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Abstract. The progression of Alzheimer’s disease (AD) is accompanied by a great many observable changes, both molecular
and physiological. These include oxidative stress, neuroinflammation, and (more proximal to cognitive decline) the death
of neuronal and other cells. A systems biology approach seeks to organize these observed variables into pathways that
discriminate those that are highly involved (i.e., causative) from those that are more usefully recognized as bystander effects.
We review the evidence that iron dysregulation is one of the central causative pathway elements here, as this can cause each
of the above effects. In addition, we review the evidence that dormant, non-growing bacteria are a crucial feature of AD, that
their growth in vivo is normally limited by a lack of free iron, and that it is this iron dysregulation that is an important factor
in their resuscitation. Indeed, bacterial cells can be observed by ultrastructural microscopy in the blood of AD patients. A
consequence of this is that the growing cells can shed highly inflammatory components such as lipopolysaccharides (LPS).
These too are known to be able to induce (apoptotic and pyroptotic) neuronal cell death. There is also evidence that these
systems interact with elements of vitamin D metabolism. This integrative systems approach has strong predictive power,
indicating (as has indeed been shown) that both natural and pharmaceutical iron chelators might have useful protective roles
in arresting cognitive decline, and that a further assessment of the role of microbes in AD development is more than highly
warranted.
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INTRODUCTION

Alzheimer’s-type dementia (AD) is a neurode-
generative disorder and the most common form of
dementia, already in 2013 affecting 44.4 million peo-
ple globally; this number is expected to affect 75.6
million by 2030 [1]. The current cost is reckoned at
$604 billion per year and this figure is expected to
triple by 2050 [2]. Due to the increasing prevalence
of the condition, the cost to the public health and
elderly care systems to support these individuals is
increasing exponentially, and posing major financial
challenges [3].

Arguably, the major hurdle in understanding AD
is the lack of any integrative and comprehensive
knowledge about its etiology and pathogenesis (and
there may be many pathways that lead to it), as the
onset and risk of AD development is still mostly
unexplained (and animal models are of questionable
relevance) [4]. Since our genomes changed but lit-
tle in the last 50 years, but the incidence of AD
increased considerably [5], this increase can only to a
limited extent be explained by genetic factors [6, 7],
notwithstanding the signals detectable in twin and
gene association studies [8, 9]. Although dementia
is properly diagnosed via cognitive impairment, and
true diagnoses of AD can only be done postmortem,
specific lesions that characterize AD include extracel-
lular senile plaques and intracellular neurofibrillary
tangles with synaptic and neuronal loss [10–13]. In
particular, the production of senile plagues, a cen-
tral event in AD [14], is a result of the cleavage of
the amyloid-� protein precursor (A�PP). A�PP has
important developmental functions in cell differenti-
ation and possibly in the establishment of synapses
[15, 16]; however, it is also expressed by neurons in
response to cell injury [17]. Neurofibrillary tangles
are composed of the tau protein [18]. In healthy neu-
rons, �au is an integral component of microtubules,
which are the internal support structures that help
transport nutrients, vesicles, mitochondria, and chro-
mosomes from the cell body to the ends of the axon
and backwards [19]. In AD, however, �au becomes
hyperphosphorylated [18, 20]. This phosphorylation
allows tau proteins to bind together and form tangled
threads [21], a process that can be reversed by iron
chelation [22].

Recent evidence suggests that neuroinflammation
may play a major role in the pathological processes
of AD progression [23–31]. Indeed, inflammation
and microglial activation are known as common
components of the pathogenesis of a number of

neurodegenerative diseases, including AD, Parkin-
son’s disease, Huntington’s disease, multiple sclero-
sis, and amyotrophic lateral sclerosis [32]. Several
neuroinflammatory mediators, including comple-
ment activators, chemokines, cytokines, and oxygen
radical species, are expressed and released by
microglia, astrocytes, and neurons in the AD brain.
While minor signs of neuroinflammation can be
found in the normal aging brain, the AD brain faces a
much stronger activation of inflammatory systems,
indicating that an increasing amount of (or quali-
tatively different) immunostimulants are present. In
recent papers, we have also reviewed the compre-
hensive evidence that in AD the neuroinflammation
is probably a systemic inflammatory condition [33,
34]. In one sense, however, the above are all mani-
festations or accompaniments of AD, and what we
seek are the most important causative pathways. It
turns out that central to all of these diseases is iron
dysregulation [35, 36].

Figure 1 provides an overview of the article in
the form of a ‘mind map’, while Table 1 lists some
of the symptoms (some causative) accompanying
the pathology of AD. This wide strategy necessar-
ily involves a systems biology approach [37–41] as
we recognize (e.g., [36, 42–47]) that this is the only
reasonable strategy for approaching complex bio-
chemical networks, each of whose components may
contribute partially to the phenotype of interest.

A typical systems biology strategy (e.g., [42, 43])
has the following four elements: first we identify the
actors that are most involved, and how they interact.
‘Actors’ for these purposes may be enzymes or other
biochemical elements, or higher-order physiological
processes (such as those in Table 1). We then adduce
the order or pathway of such interactions (as in Fig. 2,
below). Latterly (though we are not yet ready for this
in the present problem), we seek to make quantitative
these interactions, and predict their relative fluxes,
contributions, and so on. We next turn to some of the
main actors, starting with iron dysregulation.

IRON AND AD

Strongly and causatively related to this neuroin-
flammation in AD is the involvement of unliganded
iron and its accompanying oxidative damage in AD
etiology [48–61]. Specifically, AD is characterized
by elevated brain iron levels [62–64] and the accu-
mulation of copper and zinc in cerebral amyloid-�
(A�) deposits (e.g., in senile plaques) [65–73].
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Fig. 1. A mind map summarizing the content of this paper.

Table 1
Some of the most well-known Alzheimer’s-type dementia symptoms. Some may be causative

Most well-known (some causative) Alzheimer’s-type dementia symptoms

• Pathological loss of microglia, astrocytes and neurons
• Neurofibrillary tangles composed of hyperphosphorylated tau
• Cerebral amyloid-� (A�) or senile plaques
• Upregulation of complement activators, chemokines, cytokines
• Reactive oxygen species generation
• Iron dysregulation
• Accumulation of metals in cerebral A� deposits (e.g., in senile plaques)
• Neuroinflammation

There is evidence in the literature that the iron sta-
tus of AD patients, particularly the serum ferritin (SF)
levels, as measured systemically, might have clinical
relevance, as this is an indication of iron dysregu-
lation [33, 58, 72, 74, 75]. Increased iron levels are
also closely linked to hematological pathology in AD,
and this is indicative of systemic inflammation, which
also plays an important role in the pathogenesis of the
condition [54, 76, 77]. Recently, we showed that, in a
randomly chosen AD population, 60% of the patients
had increased SF levels, causing adverse effect on red
blood cell (RBC) structure [33] as well as causing sig-
nificantly thinner fibrin fiber diameters, resulting in
abnormal clotting [78].

Pathology, in the presence of increased SF levels to
both RBCs and fibrin formation, is indicative of a sys-
temic inflammatory involvement of iron in AD. In the
recent Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort study, increased SF levels were also
measured in cerebrospinal fluid and found to be neg-

atively associated with cognitive performance [79].
Systemically elevated SF levels therefore may have
great clinical relevance in AD, as they may be useful
as markers of cognitive performance.

Currently, the main therapeutic approaches in AD
either attempt to prevent A� production (e.g., by the
use of secretase inhibitors) or to clear A�. However,
there is convincing evidence that A� does not spon-
taneously aggregate on its own, but that there is an
age-dependent reaction with excess brain metal (cop-
per, iron, and zinc), which induces the protein to
precipitate into metal-enriched plaques [65]. In AD
there is also a dramatic increase in brain iron con-
tent and in fact there are higher iron concentrations
inside the A� plaques [80], suggesting that distur-
bances in brain iron homeostasis may contribute to
AD pathogenesis [81, 82].

It is well known that excessive poorly liganded iron
may cause oxidative damage [35, 83, 84], and there is
ample evidence that suggests that oxidative stress and
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Fig. 2. The order or pathway of major and potentially causative interactions in Alzheimer’s- type dementia between enzymes or biochemical
elements, following a systems biology strategy.

therefore aberrant redox activity is one of the earliest
pathological changes in AD, and that there is a link
between systemic and brain oxidative stress [50, 85].

Oxidative stress plays a significant role in the
pathogenesis of AD [86–89]. Oxidative stress in
AD results in increased levels of lipid peroxidation,

DNA, and protein oxidation products (HNE, 8-HO-
guanidine, and protein carbonyls, respectively) inside
AD brains [90]. Oxidative stress participates in the
development of AD by promoting A� deposition
[91], tau protein hyperphosphorylation, and the sub-
sequent loss of synapses and neurons. In AD, much as
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with the prion protein in prion diseases [35, 36, 92],
A� can become a pro-oxidant and when complexed
to iron, this can result in hydrogen peroxide forma-
tion; this process can underlie the increased oxidative
stress burden [93]. The relationship between oxida-
tive stress and AD suggests that it is an essential
part of the pathological process; poorly liganded iron
can participate in the Fenton reaction (Fe2+ + H2O2
−→ Fe3+ + . OH• + OH−), and the highly reactive
hydroxyl radical OH• may be the main culprit [35].
In addition, the Haber-Weiss reaction Fe3+ + O2

•−
−→ Fe2+ + O2 reverts the Fe3+ to Fe2+ such that
the ‘iron’ then becomes catalytic rather than stoichio-
metric [35, 94]; this is why the unliganded iron is so
particularly toxic.

In a series of articles, including a number of
reviews, we have shown that poorly liganded iron
is key to a great variety of diseases [33, 95–97];
it also affects erythrocyte morphology and coagula-
tion properties (touched on briefly later in this paper)
[96, 98].

Ultimately, oxidative stress may be due to the com-
bined action of mitochondrial dysfunction, increased
metal levels, inflammation, and the presence of A�
peptides [99]. However, there is a link between
all the above-mentioned and the pathological pres-
ence of iron. Increased oxidative stress results in
inflammation, which can be both neuroinflammation
or systemic inflammation [100], and the pathologic
levels of iron have been associated with both inflam-
mation and oxidative stress in AD [23, 91]. We tend
to like ideas with predictive power (such as uni-
tary explanations for diseases with comorbidities, for
which see also [101]). Thus, if iron is so important to
the pathogenesis of AD, one might then suppose that
its chelation (that stops the Fenton and Haber-Weiss
reactions) would be expected to improve it [102, 103].
The next section looks at this.

Iron chelating improves cognition

Starting with a Lancet paper that is now a quar-
ter of a century old [104], it has been shown that the
removal of pathologic levels of free iron improves
cognitive function in AD. Metal chelators such as
clioquinol and desferrioxamine, and natural antiox-
idants such as curcumin and ginkgo extract, have
had some success in altering the progression of AD
symptoms [90, 105–107]. More recent and important
papers, to the same effect, come from the group of
Perry and colleagues [51, 54] and that of Youdim
[108], while similar beneficial effects of iron chela-

tion can be observed with Parkinson’s disease and
models thereof [109–112]. We do find it slightly sur-
prising that these indications have not been more
widely picked up.

A fine control of iron regulation might play an
important role in systemic iron overload [113] includ-
ing AD [114], as there is a known association between
diet and risk of dementia [115]. Except for pharma-
ceutical intervention, it is well known that a healthy
diet rich in polyunsaturated fatty acids and polyphe-
nols may have a positive effect on general health brain
function [116]. In particular, the Mediterranean-type
diet has a positive effect on the healthiness of AD
patients [117–120], due to the presence of naturally
occurring iron chelating agents found in fruit and veg-
etables as these agents are known scavengers as a
result of their ability to chelate iron [118, 121–124].
Another route might also be calibrated phlebotomy
in AD, to reduce iron stores [125].

A DORMANT MICROBIAL COMPONENT
TO AD

While metals can certainly contribute significantly
to the explanation of the development of AD via
these Fenton-type pathways, we have recently sug-
gested that they may do so by another and parallel
means, explicitly involving the awakening of a dor-
mant bacterial component [34, 126]. This follows
from the recognition that the growth of microbes in
vivo is normally limited by the availability of free
iron [127–132]. Others too have noted the presence
of an authentic blood microbiome even in ‘normal’
controls, based on macromolecular sequencing and
other molecular approaches (e.g., [126, 133–138]),
although sequencing methods cannot of themselves
reflect replicative potential, of course.

In this sense, a ‘classical’, related, and well-known
example is that of Helicobacter pylori and gastric
ulcers. These latter had long been assumed to be
due to the over-activity of the gastric H+-ATPase
(which can certainly contribute). However, the pio-
neering (and initially ‘controversial’) work of Barry
Marshall and Robin Warren showed unequivocally
that they were inevitably accompanied, and the dis-
ease was essentially caused, by a hard-to-culture and
little-known microaerophilic organism, subsequently
codified as H. pylori [139–142]. Our major thesis here
(and elsewhere) is that it will turn out that a very
large number of chronic, inflammatory diseases, that
share many observable symptoms, will also turn out
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to be due to hard-to-culture organisms, many or most
of which will turn out to be well known to science.
The issue is that they typically lie dormant, and thus
(by definition) resist culture by means that normally
admit their culture.

The point of ‘dormancy’ is particularly important,
as most clinical microbiologists typically consider or
define microbial propagules (cells potentially capable
of replication) as being ‘alive’ (i.e., so capable) or not
under any conditions tested (‘dead’). However, a con-
siderable literature (reviewed by ourselves, e.g., [126,
143–146]) and others (e.g., [147–152]) indicates that
most microbes in nature are non-growing and can
appear operationally ‘dead’, yet can recover cultura-
bility, by a process referred to (virtually by definition)
as ‘resuscitation’. They are thus not operationally
‘dead’ and are typically and more properly referred
to as ‘dormant’ (or, commonly in clinical microbiol-
ogy, ‘persistent’ [150, 152–156]). One needs then to
recognize that dormancy is an operational property
that depends both on the cell (singular [157]) being
assessed and on the means used to detect it [158].
This cannot be emphasized too strongly: the des-
ignation of a microbe as dormant implies that it is not
just a property of the microbe alone but of the means
by which we assess it, a phenomenon reminiscent
of the “Schrödinger cat paradox” in the philosophy
of quantum mechanics. One important consequence
(see e.g., [126, 159–164]) of this ability of microbes
to enter non-replicating physiological states is that
they do not fulfill the Henle-Koch postulates regard-
ing the microbial causality of diseases, at least in their
ordinary form [165].

Particularly, the neurotoxic lipopolysaccharides
(LPS) from their cell walls may be of importance (see
below), since LPS molecules are highly inflammatory
agents, that can even induce cell death [126]. It is of
course the cell death that is the proximate cause of
the loss of cognitive function. We summarize all of
these pathways in Fig. 3. The especial attractions of
this scheme are that (i) it provides for the necessary
systems-level understanding, (ii) the elements hang
together and are ‘coherent’ within the meaning of that
term as used in the Philosophy of Science [126, 166],
and (iii) it is rich in both predictive and explanatory
power.

While recognizing the importance of various kinds
of infectious agents in the pathogenesis of AD (see
[34, 162, 167–198]), and that also depend for their
growth on the availability of free iron, we next turn
to the question of the role of prokaryotes and their
inflammatory components in the pathogenesis of AD.

THE ROLE OF BACTERIA AND LPS IN AD
PATHOGENESIS

Recently, immunoblotting demonstrated bands
corresponding to LPS in four AD brain specimens,
which were positive when screened by immunofluo-
rescence [199]. Bacterial endotoxins may be involved
in the inflammatory and pathological processes asso-
ciated with AD [200]. Indeed a number of studies
indicate that the LPS-induced neuroinflammation can
drive A� formation (e.g., [201–206]).

Interestingly, it has been observed that chronic
infusion of the bacterial LPS into the fourth ventri-
cle of rats reproduces many of the inflammatory and
pathological features seen in the brain of AD patients
[200, 201].

Previously we have reviewed the extensive pub-
lished accounts suggesting a possible link between
LPS presence and the pathological process of AD
[34, 126, 207–211]. It is also well known that LPS
presence is at least one of the causes of inflammation
[212–214], and one of the hallmarks of inflammation
is a hypercoagulable state [215–221]. Previously, we
have seen changes in erythrocytes (RBCs), as well as
hypercoagulation in the presence of LPS, where we
added LPS to whole blood of healthy individuals or
to platelet poor plasma [34]. We also reported on the
presence of bacteria, which will indeed point to the
presence of LPS, in whole blood of AD and Parkin-
son’s disease patients, and also in fact inside RBCs
[34]. We also discussed in detail the reasons why
we might find bacteria in typically “sterile” blood,
and suggested that these bacteria may be dormant (as
operationally defined).

VITAMIN D, INFECTION, AND AD

While, in a sense, ‘everything is connected to
everything else’, the role of the systems biologist is
to highlight those metabolic networks and other pro-
cesses whose variation (whether as a dependent or
an independent variable – see [222]) are most perti-
nent to the outcomes of interest. Leaving aside the
well-established roles of vitamin D in calcium and
bone metabolism, it does seem to have a considerable
impact on the immune system. To this end, there are
some interesting clues (e.g., [223]) that link inflam-
mation, infection, and vitamin D metabolism (and
indeed elements of iron and vitamin D metabolism
[224]), as well as AD [225–231]. Although the
degree, and any mechanisms, of causality remain to
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be seen, and the inter-relations are complex and non-
linear [232, 233], there is an emerging consensus
among a significant group of workers that chronic
infection is intimately linked to detailed vitamin D
status, and that this may provide a way in to useful
therapies for a variety of chronic, inflammatory dis-
eases (e.g., [101, 234–237]). The first issue concerns
what in fact we mean by ‘vitamin D’. Specifically,
vitamin D may typically refer to two distinct forms:
ergocalciferol (vitamin D2) and cholecalciferol (vita-
min D3), with some question as to whether D2 is
indeed useful as a vitamin supplement [238, 239]. The
structures and metabolic products of vitamin D2/3
(of which only the hydroxy derivatives are in fact
active, and the 1�,25-dihydroxyderivative especially)
are given in Fig. 4.

In particular, Mangin and colleagues [235] have
suggested that that low 25(OH)D is a consequence of
chronic inflammation rather than the cause, and that
tissue bacteria were responsible for an inflammatory
disease process which results in high 1,25(OH)2D
and low 25(OH)D (see also [237]). 1,25(OH)2D acti-
vates the vitamin D receptor (VDR) [240–244], a
transcription factor that serves to induce the expres-

sion of over 900 genes, including for antimicrobial
peptides [101, 223, 245–251] such as cathelicidin
and beta defensins which attack (presumably non-
dormant) pathogens [252]. In general, the innate
immune system is enhanced and the adaptive immune
system is inhibited by 1,25(OH)2D [235]. The gen-
eral scheme, essentially as redrawn from [235], is
given in Fig. 5. Other papers have also highlighted
a relationship between low 25(OH)D and AD [226,
229, 230, 253, 254] and tend to imply that vitamin
D supplementation should therefore be a solution.
Obviously from a systems biology point of view,
this does not follow directly, and there is evidence
that the opposite can in fact be true [235, 236, 255];
clearly we need to know precisely the different roles
of 25(OH)D and 1,25(OH)2D, and any effects on the
CYP enzymes that produce them. More particularly,
however, the complex, variable quality [256], and
sometimes apparently contradictory, literature [257]
is arguably better explained on the basis that there are
separate populations who simply respond differently
to vitamin D3 supplementation [258–260]. Biomark-
ers (such as taurinuria; [261]) for genuine vitamin
D deficiency may help disentangle this. Indeed, the
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contradictory nature of any kinds of phenomena
in which the ‘same’ additions are made to the
‘same’ system with very different results are typically
explainable on the basis of uncontrolled variation.
Thus the antioxidant ascorbate is actually pro-oxidant
if unliganded iron is present [35]. Another expla-
nation of such contradictions here involves the
simultaneous presence of agonist and antagonist con-
formers of the VDR [262–264]. Finally, and in
a different vein, the apoptotic versus proliferative
effects of NF-�B are determined by the frequency
rather than the amplitude of the NF-�B signaling
molecule [43, 265, 266]. Vitamin D has significant
effects on NF-�B [267–269]. Since there are also
significant oscillations in ERK [270], VDR levels
are partly dependent on ERK [271], and vitamin D3
also regulates circadian genes [272], these kinds of
explanations based on the timing and frequency of
oscillations (rather than simple metabolite concen-
trations) seem well worth exploring.

At all events, the nature(s) of the intracellu-
lar pathogens (and the cells in which they reside)
is probably very wide, and at least one strategy
for their persistence (in terms of their ability to
evade the immune systems) is the adoption of cell-
wall-deficient morphologies [148] or L-forms [273].
These, as well as more conventional structures, can
of course be detected microscopically.

DIRECT DETECTION OF
MORPHOLOGICAL CHANGES IN THE
BLOOD OF AD PATIENTS

Pathologic RBCs and hypercoagulable
fibrin(ogen) in AD patients

In previous work, we showed that the erythro-
cytes of AD patients were of highly anomalous
shape, especially when serum ferritin levels were
simultaneously raised [33] and that there was likely
a hypercoagulable state (ascribed to the elevated
LPS [34]). Here we now also show that AD RBCs
are indeed abnormal, by using RBC and antibody-
based fluorescent markers for spectrin (Ab11751)
(red fluorescence) and Band-3 (Ab11012) (green
fluorescence). Band3 is found in three distinct
protein complexes associated with the erythrocyte
membrane: an ankyrin-dependent tetrameric band3
complex, a dimeric band3 complex bound to the pro-
tein 4.1-glycophorin C junctional complex, and freely
diffusing dimeric band3 complexes [274, 275]. Band
3 can also bind to spectrins, the internal scaffold for

erythrocyte shape, via ankyrin, suggesting that band
3 contributes to the membrane-cytoskeleton inter-
actions that help to define erythrocyte shape and
stability [276, 277]. Structural alterations to the phos-
pholipids, as well as band 3 and spectrin, cause RBC
physical shape changes, which can be detrimental
to their normal functioning [97, 278]. Under normal
conditions, the neutral phospholipids, phosphatidyl-
choline, and sphingomyelin are mostly found on
the outside, and the charged phospatidylserine (PS),
phosphatidylinosirol, and phosphatidylethalolamine,
are found mostly on the inner membrane leaflet. How-
ever, during inflammation, the erythrocyte membrane
leaflet phospholipids becomes more symmetric as
PS is externalized, resulting in RBC membrane vesi-
cle formation and ultimately microparticle shedding,
with subsequent pathological shape changes of RBCs
[279]. PS is normally found only on the intracellu-
lar leaflet of the plasma membrane in healthy cells,
but during early eryptosis (RBC programmed cell
death) [280–284], membrane asymmetry is lost and
PS translocates to the external leaflet [285]. For a
detailed review on the role of the RBC membrane
and changes therein due to inflammation, see [286].

Figure 6A shows a typical example of confocal
microscopy of a healthy RBC and Fig. 6B shows a
typical scanning electron microscopy (SEM) image
of a representative RBC from an age-controlled
healthy individual, while Fig. 6C and D show con-
focal and SEM images of a representative sample
from an AD individual. Figure 6A shows intense
green fluorescence on the rim of the RBCs and less
intense toward the inside of the RBC. There is lit-
tle to no red fluorescence specifically on the rim of
the RBCs indicating the presence of the spectrin.
Where there is some red staining, it is more toward
the inside of the RBCs and much less intense than
the green band3. In the RBCs of the AD individ-
uals (Fig. 6C), the red fluorescence is much more
visible, and the red fluorescence is found not only
on the inside of the RBCs but also on the rim and
outside of these cells unlike the control group. This
suggests a structural membrane disorder, typically
associated with eryptosis, which is often enhanced by
cytoplamic calcium activity and also characterized by
cell membrane scrambling and cell shrinkage [287,
288]. Particularly the disarrangement of spectrin and
band 3 positional changes are two important mark-
ers to determine structural damage to the membrane
that will result in changes to elasticity and pliability of
RBCs [286]. SEM images comparing healthy and AD
RBC ultrastructure, clearly show that the RBCs from
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Vitamin D metabolism
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Fig. 4. The structures and major metabolic products of vitamin D2/3. The dihydrohylated derivatives are by far the most active in terms of
binding to the vitamin D receptor.
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Fig. 5. A general scheme of some of the roles of vitamin D and its metabolites in chronic infection: (essentially as redrawn from [235]).

AD individuals have an eryptotic structure. Eryptosis
is visible in most of the RBCs from AD patients, and
also in those with Parkinson’s disease [95]. Addition-
ally to the eryptotic structure of the RBCs, bacteria

were also visible with SEM in the same AD sample
(Fig. 6E, F).

As well as changes in AD RBCs, we previ-
ously found that pathologic fibrin fiber formation
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Fig. 6. Confocal and scanning electron microcopy (SEM) of health and Alzheimer’s-type dementia RBCs. The fluorescent markers spectrin
(Ab11751) (red fluorescence) and Band-3 (Ab11012) (green fluorescence) were used in confocal microscopy. A) Confocal micrograph of a
healthy RBC; B) SEM micrograph of a healthy RBC; C) Confocal micrograph of an Alzheimer’s-type dementia RBC; D) SEM micrograph
of an Alzheimer’s-type dementia RBC; E) SEM micrograph showing bacteria between RBCs; and F) of bacteria and matted fibrin. Scale
bar of SEM micrographs: 1 �m; and for confocal: 5 �m.

(associated with hypercoaguation) is also present in
AD, and may therefore be used as a further and useful
inflammatory indicator [34]. As seen in pathologi-
cal changes in RBCs, oxidative damage, increased
iron levels, and inflammation are also all reasons
for the development of hypercoagulability [95–97,
289–293]. Hypercoagulability is closely associated
with increased fibrin(ogen) in AD patients, while
hypercoagulation has been observed in blood vessels
positive for amyloid in mouse and human AD samples
[294]. A changed fibrinogen structure has been impli-
cated in the development of neuroinflammation [295,
296], and memory deficits and increased fibrinogen
levels in AD are noted to be a strong indicator of cere-
brovascular risk, as fibrinogen specifically binds to
A�, thereby altering fibrin clot structure and delay-
ing clot degradation [297]. In a previous paper, we

looked at the viscoelastic and ultrastructural proper-
ties of AD plasma and whole blood by using scanning
electron microscopy, thromboelastography (TEG®)
and the Global Thrombosis Test (GTT®) [34]. TEG®

analysis showed a hypercoagulable state in AD, while
TEG® results, where LPS was added to uncitrated
blood, showed the same trends as were found with the
AD patients. The GTT® results (where only platelet
activity is measured) were not affected by the added
LPS, suggesting that LPS does not directly impact
platelet function [34]. See Fig. 7 for an ultrastructural
comparison of platelet poor plasma smears (treated
with thrombin) from a healthy (age-controlled) indi-
vidual and from an AD individual.

Although pathophysiological changes in RBCs
and fibrin fiber structure are not unique to AD, they
are hallmarks of systemic inflammation [96], and as
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Fig. 7. Platelet poor plasma of A) healthy (age-controlled) individual; and B) an Alzheimer’s-type dementia individual. Thrombin
(20 U.mL–1) was added at a final concentration of 57.7 nM. Scale bar: 1 �m.

noted here LPS may play a role in the biochemi-
cal pathways that may destabilize RBC and fibrin
structure. As RBCs are extremely vulnerable in the
presence of pro-inflammatory molecules, hydroxyl
radicals, oxidative stress, and LPS, they may possibly
be used as a ‘healthiness’ indicator of AD patients.
Currently we have few actual markers of AD status,
and we note that the latest NIH guidelines suggest that
clinical medicine should focus on precision medicine
[298] and that individualized medicine should in the
future, form an essential part in the diagnosis and
treatment of patients. We therefore suggest that RBC
and fibrin morphology could be used as “health indi-
cators”. Here we do not of course suggest that they
should be used as diagnostic tools for AD per se, but
rather as a healthiness indicator of the overall sys-
temic inflammatory status of patients after diagnoses.

CONCLUSION

Modern molecular biology had become a little
obsessed with a presumed need for hypotheses, and
it has taken the post-genomic era to remind scientists
of the virtues of scientific induction and data-driven
biology [299, 300], often intertwined with a sys-
tems biology approach. A typically nice example is
a hypothesis-free discovery biology paper [301] in
which the authors sought to identify those pathways
that were most intimately involved in the devel-
opment of prion disease. Genes involved in iron
metabolism were among the most highly involved
[301].

In a similar vein, we have brought together the
evidence underpinning a coherent and self-consistent
view of the linked contributions to AD progression of
iron dysregulation, the resuscitation of dormant bac-
teria, and the shedding of the highly inflammatory

LPS that can induce both cytokines and apoptosis
(see Figs. 2 and 3). As with any systems approach,
it implies the need for pharmacological interven-
tions at multiple points (e.g., [302–305]). The role
of the systems pharmacologist, based on knowledge
of the most important pathways proposed herein, is
to develop them.
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absorption and ELISA studies. Acta Physica Polonica A
119, 81-83.

[70] Zhang J, Wang JH, Li K, Geng DY, Chen MR, Tang
WJ, Zhao ZG, Li YH, Ma SG, Yan CG (2010) Corre-
lation between iron deposition and Alzheimer’s disease
In vivo preliminary quantitative study with susceptibility-
weighted imaging. Neural Regen Res 5, 725-728.

[71] Raven EP, Lu PH, Tishler TA, Heydari P, Bartzokis G
(2013) Increased iron levels and decreased tissue integrity
in hippocampus of Alzheimer’s disease detected in vivo
with magnetic resonance imaging. J Alzheimers Dis 37,
127-136.

[72] Quintana C, Bellefqih S, Laval JY, Guerquin-Kern
JL, Wu TD, Avila J, Ferrer I, Arranz R, Patino C
(2006) Study of the localization of iron, ferritin, and
hemosiderin in Alzheimer’s disease hippocampus by ana-
lytical microscopy at the subcellular level. J Struct Biol
153, 42-54.

[73] Wang D, Li YY, Luo JH, Li YH (2014) Age-related iron
deposition in the basal ganglia of controls and Alzheimer
disease patients quantified using susceptibility weighted
imaging. Arch Gerontol Geriatr 59, 439-449.

[74] Giambattistelli F, Bucossi S, Salustri C, Panetta V, Mar-
iani S, Siotto M, Ventriglia M, Vernieri F, Dell’acqua
ML, Cassetta E, Rossini PM, Squitti R (2012) Effects
of hemochromatosis and transferrin gene mutations
on iron dyshomeostasis, liver dysfunction and on
the risk of Alzheimer’s disease. Neurobiol Aging 33,
1633-1641.

[75] De Sole P, Rossi C, Chiarpotto M, Ciasca G, Bocca
B, Alimonti A, Bizzarro A, Rossi C, Masullo C (2013)
Possible relationship between Al/ferritin complex and
Alzheimer’s disease. Clin Biochem 46, 89-93.

[76] Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and
Parkinson’s diseases. Curr Opin Chem Biol 12, 222-228.

[77] Weinberg ED (2010) The hazards of iron loading. Metal-
lomics 2, 732-740.

[78] Nielsen VG, Pretorius E, Bester J, Jacobsen WK, Boyle
PK, Reinhard JP (2015) Carbon monoxide and iron mod-
ulate plasmatic coagulation in Alzheimer’s disease. Curr
Neurovasc Res 12, 31-39.

[79] Ayton S, Faux NG (2015) Ferritin levels in the cere-
brospinal fluid predict Alzheimer’s disease outcomes and
are regulated by APOE. Nat Commun 6, 6760.

[80] Meadowcroft MD, Connor JR, Smith MB, Yang
QX (2009) MRI and histological analysis of beta-
amyloid plaques in both human Alzheimer’s disease and
APP/PS1 transgenic mice. J Magn Reson Imaging 29,
997-1007.

[81] Altamura S, Muckenthaler MU (2009) Iron toxicity in dis-
eases of aging: Alzheimer’s disease, Parkinson’s disease
and atherosclerosis. J Alzheimers Dis 16, 879-895.

[82] Adlard PA, Bush AI (2006) Metals and Alzheimer’s dis-
ease. J Alzheimers Dis 10, 145-163.

[83] Jomova K, Valko M (2011) Importance of iron chelation in
free radical-induced oxidative stress and human disease.
Curr Pharm Des 17, 3460-3473.

[84] Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M,
Telser J (2007) Free radicals and antioxidants in normal
physiological functions and human disease. Int J Biochem
Cell Biol 39, 44-84.

[85] Cervellati C, Wood PL, Romani A, Valacchi G, Squerzanti
M, Sanz JM, Ortolani B, Zuliani G (2016) Oxidative chal-
lenge in Alzheimer’s disease: State of knowledge and
future needs. J Investig Med 64, 21-32.

[86] Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry
G (2000) Oxidative stress in Alzheimer’s disease. Biochim
Biophys Acta 1502, 139-144.

[87] Chauhan V, Chauhan A (2006) Oxidative stress in
Alzheimer’s disease. Pathophysiology 13, 195-208.

[88] Markesbery WR (1997) Oxidative stress hypothesis in
Alzheimer’s disease. Free Radic Biol Med 23, 134-147.

[89] Markesbery WR, Carney JM (1999) Oxidative alterations
in Alzheimer’s disease. Brain Pathol 9, 133-146.

[90] Smith DG, Cappai R, Barnham KJ (2007) The redox chem-
istry of the Alzheimer’s disease amyloid beta peptide.
Biochim Biophys Acta 1768, 1976-1990.

[91] Jomova K, Vondrakova D, Lawson M, Valko M (2010)
Metals, oxidative stress and neurodegenerative disorders.
Mol Cell Biochem 345, 91-104.

[92] Singh N, Haldar S, Tripathi AK, Horback K, Wong J,
Sharma D, Beserra A, Suda S, Anbalagan C, Dev S,
Mukhopadhyay CK, Singh A (2014) Brain iron homeosta-
sis: From molecular mechanisms to clinical significance
and therapeutic opportunities. Antioxid Redox Signal 20,
1324-1363.

[93] Greenough MA, Camakaris J, Bush AI (2013) Metal
dyshomeostasis and oxidative stress in Alzheimer’s dis-
ease. Neurochem Int 62, 540-555.

[94] Das TK, Wati MR, Fatima-Shad K (2015) Oxidative
stress gated by Fenton and Haber Weiss reactions and its
association with Alzheimer’s disease. Arch Neurosci 2,
e20078.

[95] Pretorius E, Swanepoel AC, Buys AV, Vermeulen N, Duim
W, Kell DB (2014) Eryptosis as a marker of Parkinson’s
disease. Aging-US 6, 788-818.

[96] Kell DB, Pretorius E (2015) The simultaneous occur-
rence of both hypercoagulability and hypofibrinolysis
in blood and serum during systemic inflammation,
and the roles of iron and fibrin(ogen). Integr Biol 7,
24-52.

[97] Pretorius E, Kell DB (2014) Diagnostic morphology: Bio-
physical indicators for iron-driven inflammatory diseases.
Integr Biol 6, 486-510.

[98] Pretorius E (2013) The adaptability of red blood cells.
Cardiovasc Diabetol 12, 63.

[99] Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s
disease. Neurosci Bull 30, 271-281.

[100] de la Monte SM (2014) Type 3 diabetes is sporadic
Alzheimer’s disease: Mini-review. Eur Neuropsychophar-
macol 24, 1954-1960.

[101] Proal AD, Albert PJ, Marshall TG (2014) Inflammatory
disease and the human microbiome. Discov Med 17, 257-
265.



E. Pretorius et al. / Bacterial Component to Alzheimer’s-Type Dementia 1251

[102] Malecki EA, Connor JR (2002) The case for iron chelation
and/or antioxidant therapy in Alzheimer’s disease. Drug
Dev Res 56, 526-530.

[103] Mandel S, Amit T, Bar-Am O, Youdim MB (2007)
Iron dysregulation in Alzheimer’s disease: Multi-
modal brain permeable iron chelating drugs, possess-
ing neuroprotective-neurorescue and amyloid precursor
protein-processing regulatory activities as therapeutic
agents. Prog Neurobiol 82, 348-360.

[104] Crapper McLachlan DR, Dalton AJ, Kruck TP, Bell MY,
Smith WL, Kalow W, Andrews DF (1991) Intramuscu-
lar desferrioxamine in patients with Alzheimer’s disease.
Lancet 337, 1304-1308.

[105] Banerjee P, Sahoo A, Anand S, Bir A, Chakrabarti
S (2015) The oral iron chelator, deferasirox, reverses
the age-dependent alterations in iron and amyloid-beta
homeostasis in rat brain: Implications in the therapy of
Alzheimer’s disease. J Alzheimers Dis 49, 681-693.

[106] Venigalla M, Gyengesi E, Munch G (2015) Curcumin
and Apigenin - novel and promising therapeutics against
chronic neuroinflammation in Alzheimer’s disease. Neural
Regen Res 10, 1181-1185.

[107] Ghofrani S, Joghataei MT, Mohseni S, Baluchne-
jadmojarad T, Bagheri M, Khamse S, Roghani M
(2015) Naringenin improves learning and memory in an
Alzheimer’s disease rat model: Insights into the underlying
mechanisms. Eur J Pharmacol 764, 195-201.

[108] Salkovic-Petrisic M, Knezovic A, Osmanovic-Barilar J,
Smailovic U, Trkulja V, Riederer P, Amit T, Mandel S,
Youdim MBH (2015) Multi-target iron-chelators improve
memory loss in a rat model of sporadic Alzheimer’s dis-
ease. Life Sci 136, 108-119.

[109] Funke C, Schneider SA, Berg D, Kell DB (2013) Genetics
and iron in the systems biology of Parkinson’s disease and
some related disorders. Neurochem Int 62, 637-652.

[110] Finkelstein DI, Hare DJ, Billings JL, Sedjahtera A, Nur-
jono M, Arthofer E, George S, Culvenor JG, Bush AI,
Adlard PA (2016) Clioquinol improves cognitive, motor
function, and microanatomy of the alpha-synuclein hA53T
transgenic mice. ACS Chem Neurosci 7, 119-129.

[111] Lei P, Ayton S, Appukuttan AT, Volitakis I, Adlard PA,
Finkelstein DI, Bush AI (2015) Clioquinol rescues Parkin-
sonism and dementia phenotypes of the tau knockout
mouse. Neurobiol Dis 81, 168-175.

[112] Billings JL, Hare DJ, Nurjono M, Volitakis I, Cherny RA,
Bush AI, Adlard PA, Finkelstein DI (2016) Effects of
neonatal iron feeding and chronic clioquinol administra-
tion on the parkinsonian human A53T transgenic mouse.
ACS Chem Neurosci 7, 360-366.

[113] Toyokuni S (2011) Iron as a target of chemoprevention for
longevity in humans. Free Radic Res 45, 906-917.

[114] Yusufov M, Weyandt LL, Piryatinsky I (2016) Alzheimer’s
disease and diet: A systematic review. Int J Neurosci. doi:
10.3109/00207454.2016.1155572

[115] Cao L, Tan L, Wang HF, Jiang T, Zhu XC, Lu H, Tan
MS, Yu JT (2015) Dietary patterns and risk of dementia:
A systematic review and meta-analysis of cohort studies.
Mol Neurobiol. doi: 10.1007/s12035-015-9516-4

[116] Gu Y, Brickman AM, Stern Y, Habeck CG, Razlighi QR,
Luchsinger JA, Manly JJ, Schupf N, Mayeux R, Scarmeas
N (2015) Mediterranean diet and brain structure in a mul-
tiethnic elderly cohort. Neurology 85, 1744-1751.

[117] Scarmeas N, Stern Y, Mayeux R, Luchsinger JA (2006)
Mediterranean diet, Alzheimer disease, and vascular medi-
ation. Arch Neurol 63, 1709-1717.

[118] Thaipisuttikul P, Galvin JE (2012) Use of medical foods
and nutritional approaches in the treatment of Alzheimer’s
disease. Clin Pract (Lond) 9, 199-209.

[119] Lipinski B, Pretorius E (2013) The role of iron-induced
fibrin in the pathogenesis of Alzheimer’s disease and the
protective role of magnesium. Front Hum Neurosci 7,
735.

[120] Dwyer BE, Zacharski LR, Balestra DJ, Lerner AJ, Perry
G, Zhu X, Smith MA (2010) Potential role of iron in
a Mediterranean-style diet. Arch Neurol 67, 1286-1287;
author reply 1287-1288.

[121] Ayissi VB, Ebrahimi A, Schluesenner H (2013) Epigenetic
effects of natural polyphenols: A focus on SIRT1-
mediated mechanisms. Mol Nutr Food Res 58, 22-32.

[122] Feart C, Samieri C, Barberger-Gateau P (2010) Mediter-
ranean diet and cognitive function in older adults. Curr
Opin Clin Nutr Metab Care 13, 14-18.

[123] Gu Y, Luchsinger JA, Stern Y, Scarmeas N (2010) Mediter-
ranean diet, inflammatory and metabolic biomarkers, and
risk of Alzheimer’s disease. J Alzheimers Dis 22, 483-492.

[124] Hu N, Yu JT, Tan L, Wang YL, Sun L, Tan L (2013) Nutri-
tion and the risk of Alzheimer’s disease. Biomed Res Int
2013, 524820.

[125] Dwyer BE, Zacharski LR, Balestra DJ, Lerner AJ, Perry G,
Zhu X, Smith MA (2009) Getting the iron out: Phlebotomy
for Alzheimer’s disease? Med Hypotheses 72, 504-509.

[126] Kell DB, Potgieter M, Pretorius E (2015) Individuality,
phenotypic differentiation, dormancy and ‘persistence’
in culturable bacterial systems: Commonalities in
environmental, laboratory, and clinical microbiology.
F1000Review 4, 179.

[127] Barber MF, Elde NC (2014) Nutritional immunity. Escape
from bacterial iron piracy through rapid evolution of trans-
ferrin. Science 346, 1362-1366.

[128] Armitage AE, Drakesmith H (2014) Genetics. The battle
for iron. Science 346, 1299-1300.

[129] Haley KP, Skaar EP (2012) A battle for iron: Host seques-
tration and Staphylococcus aureus acquisition. Microbes
Infect 14, 217-227.

[130] Nairz M, Haschka D, Demetz E, Weiss G (2014) Iron at
the interface of immunity and infection. Front Pharmacol
5, 152.

[131] Nairz M, Schroll A, Sonnweber T, Weiss G (2010) The
struggle for iron - a metal at the host-pathogen interface.
Cell Microbiol 12, 1691-1702.

[132] Subashchandrabose S, Mobley HLT (2015) Back to the
metal age: Battle for metals at the host-pathogen interface
during urinary tract infection. Metallomics 7, 935-942.

[133] Nikkari S, McLaughlin IJ, Bi W, Dodge DE, Relman DA
(2001) Does blood of healthy subjects contain bacterial
ribosomal DNA? J Clin Microbiol 39, 1956-1959.

[134] Amar J, Serino M, Lange C, Chabo C, Iacovoni J, Mondot
S, Lepage P, Klopp C, Mariette J, Bouchez O, Perez L,
Courtney M, Marre M, Klopp P, Lantieri O, Doré J, Charles
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[281] Lang F, Abed M, Lang E, Föller M (2013) Oxidative stress
and suicidal erythrocyte death. Antioxid Redox Signal 21,
138-153.

[282] Lang F, Gulbins E, Lang PA, Zappulla D, Föller M (2010)
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