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Abstract. We recently introduced model-based “physiomarkers” of dynamic cerebral autoregulation and CO2 vasomotor
reactivity as an aid for diagnosis of early-stage Alzheimer’s disease (AD) [1], where significant impairment of dynamic
vasomotor reactivity (DVR) was observed in early-stage AD patients relative to age-matched controls. Milder impairment of
DVR was shown in patients with amnestic mild cognitive impairment (MCI) using the same approach in a subsequent study
[2]. The advocated approach utilizes subject-specific data-based models of cerebral hemodynamics to quantify the dynamic
effects of resting-state changes in arterial blood pressure and end-tidal CO2 (the putative inputs) upon cerebral blood flow
velocity (the putative output) measured at the middle cerebral artery via transcranial Doppler (TCD). The obtained input-
output models are then used to compute model-based indices of DCA and DVR from model-predicted responses to an
input pressure pulse or an input CO2 pulse, respectively. In this paper, we compare these model-based indices of DVR and
DCA in 46 amnestic MCI patients, relative to 20 age-matched controls, using TCD measurements with their counterparts
using Near-Infrared Spectroscopy (NIRS) measurements of blood oxygenation at the lateral prefrontal cortex in 43 patients
and 22 age-matched controls. The goal of the study is to assess whether NIRS measurements can be used instead of TCD
measurements to obtain model-based physiomarkers with comparable diagnostic utility. The results corroborate this view in
terms of the ability of either output to yield model-based physiomarkers that can differentiate the group of aMCI patients
from age-matched healthy controls.
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INTRODUCTION

There have been many studies that examined the
relation between cognitive impairment and cere-
brovascular dysfunction [1–20]. Although a possible
causative relation is still debated, the view that the
two conditions often co-exist is becoming widely
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accepted. These studies generally fall into three cat-
egories: (1) exploration of the molecular/cellular
biological mechanisms; (2) statistical analysis of phe-
nomenological clinical data; (3) quantitative analysis
of the relation between cognitive impairment and
measures of cerebral hemodynamics. The present
study falls in the latter category and seeks to exam-
ine the relation of quantitative measures of cerebral
hemodynamic function with clinical assessments of
amnestic mild cognitive impairment (MCI)—a tran-
sitional stage between normal aging and Alzheimer’s
disease (AD)—as well as elucidate the possible bio-
logical/physiological mechanisms that affect these
measures of cerebral hemodynamics. The motivation
for this work is provided by the view that the availabil-
ity of such quantitative and objective measures with
diagnostic and/or prognostic utility will improve the
clinical management of these two major public health
problems (MCI and AD) as well as other types of
neurodegenerative disease.

In the quest to discover possible relationshipa
between cognitive impairment and dysfunction of
cerebral hemodynamics, the dominant role has been
occupied by the quantitative analysis of cerebral
autoregulation [21–44] that concerns the change
in cerebral blood flow in response to changes in
systemic arterial pressure, or the study of cerebrovas-
cular reactivity [1, 2, 45–48] that concerns the change
in cerebral blood flow in response to changes in
blood CO2 tension. The latter study typically uti-
lizes models that account for the combined effects
of arterial pressure and CO2 changes upon cere-
bral blood flow velocity measured via transcranial
Doppler at the middle cerebral arteries. The assess-
ment of these two aspects of cerebral hemodynamics
employs either direct observations (e.g., the use of a
ratio of steady-state change in cerebral blood flow
in response to prolonged inhalation of CO2 as a
measure of cerebrovascular reactivity) or indirect
measures obtained through beat-to-beat data analy-
sis (e.g., correlation coefficients, cross-spectral and
phase-shift analysis, regression analysis, and model-
based indices). The most sophisticated methods of
analysis employ dynamic nonlinear or nonstation-
ary models in open-loop or closed-loop context [1,
2, 45–51], although the potential benefits of such
sophisticated (and typically more complex) analysis
remain to be evaluated with large cohorts.

Among the model-based approaches, a key distinc-
tion must be made between models that are static
versus dynamic, linear versus nonlinear, and single-
input (arterial pressure) versus dual-input (arterial

pressure and end-tidal CO2) for a flow output. The
latter is usually measured via transcranial Doppler
(TCD) in the middle cerebral arteries or via near-
infrared spectroscopy (NIRS) in a local vascular bed
composed of arterioles, venules, and capillary space
of the prefrontal cortex. The present study compares
the results of modeling the combined dynamic effects
of blood pressure and CO2 variations upon cerebral
flow measured concurrently in the two aforemen-
tioned ways.

In order to place the present study in the proper
context relative to the state of the art, we must clar-
ify the key definitions regarding static or dynamic
cerebral autoregulation and CO2 vasomotor reactiv-
ity. The term “cerebral autoregulation” was initially
used to indicate the homeostatic mechanism of con-
straining the steady-state cerebral flow changes in
response to steady-state changes in arterial blood
pressure (cf. Lassen’s seminal work [52]). This home-
ostatic mechanism results in a nonlinear steady-state
pressure-flow relation that exhibits a plateau in the
middle range of pressures and two rising/declining
segments above/below this middle range. Since this
nonlinear curve relates the steady-state values of pres-
sure and flow, it does not contain any information
about the dynamics of the relation between beat-to-
beat variations of blood pressure and flow. In our
work, we analyze resting-state spontaneous-variation
data to extract the dynamic pressure-flow relationship
(within the plateau of the aforementioned home-
ostatic curve), which contains information distinct
from the homeostatic curve of steady-state cerebral
autoregulation [25]. This is the reason why we use
the term “Dynamic Cerebral Autoregulation” (DCA)
to make clear that it is distinct from the celebrated
homeostatic curve.

The term “cerebrovascular reactivity” (CVR) is
traditionally used to indicate the property of the
cerebral vasculature to dilate in response to a steady-
state elevation of blood CO2 tension that is usually
induced through CO2 inhalation over several min-
utes (typically 5% CO2 over 5 or 10 min). The CVR
is measured as the ratio of the steady-state rise in
cerebral flow to the inhaled CO2 level. In our work,
we analyze resting-state spontaneous variations in
end-tidal CO2 (ETCO2) data (a proxy of changes
in arterial CO2 tension) concurrently with sponta-
neous changes in the arterial blood pressure (ABP).
Therefore, our models quantify the dynamic relation-
ship between CO2 variations and cerebral blood flow
velocity, measured via TCD or NIRS as indicated
above. This measure of the dynamic relationship
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between CO2 and cerebral flow (velocity) is termed
“Dynamic Vasomotor Reactivity” (DVR) to make
clear that it is understood as being distinct from the
commonly used CVR.

We have demonstrated in our previous work that
potentially useful measures of DCA and DVR can be
obtained from resting-state spontaneous data using
input-output models of the dynamic relationship (lin-
ear or nonlinear) between beat-to-beat changes in
ABP and cerebral blood flow velocity (CBFV) (DCA)
or between ETCO2 and CBFV (DVR) [1, 2, 49–51].
Our working hypothesis is that quantitative and reli-
able measures of these two key aspects of cerebral
hemodynamics (DCA and DVR) may contain valu-
able diagnostic and prognostic information for AD
or amnestic MCI, as well as other diseases with a
strong cerebrovascular component (e.g., hyperten-
sion, diabetes, stroke, traumatic brain injury). Initial
results from AD and amnestic MCI patients show that
these patients have impaired DVR relative to age-
matched controls, with the impairment in AD being
more severe than MCI [1, 2].

The key to the extraction of reliable model-based
DCA and DVR physiomarkers (using TCD or NIRS)
is the modeling methodology that has been pioneered
by our lab and employs Principal Dynamic Modes
(PDMs) [54, 55] to obtain reliable hemodynamic
models from the aforementioned measurements (typ-
ically over 5-6 min as dictated by clinical constraints).
This methodology will be applied in this paper using
TCD or NIRS beat-to-beat output data from amnes-
tic MCI patients and age-matched control subjects in
order to allow comparison of the two types of DVR
physiomarkers (obtained from TCD versus NIRS
output data).

METHODS

Data collection

Time-series data were collected over 5-6 min
in healthy controls and age-matched patients with
amnestic MCI, who participated voluntarily in this
study and signed the Informed Consent Form that
has been approved by the Institutional Review Board
of the UT Southwestern Medical Center and Texas
Health Presbyterian Hospital Dallas. The diagnosis
of amnestic MCI was based on modified Petersen
criteria [55]. The scores of the Mini-Mental State
Exam (MMSE) and the Delayed Logical Memory
Recall (DLMR) test were used to assess memory

function. The subjects were screened to exclude
clinical histories of stroke, major medical and psychi-
atric disorders, unstable heart diseases, uncontrolled
hypertension, and diabetes mellitus. The gender com-
position, the age (mean and standard deviation), and
the neuropsychological scores (MMSE and DLMR)
of the patients and controls with TCD and NIRS data
(separate sets) are given in Table 1.

All measurements are non-invasive, safe, and com-
fortable for the subjects. The data were collected in
a quiet, environmentally controlled laboratory under
resting seated conditions. After 20 min of rest, 5-
6 min recordings were made at an initial sampling
rate of 1 KHz for (1) ABP measured continuously
with finger photo-plethysmography (Finapres); (2)
ETCO2 measured via a nasal cannula using capnog-
raphy (Criticare Systems); (3) CBFV measured in the
middle cerebral arteries using a 2 MHz TCD probe
(Multiflow, DWL) placed over the temporal win-
dow and fixed at constant angle with a custom-made
holder; (4) tissue oxygenation index (TOI), defined
as the ratio of oxyhemoglobin to total hemoglobin
multiplied by 100, measured via NIRS (Hamamatsu).
Analysis was performed on usable data from two sets
of patients and controls: (1) 20 healthy controls (10
male and 10 female) and 46 age-matched patients
with amnestic MCI (17 male and 29 female) from
whom ABP, ETCO2, and TCD data were collected;
(2) 22 healthy controls (11 male and 11 female) and
43 age-matched patients with amnestic MCI (13 male
and 30 female), from whom ABP, ETCO2, and NIRS
data were collected. The reason for different num-
bers of MCI patients and controls with TCD or NIRS
data is the presence of occasional gaps in some data-
recordings that made them unusable for analysis. The
results of analysis from the two sets (TCD versus
NIRS data) were compared. The subjects in these two
sets who had both TCD and NIRS usable recordings
were 14 controls (5 female and 9 male) and 38 MCI
patients (25 female and 13 male).

Data preprocessing

The collected sampled data of ABP, ETCO2,
CBFV, and TOI were reduced to beat-to-beat time-
series data using averages over the respective R-R
intervals, after removal of occasional measure-
ment artifacts through application of hard-clipping
at ± 20% of average values. These beat-to-beat values
were re-sampled every 0.25 s via cubic-spline inter-
polation and were high-pass filtered (via subtraction
of a 2-min moving-average using a Hanning window)
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Table 1
Gender, age, and neuropsychological scores of controls and MCI patients with either TCD or NIRS data

Subjects Gender Age Mean MMSE Delayed Logical
Composition (SD) score† Memory Recall score††

20 Controls 10 male 65.88 (6.27) 29.17 (0.86) 14.28 (2.47)
with TCD data 10 female
46 Patients 17 male 66.47 (6.61) 29.09 (1.26) 8.62 (2.35)
with TCD data 29 female
22 Controls 11 male 68.15 (6.24) 29.23 (0.97) 14.59 (2.74)
with NIRS data 11 female
43 Patients 13 male 66.79 (6.34) 29.31 (0.90) 8.74 (2.22)
with NIRS data 30 female

†Mini-Mental State Exam (MMSE) scores are not available for two controls and one MCI patient with TCD data,
and for one MCI patient with NIRS data. ††Delayed Logical Memory Recall scores are not available for one control
and one MCI patient with TCD data, and for one MCI patient with NIRS data.

to remove the constant baseline and very low fre-
quency trends below 0.01 Hz. The ETCO2 data were
shifted by 1 s (to right) to compensate for the latency
of the measurement apparatus. Figure 1 shows illus-
trative time-series data (both raw and pre-processed)
for one of the control subjects over 5 min.

Modeling methods

For this modeling study, we employ the concept
of PDMs to obtain compact dynamic models of the
relationship between two input signals: ABP and
ETCO2, and one output signal: either CBFV or TOI.
The data collected from the control subjects in each
set of groups (with TCD or NIRS data) were used
to obtain the “global” PDMs that are utilized as the
common “functional basis” for the estimation of data-
based input-output models for the respective group of

patients and controls, which are subsequently used for
the computation of model-based indices that serve
as potential “physiomarkers” in this study. The use
of PDMs makes the obtained dynamic models com-
pact and allows their accurate estimation from short
data-records (5-6 min). The PDMs also facilitate the
physiological interpretation of the obtained models
as discussed below [42–46]. We briefly outline in
the Supplementary Material the PDM-based model-
ing approach, which is intentionally limited to linear
models in this study. For the many mathematical and
computational details of Volterra-type modeling that
forms the methodological foundation of PDM-based
modeling, the reader is referred to the monograph
[55] and to our recent publications presenting its
application to cerebral hemodynamics [1, 2].

Four “global” PDMs were found to be adequate
for each input in this application, whether the output

Fig. 1. Illustrative time-series data over about 5 min for one control subject, representing beat-to-beat spontaneous variations of CBFV (top
panel), TOI (2nd panel), ABP (3rd panel), and ETCO2 (bottom panel) before (left column) and after (right column) pre-processing. The
units are: cm/s for CBFV, % for TOI, and mmHg for ABP and ETCO2.
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Fig. 2. Illustrative example of the model prediction for the TCD-output model (left) and the NIRS-output model (right) in control subject
#1. It is evident that the prediction for the TCD-output model is better (NMSE of 26.6% for the TCD-output model versus 54.5% for the
NIRS-output model).

is CBFV or TOI. The employed global PDMs rep-
resent a common “functional basis” for efficient
representation of all kernels for all control subjects.
Although the global PDMs are common for all control
subjects, the estimated Gains that define the rela-
tive contribution of each global PDM output to the
model prediction are subject-specific and can be used
to characterize the cerebral hemodynamics of each
subject with regard to the specific output analyzed
(CBFV/TCD or TOI/NIRS). The same global PDMs
are used for the modeling of the patient data, so that
the resulting Gain estimates can quantify possible dif-
ferences between controls and patients in the manner
by which each PDM output affects the total model
output.

RESULTS

Following the procedure outlined in Methods, we
obtained the four “global” PDMs for the ABP and
ETCO2 inputs, either from the reference set of 20
control subjects (10 male and 10 female) when the
output is CBFV (measured via TCD) or from the ref-
erence set of 22 control subjects (11 male and 11
female) when the output is TOI (measured via NIRS).
We note that there are 10 male and 5 female control
subjects who have both TCD and NIRS measure-
ments. The normalized mean-square error (NMSE)
of the model prediction was generally smaller for the
TCD/CBFV output (an average of about 37% ver-
sus an average of about 63% for NIRS/TOI output).
An illustrative example of the quality of the model
prediction is given in Fig. 2 for both types of out-
put in the same control subject. It is evident that the

prediction for the TCD-output model is better (NMSE
of 26.6% for the TCD-output model versus 54.5% for
the NIRS-output model).

The obtained PDMs for the ABP input are shown
in Fig. 3 for the TCD/CBFV output (top panels)
and for the NIRS/TOI output (bottom panels) in
the time-domain (left panels) and frequency-domain
(right panels). We observe that the global PDMs
exhibit distinctive spectral characteristic in the form
of resonant peaks that may attain importance for
the physiological interpretation of the PDM-based
model when the requisite knowledge becomes avail-
able. We also observe that the spectral peaks of
the PDMs for the NIRS output are generally at
lower frequencies and their memory extent is longer
(about10 s for the TCD output versus 35 s for the
NIRS output). The physiological interpretation of
the waveforms of the obtained PDMs is potentially
valuable, although it requires careful studies in the
future.

The obtained four global PDMs for the ETCO2
input are shown in Fig. 4 for the TCD/CBFV output
(top panels) and for the NIRS/TOI output (bot-
tom panels) in the time-domain (left panels) and
frequency-domain (right panels). We observe that the
global PDMs exhibit distinctive resonant peaks that
are generally found at lower frequencies for the NIRS
output relative to the TCD output. The PDM memory
extent for the NIRS output is again longer (about 50 s
versus 30 s for the TCD output). As observed in our
previous TCD studies, the dynamics of the ETCO2
PDMs are generally slower that the ABP PDMs.

As indicated in Methods, to obtain the linear PDM-
based model for each subject, we must estimate the
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Fig. 3. The four global PDMs for the ABP input obtained from the data of 20 control subjects (10 male and 10 female) for the CBFV output
measured via TCD (top) and from the data of 22 control subjects (11 male and 11 female) for the TOI output measured via NIRS (bottom)
in the time-domain (left) and frequency-domain (right).

Gain of each PDM output for this subject through
linear regression. These scalar Gains are distinct for
each subject and can be used to quantify the dynamic
cerebral autoregulation (DCA) and dynamic vasomo-
tor reactivity (DVR) of each subject from the model
predicted response to a step change in the respec-
tive input (ABP for DCA and ETCO2 for DVR).
Such DCA and DVR indices can be obtained for the
TCD and NIRS measurements separately. It is crit-
ical to note that the model-predicted response to a
step change in one input is computed while the other
input is kept at its baseline level (simulated clamp-
ing). The average of such model-predicted responses
to unit input pulses are shown in Fig. 5 for the
CBFV/TCD output and in Fig. 6 for the TOI/NIRS
output, where the responses to the ABP input and
ETCO2 input pulses are shown in the left and right

panels, respectively. The average responses of the
control subjects are shown with blue line and of the
MCI patients are shown with red line. The reduced
average dynamic CO2 vasomotor reactivity is evi-
dent in the MCI patients relative to the controls for
both types of output, with the difference being more
pronounced for the TOI/NIRS output. There are no
discernible differences between controls and patients
in their response to ABP input changes, suggest-
ing that the process of cerebral autoregulation is not
affected in MCI patients (see Discussion).

It is instructive to see the average Impulse
Response Functions (or, equivalently, 1st order ker-
nels) that are obtained for the 2 × 2 input-output
combinations, along with one standard deviation
bounds for the estimates from all controls and all
MCI patients. Fig. 7 shows the average 1st order
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Fig. 4. The four global PDMs for the ETCO2 input obtained from the data of 20 control subjects (10 male and 10 female) for the CBFV
output measured via TCD (top) and from the data of 22 control subjects (11 male and 11 female) for the TOI output measured via NIRS
(bottom) in the time-domain (left) and frequency-domain (right).

Fig. 5. Average model-predicted CBFV/TCD responses for all control subjects (blue line) and for all MCI patients (red line) to a unit pulse
change (dotted line) of the ABP input (left panel) and of the ETCO2 input (right panel), while the other input is kept at baseline.
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Fig. 6. Average model-predicted TOI/NIRS responses for all control subjects (blue line) and for all MCI patients (red line) to a unit pulse
change (dotted line) of the ABP input (left panel) and of the ETCO2 input (right panel), while the other input is kept at baseline.

Fig. 7. Average 1st order kernel estimates (± 1 SD bounds marked with dotted lines) over all controls (top panels) and MCI patients (bottom
panels) for the ABP input (left panels) and ETCO2 input (right panels) when the output is CBFV/TCD.
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kernel estimates (± 1 SD bounds marked with dot-
ted lines) over all controls (top panels) and MCI
patients (bottom panels) for the ABP input (left pan-
els) and ETCO2 input (right panels) when the output
is CBFV/TCD. The average ABP-to-CBFV kernel
for both controls and patients exhibits a positive peak
at zero lag and a negative undershoot for lags of
1–3 s, consistent with previous studies of cerebral
autoregulation in healthy subjects [1, 2]. The vari-
ance of these estimates is low. However, we observe
distinctive differences in the average for the ETCO2-
to-CBFV kernels for controls and patients, whereby
the latter exhibits lower values in the early part (<2-3 s
lag) in patients relative to controls. This, along with
the smaller positive values over 3–30 s lags for the
patients, quantifies the reduced average vasomotor
reactivity in the MCI patients. We also observe higher
variability for the ETCO2-to-CBFV kernels for both
controls and patients, relative to the ABP-to-CBFV
kernel estimates.

Figure 8 shows the average 1st order kernel esti-
mates (± 1 SD bounds marked with dotted lines) over
all controls (top panels) and MCI patients (bottom
panels) for the ABP input (left panels) and ETCO2
input (right panels) when the output is TOI/NIRS. We
observe significant differences in the average ABP-
to-TOI and ETCO2-to-TOI kernels between controls
and patients—with most significant being the early
negative portion of the ETCO2-to-TOI kernel for
the MCI patients, suggestive of reduced dynamic
vasomotor reactivity (see Discussion). The variance
of these estimates is comparable for the two inputs
and larger for the TOI/NIRS output relative to the
CBFV/TCD output.

We also wish to examine possible statistical dif-
ferences in the estimated Gains of the PDM-based
models and the resulting DCA/DVR indices between
the groups of control subjects and amnestic MCI
patients in the two sets of data with TCD/CBFV or
NIRS/TOI output. For the TCD/CBFV output data,
the estimated Gains of the PDM outputs for the ABP
and ETCO2 inputs are shown in Tables 2 and 3,
respectively. The Tables show the mean (standard
deviation) values of the estimated Gains for 20 con-
trol subjects (10 male and 10 female) and 46 MCI
patients (17 male and 29 female), along with the
corresponding p-values for each PDM. The obtained
p-values indicate that statistically significant differ-
ences between the estimated Gains for controls and
patients exist only for the Gains of the 1st PDM of the
ETCO2 input (p = 0.0210) for the TDC/CBFV out-
put, whereby the controls exhibit significantly larger

Gains, suggestive of DVR impairment in the MCI
patients (see Discussion).

For the NIRS/TOI output data, the estimated Gains
of the PDM outputs for the ABP and ETCO2 inputs
are shown in Tables 4 and 5, respectively. The Tables
show the mean (standard deviation) values of the esti-
mated Gains for 22 control subjects (11 male and 11
female) and 43 MCI patients (13 male and 30 female),
along with the corresponding p-values for each PDM.
The obtained p-values indicate that statistically sig-
nificant differences between the estimated Gains for
controls and patients exist only for the Gains of the
1st and 4th PDMs of the ETCO2 input (p = 0.0226
and p = 0.0358, respectively) for the TOI/NIRS out-
put, whereby the controls exhibit significantly larger
Gains, suggestive of DVR impairment in the MCI
patients (see Discussion). The p-values for the Gains
of the 1st PDM of the ETCO2 input are comparable
for TCD and NIRS output, suggesting that the two
types of measurements exhibit similar differentiation
ability between controls and patients. However, the
TOI output measurement also allows additional dif-
ferentiation between controls and patients based on
the Gains of the 4th PDM of the ETCO2 input (see
Table 5). We note that the 1st PDMs of ETCO2 for the
two types of output have integrative characteristics
(see Discussion).

We propose the use of model-based indices of DCA
and DVR for each subject/patient that may be used
(when fully validated) for diagnostic and/or prog-
nostic purposes. The rationale for these indices is
provided by the differences observed in Figs. 5 and
6 between the average model-predicted responses of
patients versus controls to pulse changes in each of
the inputs (ABP or ETCO2). They are computed
via simulation of the PDM-based model derived for
each subject/patient for unit pulse inputs of ABP or
ETCO2 (for DCA and DVR, respectively, while the
other input remains at baseline) as follows:

– DCA index: the PDM-based model of the sub-
ject/patient is simulated for a unit ABP input
pulse, while the ETCO2 input is kept at zero, and
the resulting response (CBFV or TOI) is used to
compute the DCA index as the difference of the
peak response value minus the steady-state value
at 10 sec, according to the schematic in Fig. 9
(left panel).

– DVR index: the PDM-based model of the sub-
ject/patient is simulated for a unit ETCO2 input
pulse, while the ABP input is kept at zero,
and the resulting response (CBFV or TOI) is
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Fig. 8. Average 1st order kernel estimates (± 1 SD bounds marked with dotted lines) over all controls (top panels) and MCI patients (bottom
panels) for the ABP input (left panels) and ETCO2 input (right panels) when the output is TOI/NIRS.

Table 2
Mean (standard deviation) values of estimated Gains of the PDM outputs for the ABP input and CBFV output of 20 control subjects and 46

MCI patients, and the corresponding p-values for the two groups

PDM #1 PDM #2 PDM #3 PDM #4
Controls Patients Controls Patients Controls Patients Controls Patients

� (σ) 0.7298 0.6826 0.0095 –0.0229 –0.0056 –0.0238 –0.0036 –0.0024
(0.2217) (0.2445) (0.1052) (0.0935) (0.0772) (0.0540) (0.0330) (0.0596)

p 0.4458 0.2438 0.3471 0.9137

Table 3
Mean (standard deviation) values of estimated Gains of the PDM outputs for the ETCO2 input and CBFV output of 20 control subjects and

46 MCI patients, and the corresponding p-values for the two groups

PDM #1 PDM #2 PDM #3 PDM #4
Controls Patients Controls Patients Controls Patients Controls Patients

� (σ) 0.2558 0.1249 –0.0761 –0.1298 –0.0054 –0.0266 –0.0058 –0.0036
(0.2098) (0.1795) (0.2115) (0.1666) (0.0813) (0.1017) (0.0599) (0.0895)

p 0.0210 0.3218 0.3736 0.9074

used to compute the DVR index as the time-
averaged response over the first 5 s, according to
the schematic in Fig. 9 (right panel).

The computed model-based DCA and DVR indices
for the two types of outputs are reported in Tables 6,
7 and indicate statistically significant differences
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Table 4
Mean (standard deviation) of estimated Gains of the PDM outputs for the ABP input and TOI output of 22 control subjects and 43 MCI

patients, and corresponding p-values for the two groups

PDM #1 PDM #2 PDM #3 PDM #4
Controls Patients Controls Patients Controls Patients Controls Patients

� (σ) 0.0253 0.0215 0.0086 0.0023 –0.0001 0.0010 0.0019 0.0030
(0.0213) (0.0183) (0.0196) (0.0157) (0.0137) (0.0169) (0.0092) (0.0103)

p 0.4863 0.1956 0.7832 0.6551

Table 5
Mean (standard deviation) of estimated Gains of the PDM outputs for the ETCO2 input and TOI output of 22 control subjects and 43 MCI

patients, and corresponding p-values for the two groups

PDM #1 PDM #2 PDM #3 PDM #4
Controls Patients Controls Patients Controls Patients Controls Patients

� (σ) 0.0530 0.0162 0.0106 0.001018 –0.0027 –0.0093 –0.0049 –0.0178
(0.0669) (0.0348) (0.0341) (0.0253) (0.0329) (0.0262) (0.0213) (0.0255)

p 0.0226 0.2496 0.4208 0.0358

Fig. 9. Schematic of the definition of the DCA index from the model-predicted TOI/NIRS response to a unit pulse change of the ABP input,
while the ETCO2 input is kept at baseline (left panel), and of the DVR index from the model-predicted TOI/NIRS response to a unit pulse
change of the ETCO2 input, while the ABP input is kept at baseline (right panel).

between controls and patients only for the DVR index
for both types of output. This is consistent with the
observed statistically significant differences in the
Gains of the 1st PDM of the ETCO2 input for both
outputs, although the NIRS data also yielded statisti-
cally different Gains for the 4th PDM of the ETCO2
input. The resulting p-values (0.0476 for TCD-DVR
and 0.0050 for NIRS-DVR) imply stronger differen-
tiation capability using these indices compared to the
Gains.

An interesting question arises as to whether the
two indices (DCA and DVR), derived from the same
type of output (CBFV/TCD or TOI/NIRS), contain
independent information. This question is addressed
in the scatter-plots of Fig. 10 for each type of output,
where the two indices are shown to have greater cor-
relation for the CBFV/TCD output (left panel). The
correlation coefficient between the TCD indices is
0.361 (p = 0.0028) and between the NIRS indices is
0.028 (p = 0.8239).

Since the DVR indices for both types of output
appear to have greater ability to delineate patients
from controls (see Tables 6 and 7), we examine
in Fig. 11 whether a possible combination of the
TCD-DVR and NIRS-DVR indices could improve
further the delineation between the 14 controls (5
female and 9 male), marked with blue circles, and
the 38 patients (25 female and 13 male), marked
with red triangles, who have both TCD and NIRS
recordings. The scatter-plots of Fig. 11 indicate that
the combinations corresponding to the dashed lines
separating the two groups would yield better delin-
eation between patients and controls. In the left panel,
the separation line is the Fisher Linear Discrimi-
nant that yields the lowest p-value (p = 0.0044) under
the Gaussian assumption for the underlying distri-
butions of the two groups. In the right panel, the
separation line (termed “diagnostic boundary”) is
determined by an iterative optimization algorithm
that minimizes an exponentially weighted sum of
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Table 6
Mean (standard deviation) of TCD-DCA and TCD-DVR indices for 20 controls and 46 patients

TCD-DCA index TCD-DVR index
Controls Patients Controls Patients

� (σ) 0.8969 (0.2822) 0.7751 (0.3022) 0.4360 (0.3992) 0.2157 (0.4061)
p 0.1232 0.0476

Table 7
Mean (standard deviation) of NIRS-DCA and NIRS-DVR indices for 22 controls & 43 patients

NIRS-DCA index NIRS-DVR index
Controls Patients Controls Patients

� (σ) 0.0699 (0.0601) 0.0480 (0.0467) 0.0566 (0.1086) –0.0226 (0.0823)
p 0.1450 0.0050

Fig. 10. Scatter-plots of TCD-DCA versus TCD-DVR indices (left) and NIRS-DCA versus NIRS-DVR indices (right) for all controls (blue
circles) and patients (red triangles) in each type of output recording. The regression lines correspond to correlation coefficients of 0.361
(p = 0.0028) and 0.028 (p = 0.8239) for the TCD and NIRS indices, respectively.

false-negatives and false-positives (4 false-negatives
and 4 false-positives) and corresponds to a p-value
of 0.0049. Since we do not know the actual under-
lying distributions of the two groups, we favor the
latter selection (the Diagnostic boundary determined
by the optimization algorithm), which also yields a
decent p-value.

Another interesting question pertains to the cor-
relation between the DVR indices (TCD-DVR or
NIRS-DVR) and the scores of neuropsychiatric tests
for the patients. Figure 12 shows the scatter-plots of
the two types of indices versus the Delayed Logical
Memory Recall scores.

DISCUSSION

The main thesis of our work on modeling cerebral
hemodynamics is that there exists a rigorous, reliable
and practical methodology to extract model-based
“physiomarkers” of dynamic vasomotor reactivity
(DVR) and dynamic cerebral autoregulation (DCA),

with potential diagnostic/prognostic utility, using
non-invasive beat-to-beat data that can be recorded
reliably, safely and comfortably for the patient.

The continuously recorded data over 5-6 min typ-
ically include ABP, ETCO2, CBFV measured at the
middle cerebral arteries via TCD, and TOI mea-
sured at the prefrontal cortex via NIRS. Initially,
we explored the diagnostic utility of such model-
based “physiomarkers” of DCA and DVR, extracted
from ABP, ETCO2, and CBFV/TCD data that were
collected for three pathologies (and age-matched con-
trols): (1) early-stage AD [1], (2) amnestic MCI
[2], and (3) hypertension-related executive dysfunc-
tion [57]. Our initial results have shown that the
model-based physiomarker DVR indicates signifi-
cant impairment of dynamic vasomotor reactivity in
all three pathologies at different degrees of sever-
ity as quantified by the values of the DVR index,
suggesting potential diagnostic utility [1, 2, 57]. Pre-
vious studies had shown that the progression of
cognitive impairment in patients with AD (or other
forms of dementia and neurodegenerative disease) is
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Fig. 11. Scatter-plots of TCD-DVR versus NIRS-DVR indices for 14 controls (blue circles) and 38 patients (red triangle) who have both types
of output recordings. The dashed line in each plot indicates a possible separation line between the two groups (Fisher’s Linear Discriminant
in the left panel, and “diagnostic boundary” in the right panel determined by optimization algorithm) that corresponds to a composite index
with p-value smaller than the separate p-values of each index shown in Tables 6 and 7—specifically, p = 0.0044 for Fisher’s Discriminant
and p = 0.0049 for the “diagnostic boundary. The latter has a slightly higher p-value but yields better classification/diagnostic results.

Fig. 12. Scatter-plots of TCD-DVR versus Delayed Logical Memory Recall (DLMR) scores (left) for 18 controls (blue circles) and 45
patients (red triangles), and NIRS-DVR versus DLMR scores (right) for 22 controls (blue circles) and 42 patients (red triangles) for whom
DLMR scores exist. The dashed lines suggest possible diagnostic indices that combine the DVR index with the DLMR score.

associated with impairment of cerebral vasomotor
reactivity to hypercapnia [3–15].

The enabling methodological element of the pro-
posed approach is the concept of PDMs that we have
pioneered in order to obtain dual-input or triple-input
dynamic models (linear or nonlinear) of cerebral
hemodynamics (entailing the processes of dynamic
cerebral flow autoregulation and CO2 vasomotor
reactivity) in the practical context of relatively short
data-records and low signal-to-noise ratio [1, 2, 49,
50, 53, 54]. In addition to offering the potential
diagnostic value of model-based physiomarkers, this
model can advance our quantitative understanding of
the mechanisms subserving these physiological pro-
cesses. This is pursued primarily through matching
the observed dynamics of the PDMs with the spe-
cific dynamics of the mechanisms of interest (to the
extent the latter are known). This task can be greatly

assisted by specialized data collections from “sub-
tractive experimentation” (i.e., the pharmacological
blocking of a mechanism of interest) within the con-
straints of clinical practice.

The contribution of this paper is in presenting
results obtained from amnestic MCI patients and
age-matched controls that examine whether the use
as output signal of the TCD-measured CBFV or
the NIRS-measured TOI yield reliable and consis-
tent results in terms of model-based physiomarkers
of DVR that allow differentiation of MCI patients
from age-matched healthy controls. This study is also
motivated by the fact that NIRS measurements are
easier to implement in a clinical setting than TCD
measurements and, furthermore, can be combined
concurrently with other modalities (MRI) in order to
gain greater insight into the hemodynamics of vari-
ous brain regions that are affected by the disease. The
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results of this study suggest that this may indeed be
feasible. The key results are discussed below.

Impaired dynamic CO2 vasomotor reactivity in
amnestic MCI patients is indicated by the
model-based physiomarker DVR obtained from
hemodynamic TCD or NIRS beat-to-beat output
data

In previous studies using CBFV/TCD output sig-
nals, we found that the model-based DVR index
is significantly smaller (p < 0.05) for AD, amnes-
tic MCI, and executive-dysfunction patients relative
to age-matched controls [1, 2, 57]. However, the
model-based DCA index is not significantly differ-
ent in those patients relative to age-matched controls
(p > 0.05). In the present study, we found again that
the model-based DVR index is significantly smaller
for this larger cohort (46 patients versus 22 patients
previously) of amnestic MCI patients relative to age-
matched controls, whether the utilized output signal is
CBFV/TCD (p = 0.0476) or TOI/NIRS (p = 0.0050),
as reported in Tables 6 and 7. This key result is further
demonstrated by the significant differences observed
in the average 1st order kernels shown in Figs. 7 and 8.
The observed differences in the kernels of the ETCO2
input are far more pronounced for short lags (<3 s for
the TCD-output kernels and < 7 s for the NIRS-output
kernels), which suggests that the biological mecha-
nism more severely altered by MCI has fast dynamics
– although some effects are seen for longer lags as
well.

Comparison of estimated Gains of PDM
contributions to the output prediction (CBFV or
TOI) for controls and patients

It is informative to examine the estimated Gains
of the various PDM contributions to the model-
predicted output (CBFV or TOI). Of particular
interest is the comparison of these Gains for statis-
tically significant differences between patients and
controls. As indicated in Tables 2 and 3 reporting
the average (and standard deviation) values of the
estimated Gains in the case of the CBFV output, the
only PDM Gain that was found to have statistically
significant difference between patients and controls
is the 1st PDM of the ETCO2 input (p = 0.0210).
The estimated Gains of this PDM contribution are
much smaller for the MCI patients relative to controls
(about half on the average, see Table 3). This is con-
sistent with previously reported findings of reduced

DVR in AD and MCI patients [1, 2]. For the TOI
output, the only PDM Gains that have statistically
significant differences between patients and controls
are the 1st and the 4th PDM of the ETCO2 input
(p = 0.0226 and p = 0.0358, respectively) as shown in
Table 5. For both types of output signal (CBFV/TCD
or TOI/NIRS), the 1st PDM of the ETCO2 input
indicates a prolonged rise in output values follow-
ing an increase of ETCO2 input. This is the expected
response of CO2 vasomotor reactivity, which is found
to be reduced in the MCI patients (as quantified by
the respective DVR indices). We note that the 4th
PDM of the ETCO2 input for TOI output exhibits
a strong resonance around 0.05 Hz (see black trace
in bottom-right panel of Fig. 4), which is also seen
in the 4th PDM of the ETCO2 input for CBFV out-
put (with a slight shift in frequency and phase). The
physiological mechanisms that underlie these PDMs
are not known at this time and represent an important
objective for future studies, since their proper iden-
tification will allow potential therapeutic treatments
of this aberrant condition associated with MCI.

The DCA and DVR indices for TCD or NIRS
output contain different information, and the two
DVR indices can be combined into a “composite
DVR index” of greater diagnostic utility

In order to assess whether the TCD-based and
NIRS-based indices of DCA and DVR contain dif-
ferent information about the cerebral hemodynamics,
we show in Fig. 10 scatter-plots of the obtained
indices for patients and controls using the two types of
output measurement (left: TCD, right: NIRS). These
scatter-plots show greater correlation between DCA
and DVR for the TCD output. Since the DVR indices
are the differentiating ones between patients and con-
trols for both types of output (see Tables 6 and 7) and
they do not contain identical information (since the
TCD is measured in the middle cerebral arteries and
the NIRS is measured in a local vascular bed com-
posed of arterioles, venules, and capillary space of
the prefrontal cortex (smaller vessels compared with
the middle cerebrsal arteries) and probably different
mechanisms of vasoresactivity), we explore in the
scatter-plots of Fig. 11 whether a “composite DVR
index” may allow greater delineation of controls from
patients. Indeed, the scatter-plots of Fig. 11 indicate
that the combinations corresponding to the putative
dashed lines separating the two groups in the two pan-
els would yield better delineation between patients
and controls, because they are neither horizontal nor
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vertical. In the left panel, the separation line is the
Fisher Linear Discriminant that yields the lowest p-
value (p = 0.0044) under the Gaussian assumption for
the underlying distributions of the two groups. In the
right panel, the separation line (termed “diagnostic
boundary”) is determined by an iterative optimization
algorithm that minimizes an exponentially weighted
sum of false-negatives and false-positives (3 false-
negatives and 3 false-positives) yielding a p-value of
0.00495. Since we do not know whether the actual
underlying distributions of the two groups are Gaus-
sian, we favor the latter selection (the diagnostic
boundary determined by the optimization algorithm),
which also yields the best classification result (3 false-
positives and 3 false-negatives).

It may be useful to comment on the distinction
between the advocated approach and the autoregu-
lation index (ARI) that has been used extensively in
studies of cerebral autoregulation to date. The ARI
is based on Tieck’s model, which is a second-order
differential equation (properly discretized for practi-
cal application) between an arterial pressure forcing
(input) and the resultant blood flow velocity (out-
put). As such, it is an autoregressive model/equation
that stands in contrast (mathematical, computational,
and conceptual) to the kernel/PDM approach used
in this paper that is not autoregressive. The ARI
is derived from the best fit of the actual measure-
ment (based on Tieck’s model) to one of ten template
response functions. The model-based indices that are
proposed in this paper result from a computation of
the kernel-based (or, equivalently, the PDM-based)
model prediction to a pressure-input pulse. Most
importantly, the proposed indices result from the
analysis of a two-input model that takes into account
the concurrent effects of ETCO2 changes (during the
kernel/PDM estimation process) and, consequently,
leads to significantly different results.

In closing, we emphasize that, although the
presented initial results are promising, a larger pop-
ulation of MCI patients and control subjects must
be examined before any firm conclusions are drawn
regarding the potential clinical utility of the proposed
model-based physiomarkers. Of particular impor-
tance is the question of specificity versus sensitivity
that will allow delineation among various cerebrovas-
cular diseases using the model-based DVR and DCA
indices. It is also important to explore whether the
numerical values of the DVR index can offer reliable
quantitative measures of the stage of the amnestic
MCI disease in order to be used for assessing and
monitoring the effects of treatment over time.
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