Journal of Alzheimer’s Disease 55 (2017) 1-18
DOI 10.3233/JAD-160665
10S Press

Review

How Does Exercise Reduce the Rate
of Age-Associated Cognitive Decline?
A Review of Potential Mechanisms

Greg Kennedy®*, Roy J. Hardman?®, Helen Macpherson®®, Andrew B. Scholey?®

and Andrew Pipingas?

aCentre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
bCentre for Physical Activity and Nutrition Research, Deakin University, Melbourne, VIC, Australia

Accepted 2 August 2016

Abstract. The rate of age-associated cognitive decline varies considerably between individuals. It is important, both on a
societal and individual level, to investigate factors that underlie these differences in order to identify those which might
realistically slow cognitive decline. Physical activity is one such factor with substantial support in the literature. Regular
exercise can positively influence cognitive ability, reduce the rate of cognitive aging, and even reduce the risk of Alzheimer’s
disease (AD) and other dementias. However, while there is substantial evidence in the extant literature for the effect of
exercise on cognition, the processes that mediate this relationship are less clear. This review examines cardiovascular health,
production of brain derived neurotrophic factor (BDNF), insulin sensitivity, stress, and inflammation as potential pathways,
via which exercise may maintain or improve cognitive functioning, and may be particularly pertinent in the context of the
aging brain. A greater understanding of these mechanisms and their potential relationships with exercise and cognition will
be invaluable in providing biomarkers for investigating the efficacy of differing exercise regimes on cognitive outcomes.
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INTRODUCTION

Throughout the vast majority of human history, a
physically active lifestyle has been integral to our
existence. However, the progressively industrialized
and technological nature of modern societies has led
to an ever-increasing degree of physical inactivity [1].
While reduced physical activity is endemic, across
almost all countries, it is particularly prevalent in
middle aged and older adults [2]. Numerous studies
have found that inactivity and lower physical fitness
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are associated with poorer health outcomes, such as
an increase in the risk of many chronic diseases,
lowered functional capacity, and reduced longevity
[3-6]. Conversely, greater levels of regular exercise
has been found to ameliorate these negative conse-
quences associated with a more sedentary lifestyle [4,
7]. In particular, exercise appears not only to protect
the brain against the structural and functional effects
of aging, but also to assist in repairing or restoring
the aged brain [8—10]. This neuro-protective effect
translates all the way to the pathological endpoints
commonly associated with cognitive decline, with
regular aerobic exercise linked to a drastic reduction
in the lifetime risk of clinical Alzheimer’s disease
(AD) and other dementias [11].

While there is considerable support in the extant
literature for the beneficial effect of exercise on
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cognitive performance in both general and older pop-
ulation, there is a paucity of research investigating
the mechanisms which may serve to mediate this
relationship [12-14]. Proposed mechanisms for the
observed effects of exercise on cognition include
increased neurogenesis and neuroplasticity, particu-
larly that associated with brain derived neurotrophic
factor (BDNF) [15-18], improvements in cardiovas-
cular function and the associated influence on the
cerebrovascular system [19-21], reduction in stress
and anxiety [22-24], reduced inflammation [25-27],
and improved insulin sensitivity [28—30]. This review
will first provide a brief overview of the associa-
tion between exercise and cognitive decline, and then
examine each of these proposed mechanisms and
their relationship to cognitive aging.

EXERCISE AND COGNITIVE DECLINE

There is a substantial and ever-increasing body of
evidence that exercise can promote the health and
functionality of the central nervous system (CNS),
reduce the cognitive decline associated with aging
[31-33], and reduce the risk of cognitive impair-
ment and dementia [34-36]. A recent systematic
and meta-analytic review of 37 longitudinal studies,
found that there was a negative relationship between
physical activity and both dementia and cognitive
decline [37]. Specifically, those with higher levels
of physical activity showed less cognitive decline in
comparison with those who engaged in lower levels
of physical activity. Additionally, the risk of demen-
tia was found to be 14% lower in those with higher
levels of physical activity when compared to less
physically active cohorts. Importantly, all but one
these studies accounted for age, which is particu-
larly important as older age is often associated with
reduced regular exercise. This supports the findings
of an earlier systematic review of nearly 34,000 cog-
nitively healthy participants across 15 longitudinal
studies, which found that even a low to moderate level
of activity was associated with a 35% lower risk of
cognitive decline when compared to the sedentary
cohort [38]. A specific study by Weuve et al. [39]
clearly highlighted the effect that that exercise has on
cognitive aging. In this study of older women aged 71
to 80 years, regular physical activity, such as walking,
was associated with reduced cognitive decline and
better overall cognitive performance. Specifically,
women who were in the highest quintile of overall
physical activity demonstrated a mean difference in

cognitive performance equivalent to being 2 to 3 years
younger in age than those in the lowest quintile, while
also having a 20% lower chance of global cognitive
impairment [39].

Data from clinical trials is also predominantly
supportive of the beneficial effect of exercise on
cognition. Van Uffelen et al. [13] conducted a meta-
analysis of 23 randomized controlled trials that
involved older adults with healthy and/or impaired
cognition. They found cognitive benefits from aero-
bic and strength exercise intervention for participants
in one third of the studies involving cognitively
healthy participants, and two thirds of studies focused
on cognitively impaired participants; while no study
found any negative cognitive effects associated with
exercise intervention. While these findings suggest
a benefit of exercise on cognition, regardless of
whether participants were cognitively impaired or
not [13], the authors reported that many of these
studies were of poor quality and hampered by small
sample sizes, limiting the ability to demonstrate sig-
nificant between-group differences. A more recent
meta-analysis [40] was able to address these issues,
particularly via the inclusion of a number of larger,
higher quality trials that had recently been completed.
This review found that aerobic exercise interventions
were associated with modest cognitive improvements
in older people in almost all areas except, surpris-
ingly, working memory, which tends to show a strong
association with cognitive aging [41]. However, a
combination of aerobic and strength training pro-
duced greater improvements than aerobic exercise
alone in a number of areas including attention, pro-
cessing speed, and working memory. The authors
also reported preliminary evidence that exercise may,
in fact, be associated with greater improvements in
memory for people with mild cognitive impairment
(MCI) than for cognitively healthy individuals [40].
Overall, while there is debate as to the effect size and
degree of efficacy in subjects of differing cognitive
statuses, these analyses broadly agree with the con-
clusions drawn from other reviews of controlled trials
in this area [31] [42—47], that exercise interventions
are associated with better cognitive outcomes in older
cohorts.

POTENTIAL MECHANISMS

While it is well established that exercise generally
improves cognitive health and reduces the rate of cog-
nitive decline, very few studies have directly explored
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the specific mechanisms associated with these cogni-
tive changes. This section represents the main body of
this review, covering in turn each of the main potential
mechanisms that may mediate this relationship.

Cardiovascular

It is evident that the neural and vascular systems
are inextricably intertwined. The “vascular hypothe-
sis” [48-51] proposes that vascular dysfunction, and
associated risk factors, affect not only the heart but
the brain as well; and that this effect on the brain has
a consequential impact on cognitive functionality. It
has been proposed that the risk of cognitive decline
and dementia are reduced as a result of the protec-
tive influence that physical activity has on reducing
vascular dysfunction and risk factors [52]. However,
there is still contention as to whether cognitive decline
(particularly in dementias such as AD) is a disorder of
the vascular system, with consequential degeneration
of the neurological system; or if neurodegeneration
results in cerebral vascular dysfunction [53].

Central arterial stiffness

Increasing age is accompanied by a stiffening of
the central arteries due to structural and functional
changes [54]. These vessels lose their elasticity over
time due to the repeated cycles of distension and elas-
tic recoil of the arterial walls that occurs with each
pulse, approximately 30 million times per year [55].
The billions of cardiac cycles over a lifetime take their
toll eventually, resulting in a slow continuous pro-
cess of rupture and fragmentation of the elastin fibers
and deposit of more inflexible tissue such as collagen
and calcium [56], causing the arteries to progressively
dilate and stiffen [57, 58].

The large, elastic central cardiothoracic arteries—
principally the aorta—buffer the pulsatile output
from the heart, reducing peak pressure, and providing
a continuous flow to the smaller peripheral blood
vessels [20, 59, 60]. The brain and the kidneys are
unique in their requirement for continual high flow
perfusion throughout the cardiac cycle, and as such
have lower resistance than other vascular beds [61].
This leaves the microvascular structures within these
organs much more vulnerable to increases in pul-
satile energy than other tissues, which are protected
by more robust upstream vasoconstriction [60, 62].
A recent review of potential mechanical causes
of age-related dementias [55] concluded that the
destructive effects of pulse pressure, which increases
with age, is likely to be a significant contributor to the

development of dementia. They suggest that microb-
leeds occur in the small vessels of the brain because
of prolonged exposure to the stress of increased
pulse intensity that results from the stiffening of
the larger vessels; and that the loss of neurons is a
secondary result of damage to the microvasculature.

Recent systematic and meta-analytic reviews
have examined the proposed three-way relationship
between arterial stiffness, cerebral small vessel dam-
age, and cognitive performance [63, 64]. Both of
these reviews found a strong positive association
between greater arterial stiffness and cerebral vas-
cular disease as assessed by magnetic resonance
imaging (MRI) detection of white matter hyper-
intensities, cerebral infarcts, lacunar infarcts, and
silent brain infarcts. Both reviews also found inverse
relationships between arterial stiffness and cogni-
tive performance in cross-sectional studies, and that
arterial stiffness also predicted the rate of cognitive
decline in longitudinal studies. However, these cogni-
tive relationships still require further research as they
were considered statistically weak [63] and overly
reliant on the Mini-Mental State Examination as the
measure of cognition [64].

The degree to which progressively reduced elas-
ticity in the central arteries can be considered
“biological” as opposed to “pathological” is still
a subject for debate and further investigation [57].
However regular exercise appears to be one of the best
methods for reducing the rate at which such decline
occurs. During exercise the heart rate is increased,;
however as a result of longer term exercise the heart
rate remains lower at rest, thus reducing the overall
number of cardiac cycles and the degree of pul-
satile stress on these arteries [65]. A broad range
of research has found that, in middle-aged and older
people, those who engaged in regular aerobic exercise
had generally lower central arterial stiffness [66-71].
Conversely, there is some evidence that resistance
type training, particularly at high intensities, actually
has the opposite effect and increases central arterial
stiffness [72], although it is currently unclear as to
whether this is along-term detrimental effect or a nec-
essary short-term functional/mechanical adaptation
[68, 73]. Finally, although not well researched, one
recent small study has demonstrated that when com-
pared to a sedentary cohort, middle-aged adults who
regularly engaged in moderate-to- vigorous aerobic
exercise not only had lower stiffness of the central
arteries but also correspondingly better performance
across a range of memory and attention-executive
function assessments [20].
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Endothelial dysfunction

Due to its high energy demand and relative lack of
glycogen fuel reserves, the brain is highly dependent
on a continuous and adequate supply of glucose from
the cardiovascular system for the survival and effi-
cient functioning of neural tissue [74, 75].The brain
employs a number of mechanisms to ensure adequate
perfusion is maintained. One mechanism, autoregu-
lation, attempts to maintain stable cerebral perfusion
despite the fluctuations in arterial pressure that occur
during the cardiac cycle. In this case the cerebral
arteries relax when arterial blood pressure falls and
constrict when arterial pressure rises [76]. Another
mechanism is the regulation of the distribution of
cerebral blood flow (CBF) according to the func-
tional requirements of different areas of the brain.
This mechanism—functional hyperemia—increases
blood flow to regions of the brain when activity
in those areas increases. As functional hyperemia
controls the delivery of substrates (such as glucose
and oxygen) and the removal of the by-products of
metabolism (such as carbon dioxide), it is essential
for the maintenance of homeostasis in the cerebral
cellular environment [74].

Endothelial reactivity, the ability of the vascula-
ture to adjust flow in response to both internal and
external stimuli, is another measure of vascular func-
tion that is distinct from central arterial stiffness. The
endothelium is the layer of cells that lines the inner
surface of all blood vessels. Its main purpose is to
maintain adequate blood circulation, vascular tone,
and the integrity of the blood vessels. These roles are
achieved by the release of vasoactive compounds in
response to metabolic conditions (e.g., hypercapnia
or hypocapnia), chemical agonists (e.g., glutamate or
acetylcholine), or the shear stress that results from a
change of blood flow in the vessel [74, 77].

While the endothelium produces a number of
vasoactive factors (for a full review, see [78]),
nitric oxide (NO) is regarded as the most impor-
tant endothelium-associated vasodilator. Synthesized
and released by the endothelium, NO causes cerebral
vasodilation, resulting in a decrease in cerebrovascu-
lar resistance and therefore an increase in CBF [79].
Reductions in NO have been associated with impaired
endothelial reactivity, resulting in the impairment
of autoregulation and functional hyperemia [80].
The endothelium also releases factors that reduce
the accumulation and adhesion of platelets and
macrophages, and the build-up of smooth muscle
cells. Therefore, impaired endothelial function can
result in narrowing of the arteries and a reduction of

capillary density, which can chronically impede CBF
[77], known as atherosclerosis.

The cerebral endothelium can therefore be seen as
central to CBF autoregulation and functional hyper-
emia on both a structural and functional level. A
reduction in endothelial functionality, particularly in
its ability to adequately produce NO, can result in a
reduced capability to respond efficiently to changes
in the blood flow demands of the brain as well as
reduced overall blood flow. As with aortic stiffening,
dysfunction of the vascular endothelium is regarded
as a primary aspect of normal human aging and
is considered the most likely underlying reason for
the increased risk of cardiovascular disease associ-
ated with age [81]. Specifically, it is the capacity
of the vascular endothelium to produce and react
to vasodilators, particularly NO, that declines most
with increasing age; thereby reducing overall CBF as
well as the capacity of the endothelium to respond
efficiently to changing conditions and demands [82].
Interestingly, general arterial function has been found
to peak at around 30 years of age and then pro-
gressively decline [65], which directly parallels the
age profile of cognitive decline. Additionally, even in
the absence of cerebrovascular disease, recent sys-
tematic analysis concluded that impairment of the
vascular endothelium was associated with poorer
cognitive performance, particularly in the areas of
executive control and spatial working memory [83].
There is also evidence that loss of NO causes the
increased expression of the amyloid-[3 precursor pro-
tein (ABPP) as well as the (3-site ABPP-cleaving
enzyme 1 (BACE1), which results in the increased
production of cytotoxic amyloid-B (AB) peptides,
both in the cerebral microvessels and in the brain
itself [84], a process highly associated with AD.

Regular exercise has been found to both pre-
vent decline of, and restore function to, the vascular
endothelium in middle aged and older healthy males
[85]. Recent meta-analytic analysis of 51 randomized
controlled trials, primarily involving middle-aged or
older participants, found that aerobic and resistance
exercise, both individually and in combination, sig-
nificantly improved endothelial function [86]. Across
these studies, higher intensity of aerobic exercise
resulted in the most improvement, with a significant
dose-response relationship. However, with resistance
training, it was greater frequency, rather than inten-
sity, which was associated with enhanced endothelial
function [86]. These conclusions mirror those of
an earlier systematic review of intervention tri-
als [87] and are also supported by findings that
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overall cardiorespiratory fitness is positively asso-
ciated with better functioning of the vascular
endothelium [88]. There are a number of proposed
mechanisms for this exercise resilience to age-related
endothelial dysfunction, including stimulation of the
endothelial cells through temporarily increased shear
stress and increased localized blood flow, increased
levels of circulating catecholamines during exercise
and lower resting heart rate reducing mechanical
stress (for review see [89] and [19]). Additionally,
it has recently been proposed that exercise may
also maintain or increase the number and function
of endothelial progenitor cells. These bone marrow
derived endothelial precursors, which decline in cir-
culating concentration and efficacy with age, have
been found in both animal and human studies, to
repair endothelial damage [90].

BDNF: Neural plasticity and neurogenesis

Neurogenesis, the production of new neurons,
occurs throughout life in a number of brain areas, par-
ticularly the hippocampus and cortex [91, 92], regions
critically associated with memory, learning and
overall cognitive performance [93-96]. Therefore,
another focus of the extant literature surrounding
the effects of physical activity on cognition is the
capacity for exercise to promote neurogenesis and
plasticity [97, 98]. Physical activity is believed to
upregulate neurotrophins, a family of essential pro-
teins that influence the development, differentiation
and maintenance of neurons across the lifespan [99],
and these are likely mediators of this beneficial effect
of exercise on cognition [91].

Over the past 20 years there has been an accu-
mulation of evidence, based primarily on animal
investigations, that neurotrophins not only promote
neuronal resilience and protect them from damage
[100], but are also central mediating factors for struc-
tural and functional plasticity [98, 100, 101]. Of these
neurotrophins, BDNF has emerged as a key mediator
of cognition as it is highly expressed in the regions of
the brain, such as the hippocampus and cortex, that
exhibit the greatest degree of plasticity [99].

BDNEF is the most pervasive of the neurotrophins
in the developed adult brain, and affects its influ-
ence on neurons through binding with the tyrosine
receptor kinase B (TrkB) receptor [102]. It is now
commonly agreed that, in the adult brain, BDNF
regulates structural and functional neuronal pro-
cesses, in both the short and long term. Additionally,
many of its effects are also regulated by neuronal

activity, and it is this synergistic interplay between
neurological activity and plasticity that underlie
its essential role in the cognitive process [103].
BDNF has been demonstrated in numerous animal
experiments to be intimately involved in memory
and learning processes through the use of deletion
paradigms. Focusing mainly on the hippocampus,
multiple studies using BDNF and/or TrkB knock-
out mice have demonstrated that reduced BDNF,
or BDNF binding, resulted in significant impair-
ment of hippocampal long-term potentiation (LTP)
[104-107], which results in consequential impair-
ment of memory [108]. Conversely, introduction of
exogenous BDNF facilitated LTP in BDNF-KO mice
[105]. Importantly, heterozygous and homozygous
BDNF-KO animal models both displayed near iden-
tical degrees of LTP impairment, indicating that a
particular threshold of BDNF availability is required
for effective hippocampal functioning [104].

Research has demonstrated that a brief period of
exercise resulted in improved cognitive performance
in terms of both learning and recalling platform loca-
tion in the Morris water maze [109]. On the other
hand, when the action of BDNF was blocked in the
hippocampus, the cognitive performance in these ani-
mals following a period of exercise was found to
be no different than sedentary controls. Addition-
ally, animal model experimentation has consistently
found that exercise, in the form of running, not only
increases neurotrophin levels, but also neuronal spine
density and the number of neurons produced in the
hippocampus, which in turn correlates with increased
spatial memory performance (for review see
[110]).

Investigation of the impact of BDNF levels on
humans is considerably more difficult, as fine mor-
phological changes cannot be measured at the
neuronal level [95]. However a reduction of both
BDNF gene expression (mRNA) and BDNF protein
is found in neurodegenerative disorders such as fron-
totemporal lobar degeneration, Huntington’s disease,
and AD [111-114]. Other human studies have exam-
ined effects of the Val66Met polymorphism, which
disrupts the secretion, transport, and processing of
BDNF [115]. This polymorphism has been associ-
ated with increased susceptibility for white matter
hyperintensities [116, 117], reduced hippocampal
volume [118-120], reduced cortical volume [118,
121], reduced hippocampal response during both
the encoding and retrieval stages of memory based
tasks [122], and poorer performance in cognitive
tasks [120, 123]. Additionally, levels of BDNF in
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cerebrospinal fluid (CSF) have been found to
decrease across the adult lifespan and lower CSF
concentrations are significantly and strongly associ-
ated with reduced cognitive performance, particularly
with regard to memory and, to a lesser degree, exec-
utive function [124].

BDNF can also bidirectionally cross the blood-
brain barrier (BBB) [125]. The brain contributes
around 75% of circulating BDNF [126], while the
remainder is produced in the peripheral nervous sys-
tem as well as in other tissues such as the immune
cells, lungs, heart, vascular endothelium and smooth
muscle cells. Contributing significantly to serum
levels, platelets contain (but do not produce) large
quantities of BDNF, which has been hypothesized to
play a potential role in storage for later release in
times of increased requirement [99, 127]. A recent
cross-sectional study of 4,463 older people found
that, while generally higher in women than men,
reduced serum levels of BDNF were associated with
poorer cognitive performance, once age, sex, edu-
cation, and smoking status were adjusted for. Even
more interestingly, levels 1.5 SD below the age- and
sex-adjusted mean were associated with significantly
higher risk of MCI [128].

While the brain produces the majority of resting
state BDNF levels, a study of younger adult males
found that there was a 200 to 300% increase in cir-
culating BDNF levels during aerobic exercise, with
an equivalent increase in the amount produced by
the brain. However, this percentage contribution did
decrease following 1 hour of recovery [126]. As a
corollary to these finding, a review of previous stud-
ies concluded that peripheral BDNF may actually
be transported back to, and used in, the brain after
exercise [129].

Meta-analytic examination of 14 studies found that
that a single aerobic exercise session increased circu-
lating BDNF levels, and that the magnitude of this
effect was greater in those who exercised regularly
in comparison to those engaging in acute exercise
only. However, sex moderated this effect, with men
showing a significantly greater increase in BDNF lev-
els than women [109]. This pattern of a short-lived
increase in circulating BDNF following acute aerobic
exercise has been found in numerous other studies,
although similar effects have not been reliably found
for strength/resistance based exercise [130]. An ear-
lier review found that the increase in circulating levels
of BDNF following exercise was transitory, and that
levels returned to base line within a short period
[129]. Conversely, more recent meta-analysis across

13 studies has demonstrated that regular exercise
significantly increases resting BDNF levels, although
this finding was not considered to be as robust as
those regarding acute level increases [109]. Overall,
there is reliable evidence, in humans, to advocate
that each episode of aerobic exercise results in an
acute increase in BDNF and that this response can
be improved by regular physical exercise. However,
the relative importance of the acute increase verses
the smaller resting increase that results from regular
exercise, as well as the difference in effect between
males and females, is yet to be determined.

Stress

Exposure to stressors results in the activation of
two distinct systems, the sympathetic nervous system
(SNS) and the hypothalamus-pituitary-adrenal (HPA)
axis. While the rapidly acting SNS primarily releases
catecholamines (adrenaline and noradrenaline), the
slower HPA axis releases glucocorticoids (primar-
ily cortisol) [131]. The glucocorticoids can cross
the BBB and enter the brain, where they bind with
receptors, particularly in the frontal lobes, amyg-
dala, and hippocampus, which have higher receptor
density and are also central to cognition [132].
However, the catecholomines are unable to cross
the BBB, and influence the brain via activation of
intermediate signaling pathways, such as the vagus
nerve, that stimulate noradrenergic pathways [133].
The interaction between these systems is responsi-
ble for facilitating a wide variety of stress mediated
actions on cognition [134]. This process is generally
positively adaptive in nature, promoting the cogni-
tive processing and storage of salient information;
however it can become maladaptive under certain cir-
cumstances and, conversely, interfere with memory
and cognition [135].

While stress is a significant factor in cognitive
performance, the defining factor in the influence of
stress is its intensity and duration. Mild acute stress
facilitates cognition, particularly when the cognitive
load of the task is not too high. However, when the
level of stress is high and/or chronically sustained,
fluid cognitive performance is noticeably impaired,
particularly in cognitive processes that are primarily
dependent on the hippocampal or pre-frontal cortex
(for comprehensive overview see [134]). When sub-
jected to chronic physical, social, or pharmacological
stressors, animal models, both rodent and primate,
have demonstrated structural adult hippocampal
changes including reduced neurogenesis, shortening
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of dendrites, and a loss of synapses, even at what
was considered mild stress levels [136, 137]. The
glucocorticoid hypothesis proposes that prolonged
stress results in reduced negative feedback of cor-
tisol, causing elevated glucocorticoids and eventual
damage from prolonged exposure, particularly in the
hippocampus [138]. Conversely, longitudinal human
studies have found that the use of medical interven-
tions (such as SSRIs, lithium, and electro-convulsive
therapy) in treating either stress or depression disor-
ders, have been linked to an increase in hippocampal
volume following the course of treatment [139—-142].
These findings indicate that the stress-related neu-
rodegenerative process is somewhat reversible. Addi-
tionally, animal studies in this area have demonstrated
that the effect of increased neurogenesis associated
with antidepressants only occurs when the subjects
are stressed [137], suggesting that it is the ameliora-
tion of stress that improves hippocampal neurogene-
sis, rather than a direct effect of the treatments.

Recent studies have demonstrated a relationship
between anxiety (which is strongly associated both
psychologically and physiologically with stress [143,
144]) and reduced cognitive performance in areas
such verbal fluency, executive functioning, and mem-
ory in older people without dementia [145-147].
Again, as with the findings related to neurogenesis,
amelioration of anxiety in older individuals through
pharmacological intervention has been shown to
improve executive function and episodic memory
[148]. However, sex differences have been found,
with cognitive impairment associated with anxi-
ety to a greater degree in men than women [146].
Additionally, in patients with MCI, higher levels
of self-reported stress are associated with a more
rapid decline in cognitive performance than their
counterparts who reported low stress levels [149].
Furthermore, higher levels of stress have also been
related to an increased risk of developing dementia
[13, 52].

In both humans and animals, those who engage
in regular aerobic exercise have a significantly lower
likelihood of suffering from stress associated disor-
ders [150, 151]. Specifically, earlier meta-analytic
reviews found that regular, moderate-to-high inten-
sity, aerobic exercise of 20 minutes or more in
duration was anxiolytic, while shorter duration or
non-aerobic exercise appeared to have little to no sig-
nificant effect [152]. Additionally, duration appears
to be important, with the greatest anxiety reduction
occurring in exercise programs which last at least
15 weeks [153]. A more recent meta-analysis of 49

clinical trials also found that, across all age groups,
exercise interventions were associated with a reduc-
tion in anxiety [154]. However, it also found that
any duration or intensity of aerobic exercise reduced
symptoms of anxiety, although there still appeared
to be a dose-response relationship. Additionally, this
review found that exercise was equally as effective in
reducing anxiety as psychological intervention, and
almost as effective as pharmacological interventions
[154].

It has been proposed that voluntary exercise may
ameliorate the impacts or effects of stress in a
number of ways, both psychologically and physi-
ologically [155]. Physiologically, exercise appears
to reduce reaction to stress through mechanisms
such as adaptations in the noradrenaline, serotonin
and gamma-aminobutyric acid (GABA) neurotrans-
mitter systems, although the majority of evidence
in this area has been derived from rodent models
[151, 156, 157]. Psychologically, effects such as
improved self-esteem and sense of wellbeing related
to improvement or maintenance of physical fitness
and achievement of fitness goals, and the placebo
effect of expected improvement in mental health,
may also alleviate chronic stress and sensitivity to
stressors (see [155] and [158] for reviews). However,
while there is evidence that regular exercise does pos-
itively affect the pathophysiological effects of stress,
no single mechanism appears to completely account
for the observed effects. It is more probable that a
combination of some or all of these proposed path-
ways are involved in stress attenuation, warranting
further research in this area, particularly in humans.

Inflammation

Chronic inflammation is associated with increased
risk of developing many chronic diseases such as
cardiovascular disease [159], type 2 diabetes [160],
and several types of cancer [161]. Infection or injury
begins a cascade of local and systemic response
events, including the production of pro-inflammatory
cytokines. Interleukin-1 beta (IL-1$3) plays a central
role in these responses by increasing the produc-
tion of lymphocytes and initiating the elimination of
damaged cells or pathogens by natural killer cells.
IL-1B also stimulates the production of additional
cytokines such as interleukin-6 (IL-6) and tumor
necrosis factor-alpha (TNF-a), which in turn affect
other cells [162]. There is extensive intercommuni-
cation between the peripheral immune system and
the CNS, through both neural pathways and via



8 G. Kennedy et al. / Mechanisms Mediating Exercise and Cognition

active transport across the BBB. As a result of this
communication, challenge to the peripheral immune
system stimulates immune responses within the
brain, which is primarily mediated by microglial cells
[163]. Conversely, neurological damage also induces
cytokine production peripherally [164, 165].

Microglia, the primary mediators of the immune
response in the CNS, are normally quiescent unless
the immune system perceives a threat [166]. Once
activated, they multiply, undergo morphological
changes, and produce pro-inflammatory cytokines
until the threat is resolved [167]; whereupon they pro-
duce anti-inflammatory cytokines and other factors to
re-establish homeostasis [166]. Animal studies have
shown that this neuroinflammatory response becomes
sensitized in normal aging, with the hippocampus
demonstrating a more exaggerated immune response
to challenge, with this elevated production of pro-
inflammatory cytokines occurring for a longer period
of time once the challenge has passed [168, 169]. This
is supported by human studies demonstrating that
aging is associated with a two- to four-fold increase
in circulating systemic levels of inflammatory medi-
ators across the lifespan [170].

There is an increasing accumulation of evidence
that supports the contention that activation of the
peripheral immune system is associated with cogni-
tive dysfunction [162, 171] and, more specifically,
that neurogenesis is impaired by neuroinflamma-
tion, leading to poorer cognitive functioning [27].
In their seminal paper, Monje, Toda, and Palmer
[172] found that inflammation alone, following cra-
nial radiation therapy, inhibited neurogenesis, leading
to progressive cognitive decline; and that preventing
inflammation through the use of pharmacologi-
cal anti-inflammatories restored neurogenesis and
ameliorated further cognitive deterioration. Animal
research has demonstrated that memory impairment
resulting from orthopedic surgery was associated
with increased levels of not only circulating, but
also hippocampally-produced inflammatory factors
[173]. Furthermore, inhibition of IL-1@ ameliorated
both the hippocampal inflammation and the cognitive
dysfunction [174]. Additionally, on a structural level,
circulating levels of IL-6 have been found to inversely
co-vary with hippocampal grey matter volume
[171].

These findings have been supported by analy-
ses of data from several large prospective cohort
studies [175-177], which have found that higher lev-
els of systemic markers of inflammation (IL-6 and
C-Reactive Protein; CRP) were associated with both

lower initial cognitive function and greater risk of
cognitive decline at follow-up. Interestingly, not all
studies in this area have found consistent results,
with a couple of similarly sized studies finding lit-
tle to no evidence to support these contentions [178,
179]. However, one of these studies [178] did not
assess cognition at baseline or inflammatory markers
at follow-up; and the other [179] used a relatively low
sensitivity assay for IL-6, which they acknowledge
may have influenced the results.

Additionally, findings from dementia research also
support the role of inflammation in cognitive dysfunc-
tion, with higher circulatory CRP at midlife shown
to be associated with significantly greater risk for
dementia 25 years later in a large sample of 1,000
people [180]. This relationship was independent of
potential confounding variables, except for a partially
mediated relationship with subclinical atherosclero-
sis, and the temporal distance between assessments
significantly reduces the likelihood that inflamma-
tion was symptomatic of pre-clinical AD, rather
than a causative factor. Additionally, genetic poly-
morphisms that reduce circulating IL-6 have been
associated with both delayed initial onset and reduced
incidence of AD [181], indicating that inflammation
may play a key role in the development of neu-
rodegenerative disease. Interestingly, however, the
use of pharmacological anti-inflammatories to slow
or prevent neurodegenerative disease has produced
varied results [182]. It has been suggested that neu-
rodegeneration may also be slowed down by certain
aspects of inflammation, particularly by increasing
the recruitment of systemic immune cells, such as
T-cells and monocytes, across the BBB, which may
modify the potentially destructive effects of localized
CNS inflammation [182].

Physical activity has become increasingly recog-
nized as a potential intervention to reduce chronic
inflammation [161, 183, 184]. Numerous large cohort
studies have consistently found lower levels of sys-
temic inflammatory biomarkers in those who either
subjectively reported higher levels of physical activ-
ity or objectively demonstrated greater aerobic fitness
[185-190]. Additionally, one small intervention trial
found resistance training moderately reduced mark-
ers of inflammation in overweight women [191]. A
similar result was also found for sedentary partici-
pants following a trial that used a combined aerobic
and resistance training intervention [192]. However,
intervention studies in general have produced incon-
sistent results, although this is likely to be related to
a number of methodological reasons, such as being
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underpowered, lacking a control group and incon-
sistency of exercise interventions used (see [193]
for review of both cohort and aerobic intervention
studies). While the mechanisms underlying this anti-
inflammatory effect are still far from clear, it is
currently postulated that IL-6 production from skele-
tal muscles during exercise is a significant mediating
factor. At rest, most of the circulating IL-6 is pro-
duced from adipose tissue and leucocytes, with very
little produced from skeletal muscles, but during
moderate (equivalent to vigorous walking) to intense
exercise, circulating IL-6 can increase up to 100-fold
[183].

However, while usually considered to be pro-
inflammatory, the IL-6 produced by skeletal muscles
during exercise appears unique in that it sup-
presses the production of other pro-inflammatory
cytokines, such as TNF-a and IL-13. Further-
more, exercise-induced IL-6 stimulates the release
of anti-inflammatory cytokines, which may result in
an overall lowering of chronic inflammation over
time. Muscle-derived IL-6 is also proposed to be
involved in stimulating the production of cortisol and
adrenaline during exercise, which have strong, acute
anti-inflammatory properties [194, 195]. Additional
exercise-induced anti-inflammatory mediators have
also been postulated, although they have not been as
well studied to date (see [195] for review). Overall, it
is this reduction in systemic inflammation that is pro-
posed to reduce the associated neuro-inflammatory
processes and the associated negative influence on
cognitive function.

Insulin regulation

Insulin, produced by pancreatic beta cells, is the
hormone central to regulating the level of blood
glucose in the body. When bound to an insulin recep-
tor (IR) it regulates the cellular uptake of glucose
by the activation of glucose transporters, which is
then used as either fuel for energy or stored. Insulin
also plays a role in uptake of amino acids and their
incorporation into proteins, as well as reducing the
rate of catabolism [196]. Although it was initially
believed that the brain was insensitive to insulin,
animal experiments in the 1960s demonstrated that
insulin also promoted the uptake of glucose in CNS
tissue [197, 198]. Following these observations, sub-
sequent researchers suggested that insulin in the brain
may work solely as it does in peripheral tissue, by
mediating the uptake of glucose into the cells and
thus regulating their production of energy. Therefore,

reduced IR sensitivity would lead to starving the neu-
rons of glucose and subsequent neuronal dysfunction,
effectively “diabetes of the brain” [199]. However,
more recent research has demonstrated that only a
small percentage of the glucose used by the brain
is actually obtained via insulin-dependent transport
mechanisms [200], with the insulin-insensitive glu-
cose transporters, being the main ones expressed in
the CNS [201]. Furthermore, there is an uneven distri-
bution of IRs throughout the brain, indicating specific
CNS functionality in addition to the overall supply of
glucose [200].

Primarily based on animal studies, IRs in the brain
have been found to be concentrated in a number
of neural regions highly associated with memory,
learning, and cognition: specifically the hippocam-
pus, amygdala, and cerebral cortex [202-207]. While
not as well investigated, these findings have also been
supported by a few small postmortem human studies
[200, 208]. Given the role of insulin in peripheral glu-
cose regulation, and the distributions of the receptors,
insulin may exert its effect on memory and cognition
in a similar way in the CNS. However, it is also likely
to affect cognitive functioning through a number of
other non-metabolic mechanisms.

Insulin is also an important neuromodulator [209],
affecting both synaptic and post-synaptic activity,
particularly through its ability to modulate signaling
by potentiating NMDA, AMPA, and GABA receptors
[210]. These receptors are known to play important
roles in synaptic plasticity, learning, and memory
[211, 212]. Insulin and IRs have also been found
to influence numerous other processes in the brain
which are likely to affect cognitive performance,
such as neuronal proliferation [213] and differentia-
tion [214-216], protection from apoptosis [213,217],
and both inhibition and excitation of neuronal firing
through effects on ion channels [212, 218] (see [196]
for review of the functions of insulin in the brain).

While there is limited evidence for the idea of de
novo synthesis of insulin in the brain [219-221], to
date this has not been conclusively demonstrated in
humans or higher order animals, and is particularly
inconclusive in adult brains [222-224]. However,
although lipid insoluble, insulin readily crosses the
BBB from the peripheral circulatory system via an
IR-mediated saturable transport system [223, 225,
226]. CSF insulin levels have been demonstrated
to increase following acute elevation of circulat-
ing insulin [227], highlighting this interrelationship
between peripheral and central insulin. Overall then,
the brain appears to rely predominantly, if not
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completely, on peripherally produced insulin for its
insulin dependent functions.

Although acute high levels of insulin have been
shown to benefit cognition [228, 229], chronic hyper-
insulinemia is likely to negatively affect cognitive
functioning. Persistently high levels of insulin reduce
the sensitivity of peripheral IRs, including those in the
BBB. This reduces the amount of insulin transported
to the brain from the peripheral system [230], result-
ing in a reduction in overall availability of insulin in
the brain [231]. Additionally, peripheral insulin resis-
tance has also been linked to insulin resistance in the
brain [232, 233]. Significantly reduced sensitivity to
insulin is the central aspect of type 2 diabetes, but
increased insulin resistance is also associated with
both obesity and aging [234, 235].

Numerous investigations have found an associa-
tion between insulin resistance and both faster rates
of cognitive decline and increased risk of cognitive
impairment in older populations [236-238]. Several
studies also indicate that cognitive functions may be
impaired before the dysfunction of the glucoregu-
latory system reaches the threshold for a diagnosis
of type 2 diabetes [239, 240]. Insulin resistance is
also associated with increased risk of AD as well as
age-associated memory dysfunction [231]. Reduced
IR density and insulin sensitivity in the brain have
been found to be related to the two major patho-
logical mechanisms currently associated with AD:
increased accumulation of A3 and tau protein hyper-
phosphorylation (see [241] and [30] for reviews on
insulin and AD). Conversely, intranasal administra-
tion (enabling the bypassing of the BBB) of a long
lasting insulin analogue has actually been shown to
improve cognitive functioning in participants with
MCI and those with mild to moderate AD [242].
Additionally, this relationship between insulin resis-
tance and cognitive decline is further highlighted
by conditions commonly associated with dysfunc-
tional insulin sensitivity, such as, hyperglycemia
[241], dyslipidemia, hypertension, and obesity [29].
These conditions are all considered insulin resis-
tance related disorders and, particularly when present
in middle age, each represents an elevated risk
for accelerated cognitive decline and dementia
[29, 241].

A sedentary lifestyle is very likely to be a cru-
cial aspect in the ever-increasing incidence of insulin
resistance in the population [30]. A study of male
endurance trained athletes, predominantly cyclists
and runners, found that they had better insulin sen-
sitivity than sedentary men, and, remarkably, there

was no difference in insulin sensitivity between those
in their 20s and those in their 60s. However, seden-
tary older men in this study had significantly lower
insulin sensitivity than younger sedentary men [243].
This study provides evidence that exercise—at least
long-term, regular, intensive exercise—can prevent
the reduction in insulin sensitivity associated with
increasing age. Additionally, when compared to a
stretching-only control group, six months of reg-
ular aerobic exercise in a glucose-intolerant older
cohort was found to improve multiple aspects of
cognition, while concurrently improving insulin sen-
sitivity and reducing circulating levels of A3 [28]. A
recent review covering 40 years of research examin-
ing exercise biomarkers in participants with MCI and
dementia found only two studies had assessed insulin
sensitivity [244]. Both of these studies found better
cognitive outcomes for the exercise groups compared
to control. However, while one study, which involved
six months of regular high intensity exercise, found
improvements in insulin sensitivity [245], the other
study used a less vigorous intervention of tai-chi
over only 12 weeks and found no such improve-
ment [246]. Despite limited research in this area, it
appears that exercise may improve insulin sensitivity
and cognitive outcomes for those with MCI or early
dementia, but that the exercise must be sufficiently
aerobic and intensive to be effective. However, it is
evident that more research is required to draw firm
conclusions.

Overall, specific research examining insulin sen-
sitivity as a mechanism involved in the interplay
between exercise and cognition is quite limited, with
relatively few studies and small cohorts. However,
while not looking explicitly at cognition, physical
activity in general appears to be an important, if not an
essential, element in the reduction and prevention of
insensitivity to insulin [247]. More specifically, Mann
etal. [248] systematically reviewed the interventional
research into the responses of insulin sensitivity to
different modalities of exercise. They concluded that
both aerobic exercise and resistance training were
effective in improving insulin sensitivity, and that
combining the two was the most efficient strategy. It
is worth noting that, at present, although the overall
evidence is quite strong, there have been consid-
erably more investigations conducted with aerobic
interventions than resistance or combination training;
and more research is warranted in these areas. This
conclusion matches closely with the overall evidence
available from research into the exercise-cognition-
insulin axis.
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CONCLUSION

There is a large body of evidence indicating that
physical exercise has a beneficial effect on cognitive
performance and the rate of cognitive aging. More
specifically, the extant literature suggests that all of
the reviewed mechanisms are likely to play a role in
mediating the relationship between exercise and cog-
nition. However, at present, the majority of research
in these areas has focused on aerobic exercise. There-
fore, while the weight of evidence suggests benefits
from aerobic exercise, further research into the effect
of resistance or combined exercise on these mecha-
nisms and cognition is warranted.

The intensity and duration of exercise are also pro-
posed to have a dose effect on both the mechanisms
and positive cognitive outcomes. While increasing
levels of physical exercise have been reported to exert
greater impacts on cognition, the evidence for this
dose-response is not comprehensive; as to date, no
study has established a strong case for a precise rela-
tionship. Additionally, the mechanisms reviewed do
not exist in isolation, with each one affecting the
other to some degree (e.g., [160, 196, 249, 250]).
Again, considerations of these relationships in future
research are highly recommended in order to develop
a more comprehensive understanding of the relation-
ship between exercise and cognitive aging.

Overall, the current research supports the poten-
tial for exercise to improve cognitive outcomes via
increased BDNF-facilitated neurogenesis and neuro-
plasticity, improvement in vascular function, reduced
stress and inflammation, and improved insulin sensi-
tivity. However, at present the relative contribution of
exercise to these mechanisms has not been specified.
Neither have the relative strengths of the influence of
these mechanisms on cognition, as current research in
the area typically isolates one specific potential medi-
ator at a time. Exercise, as opposed to many other
potential cognitive interventions, is extremely cost-
effective and has no intrinsic negative side effects,
which makes it a promising candidate for amelio-
rating the rate of cognitive decline in our aging
population. Furthermore, as each of these potential
mechanisms has established, quantifiable biomark-
ers, future research would benefit by establishing
the relative strengths of these mechanisms, and the
consistency of their effect on cognition. Research
of this type is needed to help inform investigation
into the efficacy of various exercise intervention
programs and their potential to affect cognitive
outcomes.
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