stained with A3 anti-
body showed plaques (Figs. 1 and 2). In the normal
brains, the orbitofrontal cortex showed scant A3
deposition (0.08%) that did not meet neuropatho-
logical criteria for AD while the entorhinal cortex,
amygdala, and hippocampal formation demonstrated
no plaque pathology (Fig. 2). In AD, significantly
greater A3 was present in the orbitofrontal cortex and
amygdala compared to the NwAf group (p <0.0001)
representing a 3.6- and 2.2-fold increase, respec-
tively. However, no detectable differences in plaque
burden were observed in the entorhinal cortex or
hippocampal formation between the AD and NwA3
groups (Fig. 2). In NwA brains, all brain regions
had significantly greater AP plaque load than nor-
mal brains (p <0.0001), except for the orbitofrontal
cortex in which a slight elevation of A3 in normal
brains (5 of 8 cases) rendered statistical comparisons
not significant (Fig. 2). Importantly, within AD, the
single greatest AR plaque burden level was in the
orbitofrontal cortex (17.2%), whereas plaque loads
in entorhinal cortex, amygdala, and hippocampal for-
mation (range of 4.13-6.74%) were not significantly
different from one another (separate ANOVA analy-
sis, not shown).
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Table 2
Receiver-operating characteristic (ROC) and area under the curve (AUC) analysis of amyloid-f3 (AB),
thioflavin-S (Th-S), and butyrylcholinesterase (BChE) associated pathology in the orbitofrontal cortex
in predicting confirmed neuropathological diagnosis (gold standard)

Plaque Burden AUC % Area with Sensitivity (%) Specificity (%)
pathology cut-off

AB 0.98 £0.02 10.5 100.0 85.7

Th-S 0.99 £0.01 100.0 92.9

BChE 1.00 £0.00 100.0 100.0

Fig. 1. Photomicrographs of postmortem human orbitofrontal cortex from normal (A,D,G), cognitively normal with AR plaques (NWAP,
B.E,H), and AD (C,E]) brains stained for amyloid-$ (A,B,C), thioflavin-S (D,E,F), and butyrylcholinesterase (BChE, G,H,I). Note, no BChE
staining in normal orbitofrontal cortex (G), paucity of BChE activity associated with NwA brain pathology (H), and significant BChE
activity in AD (I). Scale bar for all frames (A-I) =250 pm.

Thioflavin-S histochemistry

All AD and NwAR brains demonstrated Th-S-
positive pathology (Figs. 1 and 2). Overall, the
area covered by Th-S stained plaques was consid-
erably lower compared to AR and BChE staining
in all cases examined. Sections from the normal

brains showed no observable plaque pathology. In
AD, significantly greater Th-S plaque burden was
present in the orbitofrontal cortex, entorhinal cor-
tex, amygdala, and hippocampal formation compared
to their NwAB counterparts (p<0.01, p<0.0001,
p<0.0167, p<0.01, respectively; Fig. 2). In com-
parison to normal, NwAR brains in all four brain
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Fig. 2. Comparisons of percentage area covered by amyloid-
(AB; A), thioflavin-S (Th-S; B), or butyrylcholinesterase (BChE;
C) pathology in the orbitofrontal cortex, entorhinal cortex, amyg-
dala, and hippocampal formation of normal, cognitively normal
with AB plaques (NWAR), and Alzheimer’s disease (AD) brains.
A) In AD, significantly greater A was present in the orbitofrontal
cortex and amygdala compared to NwA brains, whereas the
entorhinal cortex and hippocampal formation were not signif-
icantly different between AD and NwAR. B) Th-S pathology
occupied considerably less percentage of area in each of the brain
regions compared to those stained for AR or BChE. However, Th-
S pathology burden in AD was significantly greater than NwA(
brains. C) In normal and NwA brains, the presence of BChE was
negligible. In AD, BChE-associated pathology burden was signif-
icantly greater in all regions analyzed when compared to NwAf,
especially in the orbitofrontal cortex with a nearly 9.3-fold increase
observed. Significant differences (Bonferroni correction after mul-
tiple comparisons) are denoted as follows: *p <0.0167; **p <0.01;
**p <0.001; ****p <0.0001.

regions investigated were not significantly different
(Fig. 2).

Butyrylcholinesterase histochemistry

BChE histochemistry demonstrated minimal stain-
ing in the orbitofrontal cortex and no staining
of plaques in the entorhinal cortex, hippocampal
formation, and amygdala in the normal brains.
Scant BChE-associated plaques were also observed
in NwAR brains and no statistically significant
differences were observed between NwA[3 and nor-
mal brains (Fig. 2). In AD, significantly greater
BChE-associated pathology was present in the
orbitofrontal cortex, entorhinal cortex, amygdala,
and hippocampal formation compared to the NwA
group (p <0.01), representing a 9.3-fold increase in
the orbitofrontal cortex and a range of 4.0-5.3-fold
difference in the other structures investigated (Fig. 2).
Though concomitant increases in BChE and Ap
plaque loads were observed in the orbitofrontal cor-
tex in AD compared to NwA3, the relative proportion
of BChE to A pathology was markedly increased in
the AD brain (Fig. 3). In the orbitofrontal cortex, the
ratio of BChE to AR increased from 0.29 to 0.81,
representing a 2.8-fold increase in AD compared to
NwAQR brains (p <0.01) (Fig. 3A). The relative pro-
portion of BChE to A3 remained relatively constant
in the entorhinal cortex, amygdala, and hippocampal
formation of NwAR and AD brains and no statisti-
cally significant differences were observed in these
structures (Fig. 3B-D). This demonstrates that BChE
activity is greatly increased in the AD brain compared
to NwApR.

Receiver-operating characteristic plots

In order to evaluate AP, Th-S, and BChE quan-
tification methods as predictive metrics for the
correct classification of AD, ROC analysis was per-
formed on the orbitofrontal cortex, the region shown
to provide the greatest pathological changes when
comparing NwAR to AD brains. True- and false-
positive/negative classifications were assigned in an
iterative fashion to the range of values for each
stain metric and were compared in ROC space
(Fig. 4). ROC-AUC values reflect the diagnostic
performance of each of these stains and while all
values are greater than 0.90, BChE-stained plaque
burden provides an accuracy with an AUC of 1.0
(Table 2). Positive/negative cutoffs (percentage of
area with pathology) were determined for each stain



498 LR. Macdonald et al. / Butyrylcholinesterase as an AD Biomarker

1.0 -
—
J

0.8 1

0.6 1

0.4

BChE/AB Ratio

T
L

0.2

0.0 "
Y
&

% |

1.0

0.8

0.6 —

044

BChE/AB Ratio

0.2

0.0

T T
<

B
1.0
o 0.8
&
s 0.6
0.4 [
5 1
% 02 ﬁL\
0.0 T
\a v
&
D
1.0,
o 0.8 1
E:
0.6 1
< _ T
W 044 -
2
0.21 .
0.0 < 3
\a v
&

Fig. 3. Ratio of percentage of area covered by butyrylcholinesterase (BChE) to amyloid-p (AB) stained pathology in the orbitofrontal cortex
(A), entorhinal cortex (B), amygdala (C), and hippocampal formation (D) of cognitively normal with AR (NwAR) and Alzheimer’s disease
(AD) brains. Note, AD brains had a much greater ratio compared to NwA 3 demonstrating that BChE activity is greatly increased in the AD
brain compared to NwAR. **Denotes statistically significant difference (p <0.01).

from the ROC curve which optimized values of
sensitivity (true positive fraction—the percent of
cases correctly classified as AD) and specificity
(true negative fraction—the percent of cases cor-
rectly classified as not AD). The cut-offs for percent
area with pathology were identified as 10.5%, 0.5%,
and 5.8% for AP, Th-S, and BChE, respectively,
and with corresponding sensitivity/specificity val-
ues of 100%/85.7% (AB), 100%/92.9% (Th-S), and
100%/100% (BChE) (Table 2). BChE burden was the
quantification metric that provided the best diagnostic
performance in this study.

Butyrylcholinesterase histochemistry in other
neurodegenerative disorders

To determine whether BChE associates with
pathologies in other neurodegenerative disorders,
cases from CBD, FTD-tau, DLB, and VaD were
examined (Fig. 5), because of potential clinical
overlap with AD [50]. CBD and FTD-tau cases
were stained for specific tau isoforms (3R and 4R,
respectively) and demonstrated the presence of NFTs
(Fig. 5A), neuropil threads, and degenerating neurites
(Fig. 5C). The DLB case was stained for a-synuclein
and demonstrated the presence of Lewy bodies

1.0 ==
- 0.8+ | A
2 0.6 Th-S
g 0.44 — BChE
(/2]

0.2

0.0-

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

T 1

Fig. 4. Receiver-operating characteristic (ROC) plot (sensitiv-
ity versus l-specificity) of amyloid-B (AR), thioflavin-S (Th-S),
and butyrylcholinesterase (BChE) quantification metrics of the
orbitofrontal cortex. Empirical data shown as solid lines and fit-
ted curves as dashed lines of the same color. Chance association
shown as diagonal line indicates no discriminative capability of a
diagnostic test. The area under the curve (AUC) serves as a sum-
mary measure of the diagnostic performance of each metric. BChE
showed high diagnostic accuracy. See Table 2 for a complete list
of ROC summary measures.

(Fig. SE). The VaD case was devoid of Ap and Th-S
plaques. However, intraneuronal deposits were noted
in A staining (Fig. 5G), as previously described [51].
None of these cases demonstrated BChE staining
associated with their respective pathologies (Fig. 5B,
D, F, and H).
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Fig. 5. Photomicrographs of postmortem human entorhinal cortex from corticobasal degeneration (A,B), frontotemporal dementia with
tau (C,D), dementia with Lewy bodies (E,F), and vascular dementia (G,H) stained for tau 3R (A), tau 4R (C), a-synuclein (E), AB (G),
and butyrylcholinesterase (BChE) activity (B,D,FH). Note, insets are higher magnification photomicrographs demonstrating examples of
the pathology observed in each of the neurodegenerative diseases including neurofibrillary tangles (A), neuropil threads and degenerating
neurites (C), Lewy bodies (E), and intraneuronal inclusions (G). Note, BChE staining was limited to a few scattered cortical neurons (insets
B.D,F,H) and did not label pathological structures in these neurodegenerative diseases. Scale bars =250 pwm, insets 50 wm.

DISCUSSION marks of this condition [6-8]. It has been suggested
that BChE may be involved in the transformation
In AD, BChE has been shown to associate with of diffuse “benign” plaques into mature “malignant”

AP plaques and NFTs, the neuropathological hall- plaques [35]. Other observations have suggested that
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BChE may attenuate plaque deposition [40]. How-
ever, in a mouse model of AD, in which the BCHE
gene has been knocked out, the absence of BChE
protein resulted in decreased fibrillar A plaque
deposition [38, 39]. These studies suggest that BChE
has a role in the modulation of AP plaque forma-
tion. Regardless of the mechanism, the association
of BChE with neuritic plaques, as demonstrated and
quantified in the current study (Figs. 1-3), suggests
that this enzyme is a sensitive marker for AD detec-
tion (Fig. 4). In particular, BChE can distinguish
plaques associated with AD from those found in the
NwAQR brain (Fig. 3), as has been suggested previ-
ously [36, 42]. The present study confirms previous
observations [36] and extends this concept by demon-
strating, quantitatively, that BChE is found at higher
levels in AD brains compared to NwAR, particularly
in cerebral cortical regions. In comparing A3, Th-
S, or BChE to distinguish AD, BChE plaque burden
was observed to provide the highest predictive value
and diagnostic accuracy, as derived from AUC anal-
ysis of the ROC curve of the orbitofrontal cortex
(Fig. 4; Table 2). These results support the notion
that BChE may represent an AD biomarker that has
enhanced specificity compared to A and could pro-
vide superior predictive value for AD diagnosis if
used as a diagnostic target for neuroimaging. Addi-
tionally, BChE is not associated with pathology of
other common dementias examined such as CBD,
FTD-tau, DLB, and VaD, suggesting specificity of
this protein for AD. Only one brain from each of these
other diseases was available for analysis and further
confirmation with a greater sample size is required.
Nonetheless, these observations further support the
notion that BChE may represent a specific diagnostic
and therapeutic target for AD.

Determination of A3 plaque load with quantifica-
tion programs such as ImageJ, as employed in this and
other studies [37-39, 46], offers an efficient method
that allows a large sample of brain tissues to be
processed and analyzed. This approach provides an
estimate of plaque burden in each brain, minimizing
the need for extensive extrapolation or brain section
selection bias. However, one of the limitations of
this methodology is that the threshold of detection is
manually set to exclude background or artifact in the
analysis. Although the current study used a blinded
and independent assessment, this approach retains
an element of subjectivity as well as the potential to
exclude lightly stained AD pathological structures.

These results demonstrate marked sensitivity
(100%) and specificity (100%) of BChE for AD diag-

nosis, representing greater diagnostic performance of
all three metrics investigated. The optimized pathol-
ogy burden cut-off for BChE was 5.8% versus 10.5%
for AB. This may underscore the close coupling of
BChE plaques to AD, where the increased presence of
BChE more likely reflects an AD phenotype. Despite
these current findings, there are several points that
require further elucidation. In particular, the current
study did not address the BCHE or apolipoprotein
E (APOE) genotypes. In a genome-wide association
study of in vivo A activity, BCHE has been shown to
be one of few genes associated with AD [52]. Individ-
uals with BCHE genetic polymorphisms are known
to have reduced levels of BChE activity [53]; how
this affects the association of BChE with AD pathol-
ogy remains unknown. With respect to APOE-&4, this
variant is strongly associated with sporadic AD [54,
55] and influences A3 deposition in the brain [56, 57].
The full relevance of these genotypes and their poten-
tial additive influences on BChE-associated plaque
deposition remains to be further elucidated. In addi-
tion, the current study also did not address the clinical
staging along the AD spectrum starting from mild
cognitive impairment to mild, moderate, and severe
AD. A broader study, with a much larger sample
size encompassing this spectrum, would be required
to determine the involvement of BChE-associated
pathology throughout these clinical stages. In order
to address this issue, brain samples and clinical data
from different global institutions and brain banks will
need to be engaged.

At present, there are at least three hypotheses
for AD pathogenesis: amyloid, tau, and cholinergic
dysfunction. The amyloid hypothesis posits that the
imbalance between production and clearance of AB42
leads to accumulation of this peptide early and this
may be the initiating factor for development of AD
[58]. In turn, AP has been a diagnostic and thera-
peutic target. Recently, three amyloid PET imaging
agents, namely, 18F-ﬂorbetapir, I8E_florbetaben, and
I8F_flutemetamol have been used for AP imaging
[59-64]. Although cognitively normal individuals
with PET amyloid positivity may represent pre-
clinical stages of AD, conversion to AD has not
yet been shown [65, 66]. The tau hypothesis postu-
lates that hyperphosphorylation of this protein leads
to its dissociation from microtubules and deposition
of intracellular NFTs initiates cell death [67]. Con-
sequently, tau PET imaging agents are also being
pursued [12, 68]. However, the presence of AP and
tau pathology in cognitively normal individuals [69]
and tau NFTs in non-AD tauopathies [70], poses a
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problem [61, 71-73] for AD diagnosis [69, 74] using
these markers. Therefore, the need is great for addi-
tional biomarkers to improve or supplement existing
methods for AD diagnosis.

The cholinergic hypothesis was derived from the
observation that in AD there was loss of cholinergic
neurons leading to cognitive and behavioral dysfunc-
tion characteristic of the disease [27-29]. In addition,
there is a decrease in AChE expression and an
increase [75] or no change [34] in BChE expression,
and these enzymes, BChE in particular, associate with
plaques and NFTs in the brain [36]. Minimal BChE
activity is observed in the normal cerebral cortex, but
accumulates in this region in association with AD
pathology, suggesting that BChE is an appropriate
target for AD diagnosis [76]. PET imaging agents
targeting cholinesterases in AD pathology have been
developed and evaluated for the presence of AChE
[77-82] and BChE [83-85] in the brain. N-['!C]
methylpiperidin-4-yl acetate has been successfully
shown to image AChE activity in the AD brain
[86]. However, BChE imaging has met less success
using the butyrate ester of N-[!! C]methylpiperidinol,
which was retained in the brain [83, 84, 87], but
without increased radioligand uptake in regions typ-
ically affected by AD pathology [83]. Additionally,
decreased uptake of this radioligand in the AD brain
compared to the normal brain was observed, contra-
dicting histochemical and isolation studies of BChE
[30, 31, 34-36]. Recently, more promising progress
has been observed with a cholinesterase radioligand,
phenyl 4-[!Z3IJiodophenylcarbamate, that was able
to distinguish cortical AD AR plaques from those
found in NwAP in autoradiographic studies [42].
In addition, a specific BChE radiotracer has been
shown to distinguish the SXFAD mouse model [88]
from its wild-type counterpart using single-photon
emission computed tomography imaging studies
[89, 90].

The current study further solidifies the importance
of the association of BChE with the neuropathologi-
cal hallmarks of AD. We have demonstrated that this
enzyme is potentially more definitive in distinguish-
ing between AD and NwAf plaques compared to
AP visualization. Furthermore, we have shown that
BChE is specific for AD pathology as it does not asso-
ciate with pathology of other common dementias. In
conclusion, the sensitivity and specificity of BChE
for AD is promising as a diagnostic target. In addi-
tion, given a number of lines of evidence that point
to BChE inhibition as being important in AD treat-
ment [91, 92], this enzyme also indicates promise

as a therapeutic target for timely intervention and
management of AD.
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