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Abstract
Neurodegenerative disorders leading to dementia are common diseases that affect many older and
some young adults. Neuroimaging methods are important tools for assessing and monitoring
pathological brain changes associated with progressive neurodegenerative conditions. In this
review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging
and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer’s disease (AD)
and prodromal stages, familial and atypical AD syndromes, frontotemporal dementia, amyotrophic
lateral sclerosis with and without dementia, Parkinson’s disease with and without dementia,
dementia with Lewy bodies, Huntington’s disease, multiple sclerosis, HIV-associated
neurocognitive disorder, and prion protein associated diseases (i.e., Creutzfeldt-Jakob disease).
The authors focus on neuroimaging findings of in vivo pathology in these disorders, as well as the
potential for neuroimaging to provide useful information for differential diagnosis of
neurodegenerative disorders.
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Neurodegenerative diseases and dementias feature progressive and often irreversible
degeneration of cells within the central nervous system (CNS). Although primarily affecting
older adults, some forms of neurodegenerative disease (such as variant Creutzfeldt-Jakob
disease [CJD], multiple sclerosis [MS], and HIV-associated neurocognitive disorder
[HAND]) can affect younger individuals.1,2 With disparate, but sometimes overlapping
clinical presentations and etiologies, neurodegenerative disorders and dementias can be
difficult to correctly diagnose. Neuroimaging techniques have the potential to assist with
clinical diagnosis and monitoring of disease progression in most, if not all, of the
neurodegenerative disorders. Our goal here is to provide an overview of neuroimaging
findings in the most common neurodegenerative conditions, as well as recent developments
in each area (Table 1).
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Degenerative Diseases and Dementias
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease,
affecting more than 5 million individuals in the United States, mostly age 65 or older, and
that number is expected to more than triple by 2050.3 The earliest clinical symptoms are
memory impairments, particularly in episodic and semantic domains, as well as deficits in
language and executive functioning.4 Patients with AD also show a significant impairment
in daily functioning with disruption or cessation of the ability to perform complex activities
and later more simple tasks. Clinicians and researchers have recently updated AD diagnostic
criteria for use in clinical practice and research.4 Currently, the diagnosis of AD is made
clinically, based on cognition and the relative impact of impairments on daily activities.
Attempts to diagnose AD at an earlier stage have led to the development of a clinical
syndrome termed amnestic mild cognitive impairment (MCI).5 Recently, new criteria for
diagnosis of MCI in clinical and research settings have been published.6 Patients with MCI
typically show deficits in episodic memory that fall more than 1 standard deviation below
age and education adjusted and culturally appropriate normative levels.6 More recently,
researchers have proposed dividing MCI into an earlier stage (early MCI [E-MCI]) and a
later stage (late MCI [L-MCI]), with E-MCI patients showing a 1 to 1.5 standard deviation
memory deficit and L-MCI showing a greater than 1.5 standard deviation deficit. This
classification has only recently been introduced and future studies will help to elucidate
differences between these MCI subgroups. The most common presentation of MCI features
memory impairment (amnestic MCI), but can co-occur with other cognitive deficits such as
executive function or language deficits (multidomain MCI).6 Amnestic MCI is widely
considered to be a prodromal form of AD, as nearly 10 to 15% of amnestic L-MCI patients
convert to probable AD each year, relative to only 1 to 2% of the general older adult
population.5 Recently, researchers and clinicians have been attempting to detect AD-related
changes and predict progression even earlier than MCI (e.g., pre-MCI or preclinical AD). A
conceptual framework for identifying preclinical AD patients has been presented in a recent
article.7

Alzheimer’s disease is characterized by two neuropathological hallmarks: amyloid plaques
and neurofibrillary tangles. Amyloid plaques are extracellular aggregations of the amyloid-β
(Aβ) peptide that are found throughout the brain of AD patients. Neurofibrillary tangles
result from the hyperphosphorylation of the microtubule-associated protein tau, which forms
insoluble filamentous structures that combine to create paired helical filaments, a key
component of the neurofibrillary tangles seen in the brains of patients with AD. The
temporal relationship and direct link between amyloid plaques and neurofibrillary tangles is
not completely elucidated at this time. Current theories suggest that amyloid plaque
formation precedes neurofibrillary tangles, with amyloid accumulation occurring during a
long preclinical period lasting years to decades.8 The biochemical processes involved in
Alzheimer’s disease development ultimately converge upon widespread cell death and
neuronal loss, likely through apoptosis. The first regions of the brain to show neuronal loss
associated with AD are in the medial temporal lobe (MTL), including the entorhinal cortex,
hippocampus, amygdala, and parahippocampal cortex, as well as cholinergic innervations to
the neocortex from the nucleus basalis of Meynert.9 By the time a patient has reached a
diagnosis of AD, neurodegeneration is usually found throughout the neocortex and
subcortical regions, with significant atrophy of the temporal, parietal, and frontal cortices,
but relative sparing of the primary occipital cortex and primary sensory–motor regions.9

Although the majority of AD cases represent late-onset or sporadic AD, nearly 5% of AD
cases are caused by dominantly inherited genetic mutations, usually in one of three genes:
amyloid precursor protein (APP), presenilin 1 (PS1), or presenilin 2 (PS2). Often featuring
an onset of symptoms that is at an earlier age than sporadic AD patients (i.e., before age 65),
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these cases are referred to as familial AD or early-onset AD. Although these diseases can
show somewhat different symptomology and pathology than late-onset AD, the major AD
hallmarks (i.e., amyloid plaques, neurofibrillary tangles) are present. Therefore, these
patients may represent a useful sample for studying early changes in biomarkers, particularly
because the age of symptom onset tends to be consistent across generations. Therefore,
using an estimated age of symptom onset (EAO), changes in neuropathology and cognition
can be assessed using biomarkers decades before onset of disease.10 Other diseases
associated with AD neuropathology show atypical presentation, including posterior cortical
atrophy (PCA) and logopenic aphasia. Posterior cortical atrophy is a disorder of higher
visual function that causes significant visual dysfunction in the absence of ocular disease, as
well as constructional apraxia, visual field deficits, and environmental disorientation.11,12

This disorder is primarily thought to be associated with changes in posterior brain regions,
including the parietal and occipital lobes. Logopenic aphasia is a type of primary
progressive aphasia (PPA) associated with AD (i.e., amyloid) rather than frontotemporal
dementia-(FTD-) like pathology and features impaired word retrieval and sentence repetition
in the absence of motor speech or grammatical abnormalities.13 Cerebral amyloid
angiopathy (CAA) is also associated with AD-like amyloid pathology. However, amyloid
deposits are largely observed in the walls of small cerebral arteries and capillaries in CAA.14

Patients with CAA often show cognitive decline, seizures, headaches, and stroke-like
symptoms.15

Vascular dementia and vascular-associated cognitive impairment (VCI), a form of cognitive
impairment with notable cerebrovascular pathology and/or risk factors, can be identified
using self-reports of stroke and/or other vascular events or diseases (myocardial infarction,
atherosclerosis, hypertension, etc.), neurologic and psychometric evaluation, and/or
structural and functional imaging techniques. The major requirements for a diagnosis of
vascular dementia or vascular-associated MCI include the presence of clinically significant
cognitive impairments, which can be in any cognitive domain, but are commonly observed
in executive function and/or memory, and the presence of significant cerebrovascular
pathology and/or risk factors, assessed using clinical or neuroimaging techniques. Beyond
these requirements, patients are diagnosed by clinical severity and the impact on activities of
daily living (ADLs), similar to the diagnosis of AD. Specifically, patients diagnosed with
vascular-associated MCI must show a cognitive deficit, but no significant impairment in
ADLs, whereas a diagnosis of vascular dementia requires significant impairment in both
clinically assessed cognitive status and ADLs.

Frontotemporal dementia (FTD) is an overarching diagnosis that encompasses multiple
disorders with varying symptoms. Behavioral variant FTD (bvFTD) is characterized by a
change in personality and behavior, disinhibition, apathy, loss of empathy, obsessive–
compulsive behaviors, and changes in appetite.13,16,17 Behavioral variant FTD is most
commonly associated with pathological tau accumulation, such as seen in Pick’s disease, but
can also feature accumulation of a TAR-DNA-binding protein called TDP-43.13,17 Primary
progressive aphasia (PPA) is another form of FTD, which is divided into two forms:
semantic dementia (SD) and progressive non-fluent aphasia (PNFA). Semantic dementia
features fluent aphasia, anomia, and single-word comprehension deficits and later in the
disease course behavioral symptoms similar to those seen bvFTD. Pathologically, TDP-43
accumulation usually underlies SD, but rare cases featuring tau pathology associated with
Pick’s disease have been observed.13,17 Progressive nonfluent aphasia features speech
production difficulties with agrammatism and apraxia of speech, as well as phonemic errors,
anomia, and impairments in sentence comprehension.13 Progressive nonfluent aphasia
typically features changes due to tau pathology, although mutations in the progranulin gene
(GRN) resulting in TDP-43 pathology, can cause PNFA symptoms, but without apraxia of
speech.13,17 Frontotemporal dementia can also feature motor dysfunction and motor neuron
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disease (MND).13,17,18 These disorders have been linked to Parkinson’s-like symptoms,
such as those seen in corticobasal degeneration (CBD) and progressive supranuclear palsy
(PSP), which feature tau pathology, or changes due to TDP-43 pathology, which presents as
FTD-MND with Lewy body-like pathology or FTD associated with amyotrophic lateral
sclerosis (FTD-ALS).13,17,18 Clinically, the Parkinson’s-like FTD dementias (CBD and
PSP) can show either behavioral-type symptoms (i.e., those seen in bvFTD) or language-
type symptoms (most commonly PFNA-like symptoms), along with executive dysfunction,
in the presence of cortical and extrapyramidal motor dysfunction.13 Patients with FTD
associated with TDP-43 (FTD-ALS, others) most commonly present with behavioral
symptoms (bvFTD-like) in the presence of motor dysfunction.18 Amyotrophic lateral
sclerosis can also occur without behavioral symptoms, although non-FTD ALS patients
commonly still have subthreshold cognitive changes.19

Parkinson’s disease (PD) is caused by deposition of inclusions of α-synuclein called Lewy
bodies and feature spontaneous motor parkinsonism, visual hallucinations, and potentially
changes in cognition20; 70 to 80% of patients with PD develop cognitive impairment and/or
dementia over the course of the disease.20,21 Two types of Parkinson’s dementias have been
defined, including Parkinson’s disease dementia (PDD), in which patients develop cognitive
symptoms more than 1 year after motor symptoms, and dementia with Lewy bodies (DLB),
in which patients develop cognitive symptoms concurrent with or within a year of motor
symptoms. 20 Cognitive symptoms in PDD and DLB are variable, but often feature
impairments in visual spatial functioning, executive function, language, and/or memory.20,21

However, whether PDD and DLB actually represent separate disorders is under debate.20

Thus, in the present article, PDD and DLB will be discussed together.

Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative condition
caused by trinucleotide repeates (CAG) in the gene coding for the protein huntingtin (HTT).
Pathological features include progressive degeneration of striatal GABAergic
interneurons.2,22 Clinical symptoms of HD include motor symptoms, such as chorea,
bradykinesia, dystonia, and incoordination, and cognitive symptoms, including changes in
visuomotor function, executive function, and memory.22 Because HD is an autosomal
dominant disorder, prodromal phases of this disease can be studied (i.e., prior to clinical
onset in mutation carriers) to assess disease development and progression.

Multiple sclerosis (MS) is a neurodegenerative condition featuring degeneration of the
myelin sheaths that surround neuronal axons, which results in significant impairment in
neuronal transmission.23,24 Although the exact cause of MS is unknown, it is thought to be
the result of either an autoimmune syndrome in which inflammatory cells attack the myelin
or a dysfunction of the myelin-producing cells.25 Multiple sclerosis typically presents either
as discrete attacks (relapsing-remitting) or progressive over time (progressive MS).26

Symptoms of MS can vary dramatically, as MS lesions can occur throughout the cortical
white matter, but the most common are autonomic, visual, motor, and sensory problems. 24

Cognitive symptoms usually include behavioral and emotional changes (i.e., depression), as
well as impairments in executive functioning, attention, and memory.24

HIV-associated neurocognitive disorders (HAND) can be classified into three types based
on severity: (1) asymptomatic neurocognitive impairment (ANI), which features cognitive
impairment 1 SD below age and education adjusted norms in two cognitive domains but no
functional impairment; (2) HIV-associated mild neurocognitive disorder (HMD; also
referred to as mild cognitive motor dysfunction [MCMD]), which features cognitive
impairment 1 SD below adjusted norms in two cognitive domains and mild impairment in
daily functioning; (3) HIV-associated dementia (HAD; also known as AIDS dementia
complex [ADC]), which is characterized by cognitive impairment 2 SD or more below age-
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and education-adjusted norms in at least two cognitive domains and significant impairment
in daily functioning.27 In the present review, we will combine these three severity categories
into one group (HAND). Although these classifications may represent stages of disease,
further study is needed for this determination. Approximately 22 to 55% of patients with
acquired immunodeficiency syndrome (AIDS) show cognitive dysfunction. Symptoms
include disorientation, mood disturbances, and impairment in executive function, speed of
information processing, attention and working memory, motor speed, and new learning and
retrieval.28–31 However, long-term and semantic memory, language, and visuospatial
function remain relatively intact.31 Some patients also show motor symptoms.29 However,
symptoms can vary significantly across individuals.31

Prion-associated diseases are rare neurodegenerative disorders caused by abnormal
processing of the prion protein, which leads to lethal transmissible spongiform
encephalopathies (TSEs).1 Prion-associated diseases can either be sporadic (sporadic
Creutzfeldt-Jakob disease [sCJD]; sporadic fatal insomnia [SFI]), genetic (genetic CJD;
Gerstmann-Straussler-Scheinker diseases [GSS]; fatal familial insomnia [FFI]), or acquired
through infectious transmission of tissue carrying the misfolded prion protein (Kuru;
iatrogenic CJD [iCJD]; variant CJD [vCJD]).1 The different variants of prion-associated
dementia show somewhat different symptoms, including varying rates of progression and
ages of onset, but the majority feature significant motor and sensory dysfunction, cognitive
impairment, and personality changes or psychiatric disorders.1

Neuroimaging Biomarkers
The two types of neuroimaging most commonly used as biomarkers of neurodegeneration
and dementia include magnetic resonance imaging (MRI) and radionucleotide imaging (i.e.,
single-photon emission computerized tomography [SPECT], positron emission tomography
[PET]). The most widely used neuroimaging technique to investigate anatomical changes
and neurodegeneration in vivo is structural MRI, which can assess global and local atrophic
brain changes. More advanced structural MRI techniques, including diffusion weighted and
diffusion tensor imaging [DWI/DTI], magnetic resonance spectroscopy [MRS], and
perfusion imaging are also used for investigation of dementia often in a research context.
DWI/DTI techniques measure the integrity of tissue using primarily two types of measures,
fractional anisotropy (FA) and mean diffusivity (MD) or apparent diffusion coefficient
(ADC). Reduced FA and increased MD/ADC are considered to be markers of neuronal fiber
loss and reduced gray matter and white matter integrity. MRS is a noninvasive
neurochemical technique allowing the measurement of biological metabolites in target tissue
that has been used in studies of brain aging, neurodegeneration, and dementia. Two major
metabolites that often show alterations in patients with dementia include: (1) N-
acetylaspartate (NAA), a marker of neuronal integrity; and (2) myo-inositol (mIns), a
measure of glial cell proliferation and neuronal damage. However, other MRS analyte
signals can also provide information related to membrane integrity and metabolism.
Cerebral perfusion is also commonly measured in studies of neurodegeneration and
dementia, including with MRI using either dynamic susceptibility contrast enhanced MRI or
arterial spin labeling (ASL),32,33 or using SPECT or PET techniques (discussed below).
MRI can also be used to measure brain function. Functional MRI (fMRI) measures brain
activity during a cognitive, sensory, or motor task or at rest by measuring blood flow and
blood oxygen levels. The primary outcome measured inmost fMRI studies is blood
oxygenation level dependent (BOLD) contrast signal in which regional brain activity is
measured via changes in local blood flow and oxygenation.34 Under normal conditions
activity-related brain metabolism is tightly coupled to regional blood oxygenation and flow
(i.e., blood flow increases to keep the regional blood oxygen level high during brain
activation and associated increases metabolic demand). Therefore, the BOLD signal is a
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useful measure for brain activation.35 However, altered coupling of neuronal metabolism
and blood flow due to brain atrophy and/or hypoperfusion may cause alterations in the
BOLD signal. Therefore, fMRI studies in older and demented patient populations with brain
atrophy should be carefully evaluated and interpreted with these considerations in mind.
fMRI studies often evaluate brain activity during cognitive or functional motor tests. In
addition to estimates of regional task-related brain activity, quantification of brain networks
can provide a unique measure of brain activity. Techniques for quantifying brain
connectivity from fMRI data have recently been developed and applied in studies of brain
aging during functional activation (i.e., during performance of tasks), as well as during a
“resting” or “task free” state.36

SPECT and PET use radiolabeled ligands to measure perfusion, metabolic, and
neurochemical processes in vivo. SPECT is primarily used to evaluate brain perfusion in
studies of neurodegeneration and dementia. Multiple types of PET ligands have been
utilized in studies of dementia, including: (1) [18F]fluorodeoxyglucose (FDG), which
measures brain glucose metabolism; (2) tracers that assess brain protein deposits, most
commonly to measure amyloid deposition (e.g., [11C]Pittsburgh Compound B (PiB),
[18F]florbetapir, others); (3) tracers that assess neurotransmitter systems (i.e., dopamine,
serotonin, acetylcholine [ACh], etc.) by binding to neurotransmitter receptors,
neurotransmitter transporters, or other associated proteins (e.g., catabolic or metabolic
enzymes); and (4) tracers that measure the level of activated microglia (e.g., [11C]PK11195,
[11C]DAA1106, [11C]PBR28, others). PET studies allow for an assessment of functional
changes in brain metabolism and neurotransmitter and other protein levels, which can
provide important information about degenerative changes occurring in the brains of
patients.

Neuroimaging Biomarkers of Degenerative Diseases and Dementias
Alzheimer’s Disease and Prodromal Stages

The most widely used neuroimaging technique to investigate structural changes and
neurodegeneration in AD is structural MRI. MRI estimates of regional volumes, extracted
using either manual or automated techniques, as well as global and regional tissue
morphometry, show the presence of significant brain atrophy in AD patients, following an
anatomical distribution similar to the stage-specific neuropathological pattern reported by
Braak and Braak.9 Several structural MRI studies have investigated atrophy in AD and
found a pattern of widespread atrophy, including in the MTL and lateral temporal lobe
(LTL), medial and lateral parietal lobe, and the frontal lobe, with relative sparing of the
occipital lobe and sensory-motor cortex (Fig. 1A, Fig. 2A).37–39 MCI patients have been
shown to have intermediate atrophy between AD patients and healthy older controls (HC),
supporting this as an intermediate clinical stage between healthy aging and AD.40 MCI
patients tend to have more focal reductions in volume and gray matter density than AD
patients, particularly in the more clinically mild patients, in the entorhinal cortex and
hippocampus, as well as focal cortical atrophy particularly in the temporal, parietal, and
frontal lobes (Fig. 1A).41–43 MRI measures of volume, morphometry, and rates of brain
atrophy have also shown promise in predicting MCI to AD progression, with significantly
reduced hippocampal and entorhinal cortex volumes, as well as reduced cortical thickness in
the medial and lateral temporal cortex, parietal lobes, and frontal lobes, in patients destined
to convert from MCI to probable AD (MCI-converters), up to 2 years prior to clinical
conversion, relative to MCI patients that remain at a diagnosis of MCI (MCI-stable).39,44–46

Longitudinal studies have shown higher rates of cortical atrophy in patients with AD and
MCI, particularly in the temporal lobe. Patients with AD have an approximate annual
hippocampal decline of −4.5%, while MCI patients have an annual rate of hippocampal
decline of −3%, relative to only an approximate −1% annual change in HC (for a meta-
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analysis, see Barnes et al47). Cognitively normal older adults at risk for progression to
dementia, due to the presence of cerebral amyloid, genetic background, or the presence of
subjective cognitive decline, also show notable brain atrophy and increased atrophy rates,
particularly in regions of the MTL.48–57

Advanced MRI techniques have also been used in studies of patients with AD, MCI, and
older adults at risk for AD. DWI/ DTI studies have indicated that AD patients have reduced
FA and increased diffusion relative to HCs in many white matter structures throughout the
brain, with MCI patients showing intermediate changes58–61. Furthermore, DTI measures
showed significant white matter changes in older adults at risk for dementia due to
subjective cognitive decline relative to those without significant complaints.62 MRS
techniques demonstrated that AD patients have decreased NAA levels and increased mIns
relative to HCs throughout the brain, with the most significant changes in the temporal lobe
and hippocampus. 63,64 MCI patients have also been shown to have reductions in NAA
relative to HC,63,65 although NAA values tend to be intermediate between those seen in AD
and HC participants. Studies of brain perfusion with MRI have consistently demonstrated
decreased perfusion or “hypoperfusion” in patients with AD, particularly in temporoparietal
regions, as well as frontal, parietal, and temporal cortices,66 whereas MCI patients showed
decreased brain perfusion in the medial and inferior parietal lobes.32

Results from fMRI studies in AD and MCI patients have shown conflicting results. Most
studies with AD patients have shown decreased or even absent activation relative to HCs in
the MTL, posterior cingulate, parietal lobe, and frontal lobe during episodic memory
encoding and recall tasks.67,68 Furthermore, some studies in MCI patients have shown
decreased activation relative to HC during episodic memory encoding67,69,70 and recall
tasks.67,69,70 However, other studies in both AD and MCI showed increased activation
during cognitive tasks.67,68,70–72 Interestingly, the level of disease severity of patient
populations may explain some of these conflicting findings. Increased activation may
represent a compensatory mechanism engaged to assist with successful completion of the
task in less impaired patients (particularly those with MCI), while more impaired patients,
especially those with advanced atrophy, show decreased activation during tasks.67,68,73

Patients at risk for progression to AD due to genetic background also show altered
hippocampal activation during episodic encoding and recall, as well as altered activation
during working memory tasks.74–77

Functional connectivity studies have also demonstrated alterations in patients with AD and
MCI, including decreased connectivity in task-related and resting-state networks. 67,78,79 In
particular, a network of brain regions that are deactivated upon task initiation that includes
the medial parietal lobe, MTL, and medial frontal lobe, which is referred to as the default
mode network (DMN),36,80 shows decreased activity at rest, decreased connectivity, and
reduced deactivation upon task initiation in AD and MCI patients.67,78,80,81 However,
similar to the task-related fMRI studies, mildly impaired MCI patients actually show
increased functional connectivity between the memory network and the DMN, suggesting
compensatory changes,67,78,82 while more impaired MCI patients have decreased or absent
connectivity between these networks.67 In addition, older adults at risk for AD show
changes in task-related connectivity, as well as altered resting-state connectivity in the
DMN.83–86

FDG PET studies of patients with AD have shown significant reductions in cerebral glucose
metabolism relative to HC, with MCI patients showing intermediate changes, in the
temporoparietal cortex, posterior cingulate, parietal lobe, temporal lobe, and in the MTL,
including the hippocampus (Fig. 1B).80,87,88 More impaired AD patients also have more
hypometabolism in the frontal lobe and prefrontal cortex relative to less impaired patients
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and HCs.88,89 Longitudinal studies demonstrated a significantly greater rate of annual
decline in metabolism in the temporal, parietal. and frontal lobes, as well as the posterior
cingulate and precuneus in AD and MCI relative toHC.90,91 Cognitively healthy older adults
at risk for progression to AD due to genetic background and the presence of subjective
cognitive decline also show alterations in glucose metabolism.91–93

PET imaging studies with tracers that bind to cerebral amyloid (most commonly [11C]PiB)
have shown increased uptake in patients with AD and MCI in brain regions known to show
amyloid deposition in neuropathological studies, including the frontal, temporal, and parietal
lobes, posterior cingulate, and precuneus (Fig. 1C).54,94,95 Across [11C]PiB studies, 96% of
AD patients showed significant amyloid accumulation, measured as a “positive” [11C]PiB
signal,96 while nearly two-thirds of patients with MCI showed significant amyloid
accumulation.96 In addition, MCI patients with significant amyloid accumulation have a
higher likelihood of future conversion to AD.97 Longitudinal assessments of amyloid using
[11C]PiB in AD and MCI patients have shown minimal increases in [11C]PiB signal over 1
to 2 years in patients who showed significant [11C]PiB signal at baseline.95,98 However, in
patients who do not show significant amyloid deposition at baseline, additional amyloid
accumulation may be possible. Thus, researchers have tentatively concluded that amyloid
deposition occurs early in the disease and by the time sufficient cognitive decline for a
diagnosis of AD occurs, brain amyloid burden is relatively stable and increased deposition is
minimal. Finally, patients at risk for progression to AD due to genetic background also show
higher amyloid accumulation. 99–102 Given the results of amyloid PET studies to date, it is
noteworthy that in 2011 the United States Food and Drug Administration approved
[18F]Florbetapir (Amyvid, Eli Lilly & Co., Indianapolis, IN) for clinical assessment of
cerebral amyloid in the context of cognitive decline.103

In addition to evaluating cerebral metabolism and the presence of amyloid, researchers have
investigated specific alterations in neurotransmitter systems and neuroinflammation in AD
and MCI patients using PET. Using PET techniques with tracers specific for
acetylcholinesterase (AChE) as a surrogate measure for ACh synaptic density, significant
reductions in binding were found in AD and MCI, particularly in the temporal lobe.104–106

Studies in AD patients have also shown decreases in GABA, serotonin, and dopamine
synaptic densities,107 whereas MCI patients have been shown to have deficits in
serotonergic neurotransmission only.108 Studies of activated microglia have shown mixed
results in patients with MCI and AD. Some studies demonstrated significantly elevated
global and regional activated microglia in patients with AD relative to HCs,109,110 while
other studies have shown minimal signal in AD and MCI relative to HCs.111 These
differences likely reflect small samples and conflicting quantification methodologies. Future
studies are needed to elucidate the role of activated microglia in AD and MCI, as well as
utility of this class of PET tracers as a biomarker of immune status in neurodegenerative
disorders.

Overall, neuroimaging studies have been useful for quantifying ongoing neuropathological
changes in patients with AD, as well as in the prodromal stages of disease. Measures of
brain atrophy, brain function and connectivity, brain perfusion and metabolism, and levels of
amyloid have shown progressive changes associated with the development and progression
of AD. Future studies utilizing newer techniques and in less-affected patient populations will
be important for further understanding AD pathology, early disease detection, and the
development of targeted therapies.

Familial and Atypical Alzheimer’s Disease
Neuroimaging studies in familial AD patients (i.e., those with mutations in APP, PS1, or
PS2) have shown greater brain atrophy, faster longitudinal atrophy rates, white matter
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changes measured using DTI, reduced brain metabolism, and increased brain amyloid, in
affected patients and in presymptomatic mutation carriers relative to noncarriers.10,112–116

Overall, the use of biomarkers in the study of familial AD has shown similar
neuropathological changes as seen in late-onset AD, in both presymptomatic and
symptomatic familial AD patients. Studies in these patients may provide information
relevant to the role of biomarkers for late-onset AD, as well as to provide sensitive measures
for detecting disease related changes and monitoring disease progression in patients with
familial AD. However, it is also noteworthy that in some cases the profile of biomarkers in
familial AD patients can differ from that observed in late-onset AD. For example, some
familial AD patients may show amyloid deposition in the striatum, a finding which is not
often observed in late-onset AD.117 Future studies to explore the similarities and differences
in familial and sporadic AD pathology will provide important information, such those
associated with the Dominantly Inherited Alzheimer Network (DIAN).10

Sporadic AD usually presents with changes in memory. However, a few related disorders
have been identified with atypical presentations (atypical AD), including PCA and log-
openic aphasia. Both diseases show widespread amyloid deposition and neurofibrillary
tangles, which supports the theory that these disorders are AD dementias despite their
atypical clinical presentation. Neuroimaging studies of PCA have demonstrated notable
atrophy in posterior brain regions, including in the posterior temporal, parietal, and occipital
lobes (Fig. 2B).11,118,119 A DTI study of white matter integrity also showed notable atrophy
of the ventral visual processing stream, with reduced FA in the bilateral inferior longitudinal
fasciculus and inferior fronto-occipital fasciculus.118 Patients with PCA have also been
shown to have severe hypoperfusion in occipitoparietal regions, but increased perfusion in
frontal, anterior cingulate, and mesiotemporal regions.120,121 Finally, PCA patients show
positive binding of [11C]PiB with a traditional AD-like pattern, except for more signal than
AD patients in the occipital lobe.122

Structural MRI studies in logopenic aphasia have shown significant degeneration of the left
posterior superior temporal lobe, temporoparietal junction, inferior parietal lobe, posterior
cingulate, precuneus, and MTL (Fig. 2C). In more severe patients, atrophy was also
observed in left anterior temporal lobe regions, along the sylvian fissure and into the frontal
lobe, as well as in regions of the right temporal and parietal lobes.13,16,123 DTI studies in
logopenic aphasia have also shown atrophic changes, including reduced white matter
integrity in the left temporoparietal junction and bilateral (but left > right) inferior
longitudinal fasciculus, uncinate fasciculus, superior longitudinal fasciculus, and other
subcortical projections.124,125 SPECT and FDG PET studies have shown reduced perfusion
and brain metabolism in the left temporoparietal lobe, respectively.120,123,126 In addition, a
recent study demonstrated increased [11C]PiB uptake in patients with logopenic aphasia,
suggesting the presence of significant cerebral amyloid.126

Cerebral amyloid angiopathy is primarily characterized by vascular pathology on structural
imaging. Patients with CAA typically show cerebral microhemorrhages, often at the cortical
gray matter/white matter interface and/or in cortico-subcortical junctions of the
frontomesial, fronto-orbital, and parietal lobes, microbleeds found predominately in
posterior cortical regions, and other ischemic related changes (i.e., white matter lesions and
infarcts).14,120,127,128 A functional MRI study of CAA patients also demonstrated altered
vascular function, including reduced vascular reactivity to visual stimulation in the presence
of normal blood flow.129 Studies with SPECT imaging showed hypoperfusion in parietal,
temporal, and frontal lobes in patients with CAA.130 Finally, a PET study with [11C]PiB in
patients with CAA demonstrated significant tracer uptake, supporting the presence of
extensive cerebral amyloid deposition.131
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Vascular Cognitive Impairment and Dementia
A few studies have evaluated the extent of brain structural and functional changes in
vascular dementia and VCI using in vivo neuroimaging techniques. Although the definitions
of vascular dementia and VCI vary significantly across studies, samples of patients with
subcortical ischemic vascular dementia (SIVD) and leukoaraiosis, which is extensive white
matter pathology identified using MRI, are most commonly evaluated. Several studies have
investigated patients with SIVD and other patients with vascular dementia using structural
MRI techniques and shown that SIVD patients and patients with leukoaraiosis show greater
number of white matter lesion than cognitively healthy older adults without subcortical
infarcts and patients with AD.132–137 The presence of more white matter lesions is also
significantly associated with impaired cognition, particularly in executive function and
processing speed domains, as well as a greater dementia severity and the presence of
cognitive complaints. 136,138–140 Patients with SIVD and leukoaraiosis also show significant
gray matter, white matter, and hippocampal atrophy relative to HCs,132,134,135,137,141–144

which has also been linked to the extent of white matter lesion pathology. 133–136,145,146

Only a limited number of studies have investigated structural MRI changes in patients in
earlier stages of vascular dementia, such as vascular-related MCI.133,134,136,143 Seo and
colleagues reported cortical thinning in patients with MCI linked to subcortical ischemia,
particularly in frontal, temporal, and occipital regions.143 Patients with vascular-associated
MCI also show a significantly greater extent of white matter lesions than HC, the presence
of which is associated with progression to dementia.133 Studies utilizing DTI have
demonstrated significant changes in SIVD and leukoaraiosis patients, even in normal-
appearing white matter.147–154 In fact, DTI measures of decreased white matter integrity
have shown significant association with dementia severity, cognition, motor function, and
cerebral atrophy.147,148,150–154 A few studies have also evaluated fMRI measures in patients
with vascular dementia, in particular SIVD. Two studies evaluated task-related fMRI in
SIVD patients and demonstrated reduced activation and altered brain blood flow-metabolic
coupling during an executive function and motor task, respectively.155,156 Finally, a study
by Sun and colleagues showed altered posterior cingulate cortex functional connectivity in
SIVD patients using resting-state fMRI.157 Schuff and colleagues assessed brain perfusion
in SIVD using ASL and demonstrated reduced cerebral blood flow, particularly in frontal
and parietal lobes.158 These results support previous studies utilizing PET and SPECT
techniques, which showed reduced cerebral perfusion and metabolism in patients with
vascular dementia.159,160 In fact, FDG PET studies have shown hypometabolism in a
scattered pattern in cortical and subcortical regions in vascular dementia. 161 Finally,
amyloid PET tracers show minimal binding in the majority of patients with vascular
dementia in the absence of CAA.162

Neuroimaging studies in vascular dementia have demonstrated notable changes in brain
atrophy, function, perfusion and metabolism secondary to vascular pathology. Prospective
studies evaluating patients in earlier stages of disease would be useful to identify the
progressive changes associated with the development of vascular dementia, as well as the
effect of any interventional treatments. In addition, studies of patients with vascular
pathology and other types of comorbid pathology (AD, FTD, etc.) will provide the
opportunity to assess the overlap of multiple diseases and the relative contribution of various
pathologies to cognitive decline.

Frontotemporal Dementia
Behavioral variant FTD is characterized primarily by changes in personality and behavior
and is caused by accumulation of pathological tau protein or TDP-43 or in rare cases by
changes in the fused in sarcoma (FUS) protein.13,16,17 Genetic forms of bvFTD can be
linked to mutations in the tau gene (MAPT), which results in tau pathology, the progranulin
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gene (GRN), which results in TDP-43 pathology, as well as several other genes.13,16,17

Generally, bvFTD patients show widespread atrophy in the frontal lobes, anterior cingulate,
anterior insula, and thalamus (Fig. 3B).13,120,163,164 Longitudinally, faster atrophy rates are
observed in the frontal lobes.120,165 Some differences in atrophy are observed in bvFTD
based on underlying pathology. bvFTD due to Pick’s disease shows atrophy in the prefrontal
cortex, temporal lobes, anterior cingulate and insula, which is typically bilateral but with
slightly greater atrophy on the left than right.17,166 The frontal atrophy in bvFTD patients
with Pick’s disease is usually greater than that seen in other bvFTD forms, such as CBD,
patients with MAPT mutations, and those with underlying TDP-43 pathology.17,167 Patients
with MAPT mutations tend to be a heterogeneous group with atrophy observed in the frontal
and temporal lobes, insula, anterior cingulate, parietal lobe, basal ganglia, and
brainstem.17,168 Furthermore, patients with MAPT mutations may show more temporal lobe
atrophy than other bvFTD forms.13,169 Patients with bvFTD with TDP-43 pathology show
widespread frontal, temporal, and parietal atrophy, which tends to be asymmetric but either
side can show predominance.17,166,170,171 The parietal atrophy tends to be more severe in
patients with TDP-43 bvFTD variants than those caused by tau pathology.17 Patients with
mutations in the GRN gene show a similar pattern of frontal, temporal, and parietal atrophy,
but may show a greater asymmetry than bvFTD patients with TDP-43 who do not have a
GRN mutation.172 Finally, bvFTD patients with underlying FUS pathology show a unique
pattern of severe caudate atrophy, along with similar frontal atrophy to that seen in the other
bvFTD forms.17,173 DTI studies of white matter integrity in bvFTD have demonstrated
reduced FA in frontal and temporal white matter, including in the uncinate fasciculus,
anterior cingulum, superior longitudinal fasciculus, and inferior longitudinal fasciculus
relative to HC.128,174,175 Patients with bvFTD show greater frontal lobe white matter
changes than AD patients, including in the anterior cingulum, anterior corpus callosum, and
uncinate fasciculus.175,176 DTI studies in bvFTD patients with MAPT and GRN mutations
have also shown reduced white matter integrity throughout the frontotemporal white
matter.177

Studies of task-related fMRI activation in bvFTD have shown altered activation patterns
during working memory and emotional processing tasks, including reduced frontal and
parietal activation during working memory178 and emotion-specific abnormalities in frontal
and limbic regions, as well as altered activation in posterior regions (i.e., fusiform gyrus,
inferior parietal cortex) during an implicit face-expression task.179 Resting-state fMRI has
also demonstrated altered functional connectivity in patients with bvFTD, particularly in the
salience network, which is a network of regions involved in filtering sensory and emotional
stimuli and directed attention that includes the anterior cingulate cortex, bilateral insula,
dorsolateral prefrontal cortex, supplementary motor area, and other temporal, frontal, and
parietal cortical regions.180 Patients with bvFTD show decreased connectivity in the dorsal
and ventral salience network, including in the basal ganglia and frontal lobe, but increased
connectivity in the precuneus relative to HC.181–183 Relative to AD patients, bvFTD patients
show an opposite pattern of functional connectivity, with decreased connectivity in the
salience network and increased connectivity in the DMN.181,184 Alterations in connectivity
of other regions has also been reported, including in an attention/working memory network,
which showed reduced connectivity with the DMN, and an executive network, as well as in
cingulate and frontal white matter regions.177,182 Patients with MAPT mutations also show
alterations in connectivity of the DMN, with increased connectivity in the medial parietal
lobe and reduced connectivity in the lateral temporal and medial prefrontal cortices.185

Patients with bvFTD showed reduced cerebral perfusion, primarily in frontal and temporal
lobes, in studies utilizing both SPECT and ASL techniques. 120,128,163,164,174,186 FDG PET
studies of brain metabolism in bvFTD have also demonstrated notable hypometabolism in
frontal and temporal regions. 120,128,163,164 Studies with amyloid tracers (i.e., [11C] PiB)
showed minimal binding in patients with bvFTD.131
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The semantic variant of primary progressive aphasia (PPA), semantic dementia (SD),
features language difficulties with fluency, anomia, and single-word comprehension and is
most commonly associated with TDP-43 pathology. Patients with SD show asymmetrical
atrophy of the temporal lobes, most commonly left > right, particularly in anterior and
inferior temporal lobe regions, including the temporal pole, perirhinal cortex, anterior
fusiform, hippocampus, and amygdala (Fig. 3A).13,16,187–189 More severe patients may also
show atrophy in parts of the superior and posterior left temporal lobe, regions of the left
frontal lobe, left insula, and left anterior cingulate, as well as increasing atrophy in the right
temporal lobe.13,190 Longitudinally, SD patients show progressive atrophy of the left
temporal lobe, followed by the right temporal lobe.13,191 DTI techniques have shown
reduced white matter integrity in bilateral temporal lobes (left > right), including in the
inferior longitudinal fasciculus, left parahippocampal white matter, and in the uncinate
fasciculus, with the lowest FA values seen in the left anterior temporal lobe.125,174,175 fMRI
studies of SD patients have shown altered activation patterns during a variety of tasks,
including during sound processing, autobiographical memory, and surface dyslexia.192–194

Resting-state functional connectivity studies have also shown decreased connectivity of
frontotemporal and frontolimbic circuitry, but increased connectivity in local networks of
the prefrontal cortex in SD patients relative to HC.195 SPECT and PET studies of SD
patients demonstrated reduced perfusion and metabolism primarily in the left anterior
temporal lobe,13,120,126 while a study with [11C]PiB showed minimal binding.126

The nonfluent variant of PPA, progressive nonfluent aphasia (PNFA), is more
heterogeneous than SD featuring speech production impairment with agrammatism,
phonemic errors, anomia, sentence comprehension impairment, and potentially apraxia of
speech. Progressive nonfluent aphasia can be caused by either tau or TDP-43 pathology, the
latter of which does not show apraxia of speech.13 Patients with PNFA show atrophy
primarily in anterior perisylvian regions, including in the left inferior frontal lobe, insula,
and premotor cortex, with further involvement of other frontal lobe regions, the temporal
and parietal lobes, as well as the caudate and thalamus in later disease stages (Fig.
3C).13,16,190,196,197 Interestingly, PNFA patients with underlying Pick’s disease (tau)
pathology have more severe temporal lobe atrophy than other forms, while those with a
GRN mutation (TDP-43 pathology) show notable atrophy in the left lateral temporal
lobe.17,196 DTI studies in PNFA patients demonstrated moderate decreases in white matter
integrity relative to HC in the left arcuate fasciculus, most especially in the frontoparietal
component, in the superior motor pathway, and in left perisylvian, inferior frontal, insular,
and supplemental motor area regions.125,174,175 A study utilizing fMRI in PNFA patients
demonstrated reduced activation in the left inferior frontal lobe during sentence reading and
comprehension relative to HC.198 FDG PET studies have demonstrated hypometabolism in
left inferior frontal gyrus, frontal operculum, insula, premotor cortex, and supplementary
motor area in PNFA patients. 11,199,200 Studies with [11C]PiB showed minimal binding in
patients with PNFA, however, some signal was observed in those with underlying Pick’s
disease pathology. 126,199 Finally, PNFA patients show reduced striatal dopaminergic signal
with a tracer targeting pre-synaptic dopaminergic transporters.201

Frontotemporal dementia with motor symptoms has multiple forms, including CBD, PSP,
FTD with motor neuron disease (FTD-MND), and FTD with ALS (FTD-ALS). These
diseases can present with behavioral or language symptoms (typically PNFA), but usually
they present with behavioral symptoms. However, all of these disorders also feature motor
dysfunction. Corticobasal degeneration and PSP are caused by tau pathology, while FTD-
MND and FTD-ALS are associated with TDP-43 pathology. Structural imaging studies in
CBD and PSP have shown significant atrophy in the posterior frontal cortex in both
disorders, with more atrophy in the basal ganglia and faster longitudinal decline in whole
brain volume in CBD than PSP.17,166,202,203 On the other hand, PSP may show more
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atrophy in the posterior frontal lobe white matter, brainstem, cerebellum, and midbrain than
CBD.17,202 Atrophy in CBD is also typically asymmetrical, while atrophy in PSP is usually
symmetrical.17,204 DTI studies in CBD demonstrated a loss of white matter integrity in the
motor thalamus, precentral and postcentral gyri, and bilateral supplementary motor area,
while PSP patients showed decreased white matter integrity in the anterior part of the
thalamus, cingulum, primary and supplementary motor areas, and frontoorbital white
matter.205 ASL studies in CBD have also shown reduced cerebral perfusion in the right
hemisphere.206 SPECT studies have demonstrated reductions in neurotransmitters in both
CBD and PSP, with reduced dopaminergic transporter binding in the striatum and reduced
acetylcholine transporter binding in the anterior cingulate and thalamus relative to
HC.207,208 FDG PET studies in CBD and PSP also showed cerebral hypometabolism, with
reduced metabolism in cortical regions contralateral to the physically affected side in CBD
and hypometabolism in the prefrontal cortex, caudate, thalamus, and mesencephalon in
PSP.209

FTD-MND and FTD-ALS are both primarily linked to TDP-43 pathology (although a few
FTD-MND patients may show FUS pathology) and feature behavioral or language deficits
along with motor dysfunction. Patients with FTD-MND or FTD-ALS show frontal and
temporal lobe atrophy, in addition to atrophy in the anterior cingulate, occipital lobe, and
precentral gyrus in FTD-ALS only.13,17,19,170,171,210 DTI studies have shown decreased
white matter integrity relative to HC in frontal and temporal regions, including the corpus
callosum, corticospinal tract, cingulum, inferior longitudinal fasciculus, inferior fronto-
occipital fasciculus, and uncinate fasciculus, which was associated with poorer performance
on cognitive tasks.211–214 Task-related and resting-state fMRI and functional connectivity
studies have also shown alterations in brain function and connectivity in patients with FTD-
ALS. Reduced activation in FTD-ALS patients measured using PET and fMRI was observed
in the frontal lobe, insula, and thalamus during an executive task and in the frontal lobe,
anterior cingulate, supramarginal gyrus, temporal lobe, and occipitotemporal regions during
a verbal fluency task.19,215–217 Reduced frontal activation during an emotional task was also
observed in nondemented FTD-ALS patients.211,218 Reorganization of motor networks and
decreased functional connectivity of a sensorimotor network, the DMN, and a frontoparietal
network were also seen in resting-state studies of FTD-ALS patients.19,219 Patients with
FTD-MND demonstrated reduced perfusion in SPECT studies in the frontal lobe, including
the premotor cortex and precentral gyrus, as well as the temporal lobe, cingulate, insula,
thalamus, and striatum. 220 Patients with FTD-ALS also show hypoperfusion in similar areas
of the frontal and temporal lobes, which correlates with impaired cognition.19,211,221,222

FDG PET studies in FTD-MND patients demonstrated reduced metabolism in the frontal,
anterior and medial temporal lobe, basal ganglia, and thalamus (Fig. 4),223,224 whereas
patients with FTD-ALS show hypometabolism in the frontal lobe, superior occipital lobe,
and thalamus.19,211,225 Patients with FTD-ALS also show reduced serotonin binding in the
frontal lobe, as well as a reduced number of GABA-A receptors in the frontal lobe, superior
temporal lobe, parietal lobe, occipital lobe, and insula.19,211,226 Some forms of FTD-MND
and FTD-ALS are caused by genetic mutations in chromosome 9 (C9ORF72) or GRN.17,18

Patients with FTD-MND carrying a mutation in chromosome 9 have more thalamic atrophy
than those with FTD-MND without the chromosome 9 mutation, as well as greater frontal
lobe, temporal lobe, insular, and posterior cortical atrophy than seen in FTD patients with
other mutations.227,228

In sum, neuroimaging studies in FTD have been useful for identifying and quantifying
structural and functional changes in the brain during disease, including frontal and temporal
atrophy, altered brain function and connectivity, reduced cerebral perfusion and metabolism,
and changes in neurotransmission. However, additional studies in larger cohorts to better
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characterize and differentiate the various FTD subtypes, as well as the overlap between FTD
and ALS, are needed.

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a progressive degenerative motor disease that
includes cognitive changes in up to 63% of patients (FTD-ALS, see above section).19

However, patients with ALS without cognitive symptoms also show structural and
functional changes in the brain, although usually these changes are less severe than those in
ALS patients with cognitive decline.19 Patients with ALS show progressive atrophy in
motor and extramotor regions, most especially in the precentral gyrus.211,229–231 DTI
studies demonstrated widespread loss of white matter integrity, including in the
corticospinal tract, the posterior limb of the internal capsule, cingulum, midposterior corpus
callosum, and in frontal and temporal white matter tracts, such as the uncinate fasciculus,
inferior longitudinal fasciculus, and inferior fronto-occipital white matter.211–213,232–234

Functional MRI studies have shown altered brain activation in ALS patients during motor
tasks, including increased activation in motor and premotor areas, the supplementary motor
area, inferior parietal lobes, superior temporal lobes, and cerebellum during movement and
increased activation in basal ganglia, cerebellum, and brainstem during motor
learning. 211,235–238 During a sensory task, patients with ALS had reduced activity in
primary and secondary sensory areas but increased activation in associative sensory
areas.211,239 Altered activation during emotional processing in nondemented ALS patients
was also seen, with increased activation in the left hemisphere but reduced activation in the
right frontal lobe.218 Changes in functional connectivity in patients with ALS have also been
observed. Studies have found mixed findings, with decreased connectivity of a sensorimotor
network, the DMN, and an interhemispheric motor network seen in some studies but
increased connectivity in sensorimotor, premotor, prefrontal cortex, and thalamic networks
seen in other studies.211,219,240,241 MRS studies have shown alterations in patients with
ALS, including decreased NAA and increased choline, glutamate, glutamine, and mIns in
the corticospinal tract, posterior limb of the internal capsule, and periventricular white
matter, as well as a decreased NAA/choline ratio in the thalamus, basal ganglia, middle
cingulate, and frontal and parietal lobes.211,242–245 SPECT and PET studies in ALS have
observed reduced cortical perfusion and metabolism, which was associated with reduced
cognition even in nondemented ALS patients. 211,246–248 Dopaminergic and GABAergic
cell loss in the basal ganglia and substantia nigra has also been reported. 211,226,249 Finally,
an increase in binding of a PET tracer that labels activated microglia, [11C]PK-11195, was
observed in ALS patients in the corticospinal tract and extramotor regions with the greatest
binding observed contralateral to the physically affected side.211,250,251

Neuroimaging studies in ALS, with and without concurrent cognitive symptoms, have
shown notable changes in brain structure and function likely due to ongoing
neurodegeneration. Future studies designed to investigate additional changes in ALS and
FTD-ALS patients will help to expand the understanding of these diseases.

Parkinson’s Disease/Dementia with Lewy Bodies
Parkinson’s disease (PD) is a degenerative motor disease that may or may not feature
cognitive impairments. However, up to 80% of PD patients will eventually develop
cognitive symptoms. 21 Pathological and clinical differences between Parkinson’s disease
with dementia (PDD) and dementia with Lewy bodies (DLB) are minimal and subject to
debate. Thus, imaging findings in these disorders (PDD/DLB)will be discussed together,
followed by a discussion of imaging in PD without dementia. Patients with PDD/DLB show
fluctuations in attention, executive function, and higher order visual function, in addition to
motor symptoms which are the result of widespread deposition of α-synuclein. Structural
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imaging studies have shown widespread atrophy in cortical and subcortical regions in
patients with PDD/DLB, including in the temporal, parietal, and frontal lobes, in the MTL
(hippocampus, amygdala, entorhinal cortex), basal ganglia, thalamus, hypothalamus,
substantia nigra, insula, and occipital lobe.11,20,21,181,252–257 Although atrophy patterns are
similar in PDD and DLB, some studies have suggested increased fronto-temporal atrophy
but less caudate atrophy in DLB patients relative to PDD.20,258,259 In addition, amyloid
positive PDD/DLB patients show more cerebral atrophy than PDD/DLB patients who are
amyloid negative.20,258,260 Longitudinally, patients with PDD/DLB show faster rates of
cerebral atrophy than PD patients without dementia and HC, particularly in regions of the
medial and lateral temporal lobe, as well as occipitotemporal areas.20,21,203,258,261,262 DTI
studies in PDD/DLB demonstrated reduced white matter integrity in the frontal, temporal,
and parietal lobes, pons, thalamus, precuneus, caudate, corpus callosum, and inferior
longitudinal fasciculus.20,128,181,263–267 Some studies again showed greater pathology in
DLB than PDD, with more reduced FA in the bilateral posterior temporal lobe, posterior
cingulate, and bilateral visual association areas in DLB.176,263 MRS studies in PDD patients
have shown reduced NAA/creatinine and glutamine/glutamate ratios in the posterior
cingulate and bilateral hippocampus.20,268–270 Studies of patients with PDD/DLB utilizing
fMRI techniques demonstrated reduced activation in the lateral occipitotemporal lobe during
visual motion and in the ventral occipitotemporal lobe during face matching, but increased
activation in the superior temporal sulcus during the latter task.20,271 Reduced activation in
visual areas was also seen during presentation of a simple visual motion stimuli.272

Alterations in brain activation during executive function paradigms in patients with PDD/
DLB have also been observed, although mixed findings have been reported including
increased activation and decreased activation in the prefrontal cortex during various
tasks.252,273 Resting-state functional connectivity studies have also shown changes in brain
connectivity in patients with PDD/DLB, including reduced global and local cortico-cortical
connectivity.181 Other studies have shown altered connectivity of the precuneus, with
increased connectivity of the precuneus with regions of the dorsal attention network and
putamen, but decreased connectivity of the precuneus with the DMN and visual cortices.274

ASL and SPECT studies have shown reduced cortical perfusion in posterior cortical areas in
PDD/DLB patients, including in occipital and temporoparietal regions.11,129,272,275–277

Hypometabolism has also been reported in FDG PET studies of PDD/DLB patients,
particularly in the basal ganglia, cerebellum, and frontal, temporal, parietal, and occipital
lobes with relative sparing of metabolism in the MTL.11,21,128,275,278–280 Furthermore,
occipital lobe hypometabolism was associated with visual hallucinations in DLB
patients. 253 PET studies with amyloid tracers (i.e., [11C]PiB) have shown positive amyloid
binding in ~40% of PDD/DLB patients (50% of DLB, 30% of PDD), with a similar
anatomical distribution to the pattern seen in AD patients.131,260 Reduced dopaminergic
transporter binding in the basal ganglia has also been observed in PDD/DLB patients, with
decreased binding in the caudate, which is associated with cognitive symptoms, and
decreased binding in the putamen, which is associated with motor symptoms (Fig.
5).21,131,253,258,281,282 Decreased cholinergic neurotransmission has also been seen in
patients with PDD/DLB throughout the cortex, particularly in medial occipital and posterior
cortical regions, which is more severe than changes seen in PD patients without dementia
and AD patients.21,128,131,258,283–287

Patients with PD without dementia also show atrophic and functional brain changes,
although they tend to be milder than those seen in PDD/DLB patients. Some studies have
shown gray matter atrophy in the left anterior cingulate, left gyrus rectus, left
parahippocampal gyrus, and right frontal lobe in PD patients, while other studies show
minimal or no atrophy.252 Mild hippocampal atrophy has also been observed, although
significantly less atrophy than seen in PDD/DLB and AD.21,288–290 Further, patients with
PD show a slightly faster cortical atrophy rate than HC, particularly in regions of the
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cingulate, occipitotemporal lobe, insula, hypothalamus, nucleus accumbens, and
hippocampus.21,291 Studies utilizing PET techniques have most commonly been reported in
PD. Using FDG PET, patients with PD showed reduced metabolism in frontal, temporal,
parietal, and occipital lobes, as well as in the basal ganglia and thalamus.21,278,292 Parietal
and frontal metabolism also shows longitudinal decreases over time.21,293 However, PET
studies with [11C]PiB have shown no significant binding in PD patients without
dementia.131 PET studies evaluating different neurotransmitter systems have also been
widely used in PD patients, including assessments of dopaminergic, serotonergic,
cholinergic, GABAergic, and opioid neurotransmission. Reduced dopaminergic
neurotransmission in the striatum has been observed in patients with PD, with the most
significant changes in the putamen contralateral to the physically affected side (Fig.
5).2,283,294,295 Early in the disease, increased dopaminergic receptor binding has been
observed in the putamen, frontal lobe, anterior cingulate, and globus pallidus.283,296,297

However, later in the disease course reduced dopaminergic receptor binding is also seen in
the thalamus, anterior cingulate, and frontal and temporal lobes.283,298,299 Reduced
serotonergic neurotransmission in the orbitofrontal cortex, caudate, putamen, and midbrain
has also been reported in patients with PD.283,300 Furthermore, ACh neurotransmission is
reduced in cortical regions in PD, even early in disease, while increased ACh receptors have
been reported in the frontal and temporal lobes.283,284,287,301 Decreased GABAergic
neurotransmission has also been reported, primarily in the pons and putamen,302 while
striatal, thalamic, cingulate, and frontal areas show reduced opioid
neurotransmission. 283,303 Finally, increased microglial activation has been observed in
patients with PD in both striatal and extrastriatal regions.283,304,305

Overall, studies in patients with PD with or without dementia, as well as DLB patients, have
shown significant atrophic, functional, and molecular brain changes. Additional studies in
early stage PD-related disorders before cognitive changes will help further the understanding
of disease development in relation to phenomenology, as well as the potential for
neuroimaging biomarkers to be used in clinical assessment and monitoring of treatments.

Huntington’s Disease
Huntington’s disease (HD) is an autosomal dominantly inherited progressive degenerative
disease causing motor and cognitive abnormalities. Progressive reductions in striatal volume
can be seen in both presymptomatic (pre-HD) and symptomatic (“manifest”) HD patients,
even up to 15 to 20 years before the clinical symptoms appear (Fig. 6).306–310 Atrophy of
the putamen is greater than that in the caudate early in the disease and later atrophy expands
to the globus pallidus and nucleus accumbens. 306,308,309,311 This striatal atrophy is
associated with impaired motor and cognitive function.308,311 Atrophy is also seen in other
gray matter and white matter regions in both pre-HD and manifest HD, including cerebral
thinning throughout the cortex, atrophy in the cingulate and thalamus, and atrophy of the
white matter tracts near the striatum, as well as the corpus callosum, posterior white matter
tract, and frontal lobe white matter.306,312–314 Subcortical and cortical atrophy, specifically
in the left superior frontal gyrus, left inferior parietal lobule, and bilateral caudate, has also
been shown to be associated with impaired saccade eye movement.315 Longitudinally, faster
rates of atrophy in the striatum are observed in both pre-HD and manifest HD patients,
whereas greater whole brain atrophy rates are observed in manifest HD patients
only.306,310,312 DTI studies have shown reduced white matter integrity in the frontal lobe,
precentral gyrus, postcentral gyrus, corpus callosum, anterior and posterior limbs of the
internal capsule, putamen, and globus pallidus in patients with pre-HD and manifest
HD.316–318 fMRI studies have demonstrated task-induced activation differences in pre-HD
and manifest HD patients in the striatum, cingulate, and premotor regions during several
cognitive tasks.319 Furthermore, decreased activation of the primary motor cortex, medial
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premotor regions, prefrontal cortex, and parietal lobe, along with increased insula activation
were observed during a motor task.22 fMRI studies of antisaccade eye movement have also
shown altered brain activation in task-related regions.320 Studies of resting-state
connectivity have shown reduced DMN connectivity in the anterior prefrontal cortex,
inferior parietal lobe, and posterior cingulate, as well as reduced connectivity between
cortical motor regions and the striatum in pre-HD patients.321,322 Functional connectivity
during a working memory task was also shown to be altered in patients with pre-HD in
regions of the prefrontal cortex, striatum, and frontoparietal regions.319 PET studies have
also shown alterations in brain metabolism, dopaminergic neurotransmission, and activated
microglia in pre-HD and manifest HD patients. Reduced brain metabolism is observed in
pre-HD patients, which may be useful for detecting and monitoring disease
progression.2,323,324 Reduced dopaminergic receptor binding was observed in both cross-
sectional and longitudinal studies in pre-HD and manifest HD patients.2,325,326 The
longitudinal decline in dopaminergic receptors was also associated with decline in both
cognition and motor function.2,327–329 Studies utilizing [11C]PK-11195 have shown
increased activated microglia in the striatum, extrastriatal regions, and the hypothalamus in
both pre-HD and manifest HD patients, which correlated with reduced dopaminergic
receptor binding, increased motor dysfunction, and predicted time of clinical onset.2,330–333

Overall, neuroimaging studies in patients with HD have shown marked changes in brain
structure and function, particularly in striatal regions. Alterations observed in pre-HD
patients are particularly interesting, as studies in this population allow for exploration of the
progression of disease before the onset of clinical symptoms. Future studies exploring
neuroimaging measures in both pre-HD and HD patients will assist with better clinical
diagnosis, even prior to disease onset, and monitoring of potential therapeutics in the context
of early intervention.

Multiple Sclerosis
Multiple sclerosis (MS) features motor, sensory, visual, and autonomic system dysfunction
due to progressive lesions in cerebral gray matter and whitematter.24 Patients can present
with various forms including relapsing-remitting MS (RRMS), many of whom later develop
secondary progressive MS, primary progressive MS, and clinically isolated MS syndrome.
The most commonly reported neuroimaging feature in MS is focal hyperintense white
matter lesions on T2-weighted, FLAIR, and contrast-enhanced MRI scans.334,335 T1-
weighted hypointense lesions (“black holes”) have also been reported. 336 Patients with MS
also show atrophy of the gray matter and white matter, particularly reduced gray matter in
the cerebellum, thalamus, subgenual gyrus, middle cingulate cortex, superior frontal lobe,
and bilateral temporal and occipital lobes.334 Gray matter atrophy is predictive of cognitive
symptoms and long-term disability.334,335,337 DTI techniques have also shown damage in
normal appearing gray matter and white matter, as well as lesion tissues.335 Loss of
whitematter integrity in the corpus callosum, corona radiata, superior and inferior
longitudinal fasciculi, internal and external capsule, posterior thalamic radiations, cerebral
peduncles, and superior cerebellar peduncles was observed and correlated with both motor
and cognitive symptoms.334 In normal appearing white matter, widespread abnormalities are
observed, even in the earliest stages, which progress as the disease worsens.338–340 Changes
in normal-appearing gray matter appear later in the disease course, with increased diffusivity
and increased or decreased FA depending on phase of gray matter inflammation observed in
later-stage patients. 338,341,342 In white matter tissue with lesions, significant alterations in
white matter integrity are observed in all MS forms except for in primary progressive
MS.338,343,344 However, gray matter lesions actually show an increase in FA, which may
reflect more inflammation.338,345
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fMRI studies in MS patients have shown significant alterations in brain activation during
cognitive tasks, including during tests of working memory, episodic memory, processing
speed, and attention. MS patients show increased activation in the right hemisphere, most
especially in the prefrontal cortex, during working memory tasks, as well as widespread
increased activation during episodic memory tasks, which was positively associated with
increased lesion load.346–350 A similar finding of increased activation in the right prefrontal
cortex was seen during a test of processing speed.351 These increases in activation may
represent compensatory changes to maintain clinical performance, as patients with
performance deficits actually show decreased brain activation during episodic memory.348

In tests of attention, patients showed variable changes in brain activation dependent on
clinical stage, with mildly impaired patients showing increased activation and decreased
activation observed in those with more severe cognitive impairment.352,353

Resting-state studies have also shown alterations in connectivity in patients with MS,
although the findings have been mixed. In patients with primary and secondary progressive
MS, decreased connectivity of the DMN is observed, particularly in the anterior cingulate.
This decreased connectivity in the anterior cingulate is associated with functional
impairments and DTI abnormalities in the corpus callosum and cingulum on DTI
measures.354,355 A study in RRMS patients showed decreased connectivity of the salience,
working memory, sensorimotor, and visual networks, as well as the DMN, increased
connectivity of the auditory network, and both increases and decreases in the connectivity of
the executive control network.354,356 Decreased connectivity was correlated to the extent of
disability and lesion load.354,356 Altered connectivity between networks was also observed
with decreased connectivity between the executive control network and the DMN, but
increased connectivity between the executive control network and the salience
network.354,356 However, other studies have primarily shown increased connectivity in
various brain networks. For example, increased connectivity in several motor, sensory, and
cognitive networks was observed in RRMS patients, with increased connectivity in
frontoparietal networks associated with poorer clinical status.354,357 Increased connectivity
in the DMN, an attention network, and cognitive control network have also been shown to
be associated with impaired cognition.354,358 However, a different study demonstrated that
increased connectivity in the cerebellum, middle temporal gyrus, occipital pole, and angular
gyrus were associated with better cognition.354,359 Reorganization of the DMN has also
been reported in RRMS patients, with decreased connectivity in midline regions (i.e.,
anterior and posterior cingulate) and increased connectivity in peripheral posterior brain
regions.354,360 The conflicting findings in these studies may be related to the type of MS and
disease severity of the patient population studied, as well as the brain locations evaluated.

PET studies in patients with MS have shown changes in cerebral perfusion and metabolism,
as well as increased microglial activation. Reduced cerebral blood flow in gray matter and
white matter is observed in MS patients, which correlates with impaired cognition and a
higher level of disability.2,361 Hypometabolism is also observed in the thalamus, deep
cortical gray matter structures, and the frontal lobe.2,362 This hypometabolism is associated
with impaired cognition, as well as corpus callosum atrophy (left hemisphere more
associated than the right).2,362,363 In longitudinal studies, decreasing cortical metabolism
was observed in MS patients, which was associated with disease progression. 2,364 Studies
with [11C]PK-11195 have shown a widespread pattern of activated microglia in both lesion
tissue and normal appearing gray matter and white matter.2,365–367 The increased microglial
activation observed in cortical gray matter was associated with increased clinical
disability2,368

Studies of neuroimaging biomarkers in MS patients have routinely shown the presence of
cerebral lesions in gray matter and white matter regions, along with brain atrophy and
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alterations in brain function and molecular systems. Future studies in the earliest phases of
MS will allow further exploration of the development and progression of the disease, as well
as the efficacy of targeted treatments.

HIV-Associated Neurocognitive Disorder
HIV-associated neurocognitive disorder (HAND) primarily involves impairments in
attention, executive function, motor speed, and memory. Structural MRI studies of patients
with HAND showed gray matter atrophy throughout the cerebral cortex, particularly in
anterior cingulate, lateral temporal cortex, primary motor and sensory cortices, and frontal
and parietal lobes.29,30,369–372 White matter atrophy and abnormalities are also
common.30,369,370 Some patients present with progressive multifocal leukoencephalopathy
characterized by focal white matter lesions typically in subcortical regions.373,374 Motor and
cognitive symptoms are also associated with decreased basal ganglia volume.370,375 DTI
studies have shown that reductions in white matter integrity in the cortical white matter,
corpus callosum, and corona radiata are associated with cognitive impairment.376–378 MRS
studies of patients with HAND have shown alterations in brain metabolites, including
decreased NAA/Creatinine (Cr) and increased choline, mIns, choline/Cr, and mIns/Cr in the
frontal white matter and basal ganglia.369,375 In addition, HAND patients with concurrent
hepatitis C infection show greater increases in mIns/Cr in the basal ganglia than those with
only HAND.379 fMRI studies have shown both decreased and increased activation during
various cognitive and motor tasks. Specifically, decreased activation during a motor task
was observed in HAND patients, while increased activation was observed during attention
and working memory tasks in the frontal and parietal lobes.380–382 Increased activation was
also observed in HAND patients during episodic memory recognition, while decreased
activation was observed during episodic encoding in the MTL.383 Finally, decreased
activation was observed in the left caudate, left dorsolateral prefrontal cortex, and bilateral
ventral prefrontal cortex, while increased activation was observed in the right postcentral/
supramarginal gyri during an executive function task.384 Functional connectivity has also
been evaluated in patients with HAND both during a cognitive task and at rest. A study of
task-related connectivity during an executive function task showed reduced connectivity in
the caudate, prefrontal cortex, and basal ganglia in HAND patients, while increased
connectivity was observed in the caudate and anterior parietal lobe.384 Resting-state
connectivity in the DMN, salience network, and control network is also reduced in
patientswith HAND.385 Furthermore, decreased internet work connectivity has been
observed, particularly between the DMN and a dorsal attention network.385 Studies of
perfusion with SPECT and MRI techniques have shown hypoperfusion in patients with
HAND, particularly in the inferior lateral frontal lobe, inferior medial parietal lobe, and in
other frontoparietal regions.386,387 This hypoperfusion was associated with dementia
severity.387 Alternatively, hyperperfusion was observed in the posterior inferior parietal
white matter and in deep gray matter structures.386,388 Hypometabolism in the cerebral
cortex and hypermetabolismin the basal ganglia was also observed in HAND patients using
[18F]FDG PET.389–391 Another study observed asymmetrical glucose metabolism in the
prefrontal cortex and premotor regions in HAND patients. 392 Finally, a PET study utilizing
tracers that bind to dopamine transporters (DAT) or D2 receptors observed decreased DAT
binding in the putamen and ventral striatum but no difference in D2 receptor binding in
HAND patients relative to HC.393 The observed reductions in DAT binding were associated
with disease severity.393

HIV-associated neurocognitive disorder is relatively common in HIV-positive individuals.
Imaging studies of this disorder have found significant abnormalities in brain structure,
function, perfusion, glucose metabolism, and neurotransmission which likely underlie the
observed clinical dysfunction. The advent of retroviral therapies has been shown to alter the
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observed brain changes associated with HAND; however, additional studies are needed.
Additional studies designed to evaluate the clinical significance of imaging techniques in
various HIV-positive populations, particularly in those who are treated with retroviral
therapies, are ongoing and will provide important information about the nature of cognitive
dysfunction in these individuals.

Prion Protein Diseases
Degenerative disorders and dementias caused by the accumulation of abnormal prion
proteins can occur sporadically (sporadic CJD), due to exposure to food (variant CJD) or
tissues (iatrogenic CJD) containing the abnormal prion protein, or due to a genetic variation
in the prion protein gene (PRNP) (genetic CJD, Gerstmann-Straussler-Scheinker disease
[GSS], fatal familial insomnia [FFI]). These diseases feature cognitive and motor
dysfunction, although other presentations with various symptoms are possible. Imaging
studies in sporadic CJD have primarily utilized DWI techniques to evaluate diffusion in gray
matter and white matter structures. Sporadic CJD patients show increased diffusivity in the
caudate, putamen, cerebellum, globus pallidus, and regions of the cerebral gray matter and
white matter (Figs. 7A, –7B).1,394–400 The thalamus may also show abnormalities in some
forms of sporadic CJD. Changes in the basal ganglia are associated with a faster disease
progression.1,401 However, these alterations may disappear as the disease progresses in the
presence of more severe atrophy.396,399,402 DWI and T2-weighted imaging studies in variant
CJD show abnormalities in the pulvinar thalamus and sometimes in the dorsomedial
thalamic nuclei (Figs. 7E-H).1,394,395,403–405 Other alterations are seen in the periaqueductal
gray, caudate, and parieto-occipital white matter.1,395,403 Similar to sporadic CJD, these
alterations may disappear as the disease progresses and atrophic changes expand.403 Studies
utilizing MRS techniques have shown reduced NAA and increased mIns in patients with
variant CJD, likely reflecting ongoing neurodegeneration. 1,394,395,406,407 SPECT studies
have also shown cortical hypoperfusion in patients with variant CJD.395,408 Iatrogenic CJD
patients show increased diffusion on DWI and hyperintensities on T2-weighted scans in
regions of the caudate head, putamen, cortical gray matter, and sometimes in the cerebellum
and thalamus.1,394,395,409 Longitudinally, iatrogenic CJD patients show progressive atrophy
associated with disease progression.395,410 MRS studies in iatrogenic CJD also
demonstrated reduced NAA in the cerebellum.1,407,411 Genetic prion diseases also show
changes in MRI and PET studies. Altered diffusion in the striatum, thalamus, and frontal and
occipital cortices was observed in most genetic CJD patients.1,395 MRS studies have also
shown increased levels of mIns, but no change in NAA level in the cerebral cortex and basal
ganglia in genetic CJD.1 Patients with GSS and some genetic CJD showed mixed results
using structural MRI measures, with either no atrophy or generalized cerebral and cerebellar
atrophy observed (Figs. 7C, –7D).1,395,412–414 However, hyperintensities on T2-weighted
scans were commonly observed in the basal ganglia and posterior limb of the internal
capsule in GSS.1,395,415 MRS studies also showed increased mIns in the cortex and basal
ganglia of GSS patients.416 SPECT and FDG PET studies in GSS patients demonstrate
hypoperfusion in the cerebral cortex, most especially in the occipital lobe, and
hypometabolism in frontal, temporal, and parietal lobes, respectively.1,414,417,418 Patients
with FFI may or may not show mild cerebral atrophy, but often increased diffusion in the
thalamus is observed on DWI scans.1,395,407,419–421 MRS studies in FFI patients have also
shown decreased NAA and increased mIns in the thalamus. 1,421,422 Hypometabolism has
also been observed using FDG PET in the thalamus and cingulate of patients with FFI with
relative sparing of the occipital lobes.1,423

Despite being quite rare, prion diseases can result in pronounced and sometimes rapid
cognitive, motor, and clinical decline. Imaging studies in prion diseases have shown atrophy
and changes in gray matter and white matter diffusion, as well as altered metabolite levels
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and reduced cerebral perfusion and metabolism. Future studies to further explore these rare
diseases may provide additional insight into the pathology underlying prion diseases, as well
as monitoring of potential treatments.

Differential Diagnosis of Dementias
Differential diagnosis of degenerative conditions not associated with a known genetic
variant or other disease state (i.e., HIV) can sometimes be difficult due to overlapping
clinical symptoms. In diseases presenting without motor symptoms, such as late-onset AD,
atypical AD, and some forms of FTD, structural MRI and PET studies can often be helpful
in differentiating between diseases (Table 1). Specifically, patients with AD show
significant degeneration in the MTL, as well as in posterior brain regions (i.e., parietal lobe),
while patients with FTD show primarily frontal lobe and lateral temporal lobe degeneration,
with relative sparing of most parietal lobe regions. Furthermore, PET studies with amyloid
tracers will provide good delineation of AD/atypical AD and FTD syndromes, as AD
patients will typically show significant amyloid deposition and FTD patients usually will
not. Distinguishing between traditional late-onset AD and atypical forms of AD is most
commonly based on clinical symptoms, as domains other than memory tend to be more
affected in the atypical forms. However, structural MRI may also provide additional support
for specific diagnoses, with PCA patients often showing greater parietal and occipital
atrophy and logopenic aphasia showing more asymmetrical left posterior temporal and
temporoparietal atrophy than seen in traditional AD. Patients with CAA and VaD will also
present with more vascular abnormalities, including microbleeds/microhemorrhages, and
white matter lesions than seen in more typical late-onset AD patients. Furthermore, the
pattern of FDG PET hypometabolism in vascular dementia is less diffuse with patchy areas
corresponding to hypoperfusion compared with the pattern observed in AD patients, and
widespread amyloid deposition in pure vascular dementia without CAA is not commonly
observed.

Distinguishing between diseases associated with motor symptoms in the absence or presence
of cognitive symptoms can also be quite difficult. Frontotemporal dementia with motor
neuron disease and FTD-ALS both show cognitive and motor symptoms and are associated
atrophy and reduced perfusion/metabolism in frontal and temporal lobes. Differentiation of
these two diseases is probably not well assisted by neuroimaging techniques currently.
Parkinson’s disease dementia and DLB show greater basal ganglia and less MTL atrophy
than seen in typical AD patients, as well as decreased dopaminergic neurotransmission in
the striatum on PET or SPECT. Distinguishing PDD/DLB from FTD-MND/ALS using
neuroimaging can potentially be difficult, although PDD/ DLB patients tend to show more
posterior cortical atrophy and hypoperfusion/metabolism, particularly in the parietal and
occipital lobes, than seen in FTD-MND/ALS. Multiple sclerosis is characterized by the
notable white matter lesions on T2-weighted and enhanced MRI scans, which are not as
commonly seen in other degenerative disorders. Although MS is typically diagnosed at an
earlier age, differentiation of MS and other demyelinating disorders and microvascular
changes associated with aging or early VCI can be challenging in some cases. Finally,
sporadic and variant prion diseases can be distinguished from most other dementias by the
significant abnormalities seen in the thalamus relative to other areas of the brain, as well as
history and other clinical features.

Conclusion
Imaging studies of neurodegenerative diseases and dementias are highly informative
regarding structural, functional, and molecular brain changes underlying the observed
clinical symptoms. Often neuroimaging techniques can be helpful if not essential for
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differential diagnosis of various syndromes. Further studies with advanced MRI techniques
and future PET tracers for proteinopathies beyond amyloid (i.e., tau, α-synuclein, and
TDP-43)will likely provide even more information about pathology associated with the
various degenerative and dementing syndromes. In addition, neuroimaging techniques may
be useful in clinical trials of new therapeutics designed to treat these disabling and often
refractory disorders for both monitoring disease-related changes or as end-points to
complement current clinical outcome measures.
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Fig. 1.
Differences in atrophy, glucose metabolism, and amyloid deposition between patients with
Alzheimer’s disease (AD), patients with mild cognitive impairment (MCI), and healthy
older adults (HC). The pattern of differences between AD, MCI, and HC is demonstrated in
(A) brain atrophy (measured using T1-weighted structural magnetic resonance imaging
[(MRI]), (B) glucose metabolism (measured using [18F] fluorodeoxyglucose positron
emission tomography [FDG PET]), and (C) amyloid accumulation (measured using
[11C]Pittsburgh compound B positron emission tomography [PiB PET]). Relative to HC,
patients with AD show significantly reduced brain gray matter density throughout cortical
and subcortical regions (A; AD versus HC), reduced glucose metabolism in regions of the
medial and lateral parietal lobe, medial and lateral temporal lobes, and medial and lateral
frontal lobes (B; AD vs. HC), and greater amyloid accumulation throughout the cerebral
cortex (C; AD vs. HC). Patients with MCI also show focal changes relative to HC, including
reduced gray matter density in the medial and lateral temporal lobes (A; MCI vs. HC),
reduced glucose metabolism in the medial and lateral temporal lobes, medial and lateral
parietal lobes, and frontal lobe (B; MCI vs. HC), and greater amyloid deposition in the
frontal, parietal, and temporal cortices (C;MCI vs. HC). The comparisons of these measures
between patients with AD to patients with MCI also show interesting patterns of relating to
disease severity. Patients with AD show significantly more gray matter atrophy in regions of
the medial and lateral temporal lobes and parietal lobes (A; AD vs. MCI) and reduced
glucose metabolism in the medial and lateral temporal lobes, medial and lateral parietal
lobes, and frontal lobe (B; AD vs. MCI) relative to MCI patients. However, only minor
differences in amyloid are observed between AD and MCI patients (C; AD vs. MCI),
suggesting the majority of amyloid accumulation occurs before a participant has reached a
clinical diagnosis of MCI. This figure was generated using data from the Alzheimer’s
Disease Neuroimaging Initiative cohort and utilizing traditional methods that have been
previously described.39,424,425 Panel (A) is displayed at a voxel-wise threshold of p < 0.01
(family-wise error correction for multiple comparisons) and minimum cluster size (k) = 50
voxels and includes 189 AD, 396 MCI, and 225 HC participants; panel (B) is displayed at a
voxel-wise threshold of p < 0.001 (uncorrected for multiple comparisons) and k = 50 voxels
and includes 97 AD, 203 MCI, and 102 HC participants; panel (C) is displayed at a voxel-
wise threshold of p < 0.01 (uncorrected for multiple comparisons) and k = 50 voxels and
includes 25 AD, 56 MCI, and 22 HC participants. (Reproduced from Risacher et al426)
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Fig. 2.
Differences in atrophy between traditional Alzheimer’s disease and atypical Alzheimer’s
disease. (A) Significant but generalized cortical atrophy, as well as dramatic volumetric
reductions in the medial temporal lobe (MTL) are observed in traditional late-onset
Alzheimer’s disease (AD) (arrows). However, different patterns of atrophy are observed in
(B) posterior cortical atrophy (PCA) and (C) logopenic aphasia. (B) Patients with PCA show
significantly more atrophy in posterior cortical regions (parietal lobe, occipital lobe) than
seen in other forms of AD (arrows). (C) Patients with logopenic aphasia show relatively
localized atrophy in the posterior temporal lobe and temporoparietal regions with greater
atrophy observed in the left hemisphere than in the right (arrows). (Adapted from McGinnis
et al11)
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Fig. 3.
Atrophy in frontotemporal dementia (FTD) subtypes. (A) Significant left anterior temporal
lobe atrophy is observed in the semantic dementia variant of FTD (arrows), while bilateral
frontal and temporal lobe atrophy is seen in the (B) behavioral variant of FTD (arrows). (C)
Patients with progressive nonfluent aphasia show atrophy in the left inferior frontal, insula,
and anterior temporal lobe regions (left > right; arrows). (Adapted from McGinnis et al11)
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Fig. 4.
Hypometabolism in patients with frontotemporal dementia with motor neuron disease (FTD-
MND) relative to FTD without motor neuron disease and healthy older adults (HC). (A)
Significant bilateral frontal lobe hypometabolism, with relative sparing of the temporal lobe,
was observed in patients with FTD with motor neuron disease (FTD-MND) relative to HC.
(B) However, relative to FTD patients without motor neuron disease, FTD-MND patients
show reduced bilateral temporal lobe metabolism. (Adapted from Jeong et al224)
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Fig. 5.
Dopaminergic deficits in Parkinson’s disease (PD) relative to healthy adults. Reduced
dopaminergic neurotransmission is observed in patients with PD relative to healthy adults
(“healthy”), particularly in the posterior putamen (arrows). 123I-β-CIT labels the dopamine
transporter (DAT), which is located presynaptically on dopamine-releasing terminals. 11C-
DTBZ labels the vesicular monoamine transporter (VMAT) and 18F-dopa labels amino acid
decarboxylase (AADC). Both of these molecules are found in neuron terminals releasing
dopamine. Overall, these three positron emission tomography (PET) tracers provide
sensitive measures of the density of neuron terminals releasing dopamine in the striatum.
(Adapted from Brooks et al283)
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Fig. 6.
Atrophic changes in early Huntington’s disease (HD) relative to healthy adults. Significant
atrophy is seen in the dorsal caudate (dc), ventral caudate (vc), dorsal putamen (dp), and
hypothalamus (hy) of patients with HD relative to controls. Less atrophy is observed in the
ventral putamen (vp) and nucleus accumbens (acc). (Adapted from Kassubek et al427)
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Fig. 7.
Structural imaging changes in prion protein related diseases. (A) An axial T2-weighted
magnetic resonance image (MRI) of a patient with sporadic Creutzfeldt-Jakob disease (CJD)
shows a subtle increase in signal intensity in the left anterior putamen (arrow). (B) A
diffusion weighted image (DWI) also shows a more apparent hyperintense signal in the
bilateral caudate and left putamen. Patients with (C) genetic CJD and (D) Gerstmann-
Straussler-Scheinker disease show notable cortical and cerebellar atrophy. (E) An axial fluid
attenuated inversion recovery (FLAIR) image in a patient with variant CJD shows
hyperintense signal in the dorsomedial thalamus and pulvinar bilaterally, creating a hockey
stick pattern. (F) A similar pattern, although slightly less apparent, is seen on the DWI scan.
(G) An axial T2-weighted MRI of a patient with variant CJD is of limited diagnostic value
due to patient movement, while (H) the DWI scan shows prominent hyperintensity in the
bilateral dorsomedial thalamus and pulvinar. (Adapted from Macfarlane et al395)
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Statistics of highlighted entities of class BIM (page 1)

Entity Frequency

Manuscript 163
manuscript 54
SPECT 37
tomography 21
performance 8
Group 5
standard 3
image 3
article 2
event 2
group 2
Brief 1
interface 1
manual 1
report 1
contribution 1
Access 1
brief 1
spect 1



Statistics of highlighted entities of class NIFT (page 1)

Entity Frequency

atrophy 77
white matter 68
PET 46
MRI 45
frontal lobe 44
SPECT 37
gray matter 36
thalamus 36
perfusion 34
fMRI 31
white matter integrity 26
parietal lobes 22
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insula 20
parietal lobe 19
ASL 19
MRS 19
FDG PET 18
NAA 17
brain atrophy 16
striatum 16
putamen 15
magnetic resonance imaging 15
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Alzheimer disease 14
amyloid deposition 14
diffusion tensor imaging 14
positron emission tomography 14
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tau 13
cerebral cortex 12
hippocampus 12
hypoperfusion 11
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corpus callosum 11
cerebellum 11
structural MRI 10
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DWI 10
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PCA 8
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entorhinal cortex 7
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temporal lobe atrophy 6
Magnetic resonance imaging 6
precentral gyrus 6
functional MRI 6
Hypometabolism 6
voxel-based morphometry 6
magnetic resonance spectroscopy 6
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thalamic 5
cortical atrophy 5
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serotonin 5
Diffusion tensor imaging 5
globus pallidus 4
substantia nigra 4
amygdala 4
arterial spin labeling 4
Diffusion tensor MRI 4
functional magnetic resonance imaging 4
Structural MRI 4
Pittsburgh compound B 3
cerebellar atrophy 3
perfusion imaging 3
cerebral blood flow 3
Gray matter atrophy 3
microbleeds 3
Hippocampal 3
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cerebral glucose metabolism 3
microhemorrhages 3
white matter lesion 3
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cortical thickness 2
fractional anisotropy 2
FLAIR 2
Posterior cortical atrophy 2
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White matter 2
Functional MRI 2
Functional magnetic resonance imaging 2
Cortical thinning 2
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corpus callosum atrophy 2
resting-state fMRI 2
cortical thinning 2
PiB 2
Structural imaging 2
Cerebral blood flow 2
Frontal lobe 2
Amyloid imaging 2
arterial spin-labeling 2
Voxel-based morphometry 2
[18F]fluorodeoxyglucose 2
insular 2
voxel based morphometry 2
[18F] fluorodeoxyglucose 2
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cerebral blood volume 2
diffusion-weighted MRI 2
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cerebral metabolism 2
FDG-PET 2



Statistics of highlighted entities of class NIFT (page 4)

Entity Frequency

Fractional anisotropy 2
Hypoperfusion 2
N- acetylaspartate 2
atrophy of the left temporal lobe 1
temporal atrophy 1
positron-emission tomography 1
supramarginal gyrus 1
amyloid deposits 1
blood oxygenation level dependent (BOLD) 1
pattern of atrophy 1
(1) H-MRS 1
mean diffusivity 1
Alzheimer Disease 1
Arterial spin labeling 1
whole-brain atrophy 1
Diffusion-weighted imaging 1
hippocampal volume 1
temporal pole 1
Acetylcholine 1
bold fMRI 1
PIB 1
1H MRS 1
superior temporal sulcus 1
glucose hypometabolism 1
Cortical thickness 1
inferior frontal gyrus 1
N-acetylaspartate 1
middle temporal gyrus 1
rates of atrophy 1
Pittsburgh Compound B 1
entorhinal volume 1
default mode network connectivity 1
myo-inositol 1
Grey matter volume 1
cingulate gyri 1
Resting-state fMRI 1
left anterior temporal lobe atrophy 1
occipital lobe hypometabolism 1
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whole brain atrophy 1



Statistics of highlighted entities of class NIFT (page 5)

Entity Frequency

spect 1
blood oxygen levels 1
T2-weighted imaging 1
left caudate 1
structural magnetic resonance imaging 1
postcentral gyri 1
cerebrospinal fluid 1
postcentral gyrus 1
2-[(18)F]fluoro-2-deoxy-D-glucose 1
Amyloid deposition 1
Diffusion Tensor Imaging 1
left putamen 1
Dynamic susceptibility contrast MR imaging 1
cerebellar 1
Mean diffusivity 1
Cerebral perfusion 1
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Frontal lobe atrophy 1
single photon emission computed tomography 1
Hippocampal atrophy 1
fluid attenuated inversion recovery 1
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(PET) tracers 1
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atrophy of anterior temporal lobes 1
(FA) 1
white matter atrophy 1
superior frontal gyrus 1
resting-state functional magnetic resonance imaging 1
nucleus basalis of Meynert 1
parahippocampal gyrus 1
blood oxygenation 1
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Thalamic 1
Positron emission tomography 1
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near-infrared spectroscopy 1
oxygen metabolism 1
Cerebral glucose metabolism 1



Statistics of highlighted entities of class NIFT (page 6)

Entity Frequency
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Diffusion-weighted MRI 1
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Perfusion 1
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structural imaging 1
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neuronal integrity 1
PET ligands 1
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neocortical 1
blood oxygen level 1
CSF 1
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inferior parietal lobule 1
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Single photon emission computed tomography 1
whole brain volume 1
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Corpus callosum 1
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fusiform gyrus 1
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Medial temporal lobe atrophy 1
volumetric MRI 1
white-matter 1
11C PiB 1
diffusion tensor imaging tractography 1
[123I]-iodobenzovesamicol 1
diffusion tensor MR imaging 1
computerized tomography 1
subcortical atrophy 1



Statistics of highlighted entities of class QIBO (page 1)

Entity Frequency

disease 265
brain 120
activation 94
cortex 65
cerebral 65
Brain 64
cortical 62
diagnosis 30
Disease 26
hippocampal 17
striatum 16
blood 15
positron emission tomography 14
areas 14
Cerebral 12
hippocampus 12
volume 11
cerebellum 11
preclinical 10
Cortical 9
syndrome 8
cortices 8
area 6
neurotransmitter 6
magnetic resonance spectroscopy 6
Activation 5
correlation 5
density 5
hypothalamus 5
Cortex 4
Hippocampal 4
cells 4
cerebellar 4
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thickness 3
inflammation 3
cell 3
vascular disease 3
cerebral blood flow 3
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Statistics of highlighted entities of class QIBO (page 2)

Entity Frequency

ischemia 2
diffusion-weighted MRI 2
Cerebral blood flow 2
Functional MRI (fMRI) 1
Staging 1
amino acid 1
cell proliferation 1
positron-emission tomography 1
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single photon emission computed tomography 1
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myocardial infarction 1
Single photon emission computed tomography 1
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class 1
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Positron emission tomography 1
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sarcoma 1
model 1
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T2-weighted MRI 1
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Diffusion-weighted MRI 1
length 1
carbon 11 1
Volume 1
central nervous system 1
PET/CT 1
arterial spin labeling MRI 1
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