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Abstract. Animal models of Alzheimer’s disease (AD) have been extensively utilized for decades in an effort to elucidate
the pathophysiological mechanisms of this disease and to test novel therapeutic approaches. However, research success has
not effectively translated into therapeutic success for human patients. This translational failure is partially due to the overuse
of animal models that cannot accurately recapitulate human AD etiopathogenesis or drug responses and the inadequate use
of human-relevant research methods. Here, we propose how to mitigate this translational barrier by employing human-based
methods to elucidate disease processes occurring at multiple levels of complexity, accounting for gene and protein expression and
the impact of disease at the cellular, tissue/organ, individual, and population levels. In particular, novel human-based cellular and
computational models, together with epidemiological and clinical studies, represent the ideal tools to facilitate human-relevant
data acquisition, in the effort to better elucidate AD pathogenesis in a human-based setting and design more effective treatments
and preventive strategies. Our analysis indicates that a paradigm shift toward human-based, rather than animal-based research
is required in the face of the ever-increasing prevalence of AD in the 21st century.
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INTRODUCTION

Alzheimer’s disease (AD) represents the most com-
mon cause of dementia, accounting for 50-75% of
all dementia cases [1]. This is a devastating dis-
ease affecting every aspect of life, as AD patients
progress from very mild to severe cognitive impair-
ment, losing their memory, their relationships with
their families, and their ability to perform daily func-
tions, such as talking, eating, and walking. The number
of people living with AD in the United States alone
is expected to increase from 5.2 million in 2013 to
13.8 million in 2050 [2], with an estimated cost of
care expected to reach more than $1 trillion per year
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[1, 3]. It is clear that effective preventive and thera-
peutic strategies are urgently needed. In this regard,
the AD research community has been very active with
extensive research efforts designed to elucidate disease
mechanisms and to develop novel therapeutics. How-
ever, these efforts have not successfully translated into
effective drugs for AD patients. To date, only three
drugs have been approved for AD (donepezil, galan-
tamine, and rivastigmine) and they can only treat the
symptoms of AD. It is well known that they are effec-
tive in only a small subset of patients, and only for a
limited period of time [4]. Since 1998, 101 potential
AD drugs have advanced to human trials but failed
[5], and with recent costly failures such as Dime-
bon [6], drug companies are downgrading their efforts
to develop novel pharmacotherapeutics for AD [7].
Understanding and resolving the reasons for these
translational failures in AD is therefore imperative.
Additionally, several lines of evidence indicate that AD
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should be reinterpreted as part of a constellation of dis-
eases, in particular, as a complex systemic/metabolic
dysfunction, given the significant correlations found
between AD and the metabolic syndrome [8], as well
as hypometabolism, oxidative stress, and glucose-fatty
acid cycle modifications [9]. Consequently, current and
past research failures might also be attributed to the
fact that traditional research efforts and strategies have
not been taking this complexity into account. Indeed,
over the last decade, AD molecular mechanisms and
drug efficacies have been studied extensively in ani-
mal models—primarily in murine models, but also in
nonhuman primates, rats, dogs, and other species—all
in an effort to assess in animals the contributions
of specific genes and proteins to the onset of AD,
commonly without accounting for the multifactorial
nature of the disease. These animal models consis-
tently fail to accurately recapitulate human AD causes,
complex molecular and cellular dynamics, clinical
manifestations, and drug responses. This is primarily
due to anatomical, biochemical, and physiological as
well as genetic and epigenetic interspecies differences
between animals and humans [10]. In this review, we
propose a novel human-based integrated framework,
accounting for multiple levels of biological complex-
ity, which can be used to improve characterization of
human AD and develop effective treatments and pre-
ventive strategies for human patients.

AD AND INADEQUACY OF TRADITIONAL
AD MODELS

The two types of AD are familial AD (~5% of all
AD cases), often occurring before age 60, and late-
onset AD ( 95% of all AD cases), occurring in people
over the age of 65. Familial AD is generally charac-
terized by the presence of mutations found in genes
encoding the y-secretase complex components, such
as presenilin-1 and —2, or in the amyloid-3 (A4) pro-
tein precursor (ABPP) [11]. Duplication of the ABPP
gene has also been linked to autosomal dominant famil-
ial AD [12]. Late-onset AD is generally defined as
‘sporadic’, given the lack of specific genetic factors
directly associated with the disease. Genome-wide
association studies (GWAS) have shown that AD is
also associated with variations of several gene loci,
such as the apolipoprotein E &4 allele (APOE &4)
[13—17]. Accumulation of amyloid-B (AB) plaques
and neurofibrillary tangles, composed of accumulated
microtubule-associated total, and phosphorylated tau
(t-tau and p-tau) protein, are the two physiological

hallmarks of human AD, though it is unclear what role,
if any, they play in the disease [18] (Supplementary
Table 1).

Over the last decade, AD research has focused on the
development of animal models to mimic at least some
features of human AD described above. However,
while certain murine models have been able to exhibit
some of the genetic traits found in early-onset familial
AD [19-21], their suitability to study late-onset AD
is questionable [22], as confirmed by the dramatically
high number of failed clinical trials [10, 23]. Without
an understanding of the genetics of AD as it occurs in
humans, the genetic contribution to disease pathogen-
esis is virtually impossible to model in mice [24]. In
addition to the use of animals, overly simplistic cel-
lular models of AD, often utilizing cancer cell lines
or nonhuman cells cultured under nonhomeostatic and
nonphysiologic in vitro culture conditions [25] have
been commonly applied, further hampering research
and drug discovery in AD [10]. Altogether, this high-
lights the need to rethink current research strategies
and improve both sensitivity and specificity of research
methods that will mitigate this wide translational

gap.

RETHINKING AD RESEARCH FOCUSING
ON HUMAN-RELEVANT DATA
ACQUISITION

Human-based cellular and tissue models, combined
with epidemiological data and high-throughput read-
outs, can serve as the basis for a paradigm shift in AD
research, facilitating human-relevant data acquisition.
These tools and novel assays will allow researchers
to better elucidate AD pathogenesis in a human-based
setting and to design more effective treatments and pre-
ventive strategies. To integrate the vast amount of data
deriving from comprehensive ‘omics’ studies, systems
biology methods are of fundamental importance. This
approach will allow researchers to describe molecular
mechanisms underlying AD pathogenesis. In partic-
ular, several environmental and lifestyle risk factors,
such as specific food nutrients and environmental tox-
icants, are known to play a pivotal role in the onset of
pathologic changes underlying AD, which often appear
many years before the symptomatic stages [26]. By
using human-based models and novel computational
methods, it is now possible to unravel the epigenetic
and molecular mechanisms underlying AD pathogen-
esis (Fig. 1, Table 1).
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Fig. 1. Overview of the novel available tools and readouts applicable to design human-oriented AD research, accounting for multiple levels
of complexity. CSF, cerebrospinal fluid; MRI, magnetic resonance imaging; PET, positron emission tomography; MMSE, Mini-Mental State
Examination; HVLT, Hopkins verbal learning test; iPSCs, induced pluripotent stem cells; iNCs, induced neuronal cells; NSCs, neural stem
cells; MEA, microelectrode array; IF HCS, immunofluorescence-high content screening; MS, mass spectrometry; MRS, magnetic resonance
spectroscopy; GWAS, genome-wide association studies; GEP, gene expression profiling.

The population and individual levels:
Epidemiological studies and novel ‘omics’
readouts

Epidemiological studieshave beenimportantiniden-
tifying AD-related risk factors. The primary risk factors
for AD include advancing age [27-29], nutritional
patterns characterized by low intake of plant-derived
foods [30], together with metabolic syndrome-related
dysfunctions (e.g., cardiovascular disease and diabetes)
[8,31],low socioeconomic status and alow level of edu-
cational attainment [32-34], low level of daily physical
activity [35, 36], and low cognitive training [37]. Addi-
tionally, sleep disorders [38—40], known to positively
correlate to early AR deposition [41, 42], exposure
to air pollution [43], smoking [44], and the intake of
metals (e.g. aluminum [45], dietary copper [46], and
manganese [47]) have been described as possible risk
factors. Knowledge of these risk factors may enable the
discovery of early biomarkers of AD and the develop-
ment of intervention strategies to ameliorate or prevent
early symptoms of AD.

In particular, analysis of both AD patient-derived
plasma and cerebrospinal fluid (CSF) has been proven
essential to identify possible early biomarkers of AD
(Table 2). The presence of chronic neuroinflammation,
caused by the progressive senescence of the immune
system and by a sustained secretion of adipose tissue
cytokines, seems to play a major role in cardiovas-
cular disease and neurodegeneration [48], possibly

contributing to AD [49, 50]. The presence of high lev-
els of both plasma and brain homocysteine (HCys) is
correlated to AD and neurodegenerative disorders. Ele-
vated HCys in brain microvessels may be implicated in
the disruption of the blood-brain barrier [51] and induc-
tion of excitotoxicity in cells expressing glutamate
receptors of the N-methyl-D-aspartate class [52]. Other
biomarkers considered relevant to AD are: low levels
of plasma uric acid [53, 54], high levels of serum 3,4-
dihydroxybutanoic acid (C4HgO4), docosapentaenoic
acid (C22:5) [55], and hexacosanoic acid (C26:0) [56],
the presence of insulin resistance and high insulin-like
growth factor expression [57-59], impaired glycemic
levels [60], mitochondrial damage and increased mito-
chondrial O-linked N-acetylglucosamine transferase
activity [61], the presence of a dyslipidemic profile
[31, 62-66], deregulation of plasma orexin [67-70],
and high levels of the secreted heparin-binding glyco-
protein YKL-40 [71, 72] (Table 2). Additionally, the
CSF milieu is altered in subjects presenting AD. Anal-
ysis of the CSF revealed the deregulation of several
biomarkers currently hypothesized to play a key role
for AD early diagnosis, such as the AB-42, t-tau, and p-
taugy [73], and in particular the levels of p-taug;/t-tau
and p-tau;g1/AB1-47 ratios, considered good indicators
of dementia severity and contributing to discrimina-
tion between mild or moderate-to-severe AD cases [74]
(Table 2).

The novel concept of the ‘exposome’, accounting for
the totality of environmental exposures from gestation
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Table 1
Human-based models and methods for AD research
Complexity levels Models/Readouts Characteristics/Possible applications References
Population/ Ultra-high-field MRI To assess cortical plaque disposition and [86]
individual level: early hippocampal tissue loss
data from PET To monitor AR plaque distribution in [87]
epidemiological, patients
clinical studies; tests Connectomics (e.g., diffusion 3D reconstruction of neuronal network [91-93]
on AD patients; magnetic resonance tractography) within the human brain; allows registering
test on AD patient variations of brain cortical surfaces in AD
samples (e.g., CSF, patients
serum) Electron microscopy Electron microscopy images suitable to [94]
generate 3D neuron reconstruction
Exposomics To assess environmental exposure effects [75]
on gene expression
Nutrigenomics To assess nutrient effects on gene [77,78]
expression
Nutrigenetics To assess genetic variants’ susceptibility to [85]
specific nutrients
Neuropsychological/cognitive tests To assess cognitive level [95]
(e.g., MMSE, HVLT)
Tissue/cell levels: AD patient-derived primary cells Accounting for patient heterogeneity, [96]
AD patient-derived (e.g., neurons) available only postmortem, short periods of
tissues and cells time in culture
AD patient-derived hiPSCs and Accounting for patient heterogeneity, [97-102]
further differentiation into neurons recapitulating common features of AD,
applicable for drug evaluations, suitable for
high-throughput assays
AD patient-derived iNCs To study late-onset AD [98, 103]
AD patient-derived olfactory Easily biopsied or collected postmortem [96]
mucosa
3D human NSCs expressing AD- Recapitulate extracellular AR deposition, [19]
related mutations plaque formation, high levels of p-tau and
filamentous tau in both neuronal soma and
neurites. Suitable to study familial AD
Human microglial cells Derived from elderly patients; useful to [106]
define the role of active microglia in the
inflammatory process at the onset of AD
3D in vitro human tissue models, To better mimic in vivo physiological [104]
with microfluidics conditions
Brain-on-a-chip To test drug efficacy and toxicity [107, 108]
Readout: MEA To directly record neuronal culture activity [112]
on chip, for drug testing
Readout: Optogenetics To monitor the activities of individual [113]
neurons in living tissue
Readout: IF-HCS High-throughput, to assess the effects of [96]
compounds at cellular level
Signaling Proteomics and High-throughput, to define molecules and [114]
pathway/protein phosphoproteomics signaling pathways involved in APOE &4-
level: related late-onset AD
human AD cell- Capillary electrophoresis-mass To assess phosphorylation of metabolic [115]
derived protein spectrometry proteins, signal transduction, cytoskeleton
samples integration and synaptic functions
Proton MRS and metabolomics To analyze in vivo metabolites of neuronal [116]
and glial cells representative of energy
metabolism, level of inflammation and
neurotransmitter release
Further functional studies: reporter To assess perturbation of identified [126, 127]

human AD cell cultures of
identified perturbed signaling
pathways

pathways upon exposure to compounds

(Continued)
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Table 1
(Continued)

Complexity levels Models/Readouts Characteristics/Possible applications References
Epigenetic/genetic Laser-capture microdissection and High-throughput, to analyze subtypes of [117, 118]
level: GEP cortical neurons obtained from postmortem
human AD cell- brain
derived RNA GWAS To identify associations between specific [13-17]
and DNA samples gene loci and AD

Further functional studies: gain- or To define the role of specific genes [128, 129]

loss-of-function, RNA interference onset of AD

MRI, magnetic resonance imaging; PET, positron emission tomography; MMSE, mini-mental state examination; HVLT, Hopkins verbal learning
test; hiPSCs, human induced pluripotent stem cells; iNCs, induced neuronal cells; NSCs, neural stem cells; MEA, microelectrode array; IF-HCS,
immunofluorescence-high content screening; MRS, magnetic resonance spectroscopy; GEP, gene expression profiling; GWAS, genome-wide

association studies.

Table 2

Summary of biomarkers possibly useful for AD detection
Biomarkers Localization References
IL-6, IL-1, TNF-a,, CRP Plasma [48]
High HCys Plasma, brain [51,52]
Low uric acid Plasma [53, 54]
High levels of: 3,4-dihydroxybutanoic acid (C4HgO4), Serum, plasma [55, 56]
docosapentaenoic acid (C22:5), hexacosanoic acid (C26:0)
Insulin resistance Plasma, brain [57, 58]
IGF resistance Plasma, brain [59]
Impaired glycemia Plasma, brain [60]
Mitochondrial damage and high mOGT activity Plasma, brain [61]
Low HDL-cholesterol Plasma, brain [62]
High LDL-cholesterol, total cholesterol and triglycerides Plasma, brain [31, 63-66]
Low orexin level Plasma, CSF, hypothalamus [67-70]
High YKL-40 (a secreted heparin-binding glycoprotein) Plasma, brain [71,72]
ABi1-42, t-tau, and p-tau;g;, p-taug;/t-tau and p-tau;g1/AP-42 ratios CSF [73, 74]

IL-6, interleukin-6; TNF-a, tumor necrosis factor a; CRP, C-reactive protein; HCys, homocysteine; IGF, insulin
growth factor; mOGT, high mitochondrial O-linked N-acetylglucosamine transferase; HDL, high-density lipopro-
tein; LDL, low-density lipoprotein; YKIL-40, Chitinase-3-like protein 1 (or CHI3L1).

onward, is currently considered complementary to the
genome in the study of disease etiology [75, 76]. In
particular, among the possible triggers of the neurode-
generative process and in particular of AD, nutrients
have the potential to be either prevention- or risk-
related factors. The study of their effects at the gene
expression level, by means of nutrigenomic analyses, is
afield of broad scientific interest [77, 78]. Despite some
conflicting evidences, plant-based, plant-rich diets and
plant-derived bioactive nutrients appear to inhibit neu-
roinflammation and neurodegeneration molecular and
cellular processes [79] and seem to be particularly
beneficial in the management of early stages of cog-
nitive impairment [80-84]. Some nutrigenetic studies
have highlighted correlations between specific nutrient
intakes and single-nucleotide polymorphisms. In this
regard, it has been reported that subjects presenting the
TT homozygous methylene tetrahydrofolate reductase
allelic variant showed the lowest serum folate level, the
highest serum HCys level and the lowest Mini-Mental
State Examination (MMSE) score, as compared to

all other genotypes [85]. Further studies aiming to
identify the genetic susceptibility to AD and the inter-
action between specific genetic variations and nutrient
intake might be invaluable in designing patient-tailored
therapies and preventive approaches based on patient
genetic makeups.

Novel and more powerful in vivo imaging read-
outs, such as ultra-high-field magnetic resonance
imaging (MRI) and positron emission tomography,
are currently available to diagnose AD [86, 87] and
assess the effects of specific nutritional interventions
[88-90]. Additionally, novel human connectomics
(the production and study of connectomes) pro-
vides a three-dimensional reconstruction of neuronal
networks within the human brain. In particular, diffu-
sion magnetic resonance tractography, by combining
MRI and computer-based imaging analysis, allows
studying human brain anatomy through 2D and
3D images [91], and registering variations of brain
cortical surfaces in AD patients [92, 93]. Addition-
ally, electron microscopy images have been suitable
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to generate 3D neuron reconstruction in publicly
available electron microscopy datasets [94]. Neu-
ropsychological/cognitive tests (e.g., MMSE and the
Hopkins Verbal Learning Test [95]) can be also used
to assess multiple correlations among A3 plaque dis-
tribution, specific AD-related biomarkers in CSF and
plasma, and cognitive performance (Fig. 1, Table 1).

The organ/tissue and cellular levels: Novel human
stem cell models and cell function readouts

Inrecent years, novel cellular models cultured under
conditions more closely reflecting the human phys-
iological cellular microenvironment and accounting
for patient heterogeneity have been developed. AD
patient-derived primary cells, such as neurons, might
represent an ideal cellular source to study AD
pathogenic features. However, these cells are gener-
ally available only postmortem and are difficult to
keep in culture for extended periods of time [96]. To
overcome these limitations, human induced pluripo-
tent stem cells (hiPSCs) have been recently applied
[97, 98]. hiPSCs can be generated by reprogramming
adult somatic cells (e.g., skin fibroblasts) into pluripo-
tent stem cells and further differentiating them in vitro
to obtain AD-relevant tissues [10]. hiPSCs have been
generated from patients affected with either familial
or late-onset AD and have been differentiated into
electrophysiologically active neurons, recapitulating
common features of AD, such as high level of AB1—49,
active glycogen synthase kinase 3@, and p-tau [99],
A accumulation in neuronal cells and astrocytes, and
endoplasmic reticulum oxidative stress [100]. Addi-
tionally, these differentiated neurons might be useful
to identify the specific roles of cellular subtypes in the
pathogenesis of AD, to obtain insights into patient-
specific drug responses, for prospective diagnostics
[101], and to assess the susceptibility of specific AD-
related genes [102]. More recently, reprogramming of
AD patient-derived non-neuronal somatic cells into
neuronal mature cells (iNCs) [98, 103], AD patient-
derived olfactory mucosa stem cells [96], genetically
modified human neural stem cells (NSCs) [19], and
three-dimensional culture systems [104] have been
applied. Additionally, microglial cells, known to get
activated in AD [105], have been derived from elderly
patients to define the role of active microglia in
the inflammatory process characterizing AD [106],
and can be applied in co-culture systems to com-
plement hiPSC, iNC, and NSC cultures. Moreover,
novel brain-on-a-chip systems are currently under
development, ideally leading to the design of novel

drugs in human-based systems [107, 108]. Despite
their current limitations, such as the lack of standard-
ized criteria to build such systems [109] and their
poor suitability for long term treatments [110], in
general, these models might better represent the het-
erogeneity of the patient population, might reduce
experimental timeframes and costs, might more accu-
rately identify human AD characteristics, might be
better tools for drug development, and might be appli-
cable for use on high-throughput platforms [111]
(Fig. 1, Table 1).

A wide range of high-throughput readouts are cur-
rently available to assess etiopathological aspects of
AD at tissue and cellular levels. Microelectrode array
(MEA) devices have been developed in recent years,
as substitutes of the more challenging and time-
consuming patch clamp analyses [112]. Optogenetic
techniques, used to monitor the activities of individual
neurons in living tissue, together with MEA assays,
antibody immunofluorescence (IF) and high content
screening (HCS), could enable rapid and reproducible
screening of drugs in vitro [96, 113] (Fig. 1, Table 1).

The signaling pathway/protein and
epigenetic/genetic levels: High-throughput
readouts

Several high-throughput technologies are currently
available to unravel the molecular mechanisms under-
lying AD pathogenesis. Protein-related readouts (e.g.,
proteomics, antibody IF-HCS, metabolomics) will
provide knowledge on the signaling pathways and
protein interactions that are perturbed in AD at the
translational and/or post-translational level (Fig. 1,
Table 1). In particular, proteomics and phospho-
proteomics have been useful to uncover signaling
pathways involved in APOE &4-related late-onset AD
[114]. The use of capillary electrophoresis—mass spec-
trometry can help identify abnormal phosphorylation
patterns of proteins implicated in cell metabolism,
signal transduction, cytoskeleton integration, and
synaptic function [115]. Also, analysis of in vivo
metabolites of neuronal and glial cells, representa-
tive of energy metabolism, level of inflammation
and neurotransmitter release, can be performed by
using proton magnetic resonance spectroscopy [116].
Finally, genomics, epigenetics and gene expression
analyses (e.g., GWAS, gene expression profiling,
nutrigenomics, and nutrigenetics), will serve to
identify perturbed gene expression particularly in late-
onset AD [117, 118]. Late-onset AD patients often
present abnormal patterns of histone acetylation and
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methylation and deregulated noncoding microRNA,
which may play a role in AD pathophysiology
[118].

Computational models, data extrapolation, and
functional studies to validate epidemiological
observations

Novel computational models that are currently
applied in toxicology, such as in vitro-in vivo extrap-
olation, physiologically based pharmacokinetic and
pharmacodynamics modeling, suitable to define kinet-
ics and dynamics of compound exposure and to predict
chemical long term effects [119], might be applied to
predict the absorption, distribution, metabolism, and
excretion of chemicals, such as chlorpyrifos [120] and
manganese [121], both implicated in A deposition
[47, 122], and also to assess the efficacy of compounds
for AD treatment, such as [B-secretase inhibitors [123],
the bioactive phytocompound curcumin [124], and
APOE &4 inhibitors [125].

Extrapolation of data obtained from the above
described high-throughput readouts and computational
simulations might be useful to define early biomarkers
of AD, confirm meta-analysis of epidemiological
observations, and predict therapeutic efficacy (Fig. 1).
In particular, functional studies might be useful to
confirm specific roles of identified perturbed path-
ways/genes at the onset of AD [126, 127]. In this
regard, reporter human cell cultures of an identified
perturbed signaling pathway might be generated, in an
effort to investigate at high-throughput scale possible
perturbation of the identified pathway when exposed
to known and unknown compounds, in relation to
AD pathogenesis. The ultimate goals would be the
definition of novel therapeutic compounds and the
implementation of intervention strategies aimed at pre-
venting and/or reducing the early symptoms of AD.
Additional in vitro functional studies aimed at defin-
ing the role of specific genes in the onset of AD would
include gain- or loss-of-function approaches and also
RNA interference-induced gene silencing using novel
human cellular models of AD [128, 129].

DISCUSSION

Following decades of extensive research, it is now
clear that traditional animal and cell culture models of
AD are not reliable for studying complex pathophysio-
logical aspects of the disease or for designing effective
drugs. This deep gap in translational research high-
lights the need for a paradigm shift in AD research,

from animal in vivo models and suboptimal in vitro
cell lines, toward a more reliable and reproducible
human conceptual framework. Here we described an
integrated human-based framework suitable for inves-
tigating cellular and molecular mechanisms underlying
AD pathology, pharmacotherapeutics, and preventive
strategies for human patients. In recent years, the shift
toward a new human-based paradigm has been advo-
cated extensively in toxicology and regulatory testing
[130], but also in other research fields, including AD
[10, 131-134]. The envisioned human-based frame-
work will not only increase human relevance and
translatability, but also contribute to the reduction
and/or replacement of animals traditionally used in AD
research. In this day and age where there is growing
concern for the ethical justification of the use of ani-
mals in research [135], it is important to consider not
only the scientific dimensions, but also the ethical cost
of the use of sentient beings in AD research.

Several human stem cell models of AD have been
developed, spanning from patient-derived neurons and
reprogrammed cells to three-dimensional genetically
modified NSCs and the more complex brain-on-a-chip.
Human stem cell-based tools and high-throughput
readouts, supported by epidemiology studies, represent
the basis of a paradigm shift in AD research that will
increase knowledge of the molecular mechanisms that
are perturbed at the onset of the disease, helping define
novel biomarkers for early detection, and establishing
preventive and treatment strategies.

It should be noted that in the envisioned strategic
framework, the use of patient-derived cellular mod-
els such as iPSCs, and the application of omics
readouts—while addressing human relevance—would
still constitute the lower level/scale of ‘wet lab’
research. Therefore, large computational approaches
together with large-scale epidemiological data sets
represent the essential tools required to account for
higher level/scale and to establish systemic corre-
lations among signaling pathways, epigenomic and
genomic perturbations, patients heterogeneity, and
lifestyle components. In this regard, a map of signal-
ing pathways and networks that are deregulated in AD
is provided by ‘AlzPathway’, which may help in iden-
tifying candidate genes as predictors of AD risk, in
combination with other ‘omics’ data [136].

Importantly, the implementation of epidemiolog-
ical, prevention, and intervention clinical studies
required to unravel the role of risk factors currently
associated with AD, will require increasing the level
of current research funding (currently only 7%—9% of
the total $30 billion NIH discretionary budget [137]).
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Redefining the strategy by which current and future
NIH research budget is allocated is of particular rele-
vance, especially considering the major role played by
lifestyle factors, such as nutrition, physical activity, and
level of cognitive training in the determination of AD
risk [27-30, 35-37] as well as the proven efficacy of
intervention strategies aimed at preventing dementia-
related symptoms [88-90].

In conclusion, combining data derived from a
wide range of studies, also accounting for neu-
ropsychological/cognitivity tests, neuroimaging, the
analysis of patient-derived CSF- and plasma-related
biomarkers, together with computational models and
high-throughput readouts applied to patient-derived
cell-based models to assess signaling pathways, post-
translational, translational, and transcriptional events,
represent an invaluable and more reliable strategy to
better understand AD pathology, predict long-term
sequelae, and develop successful treatments [10, 138].
The envisioned framework will help redefine human
AD pathology and etiology according to a more holis-
tic perspective, taking into account the numerous
human-related risk factors implicated in the onset and
consolidation of AD [8, 9]. Modern research must take
these multifactorial aspects into account. Indeed, cur-
rent and past research failures may in fact be due to
(i) a failure to recognize that AD lies on the spectrum
of dementia and may be more accurately considered
as part of a constellation of diseases, and/or (ii) more
radically, AD may be inexorably linked to aging, mak-
ing it a more intractable problem with more profound
implications than generally acknowledged.

The feasibility of the envisioned human-based
strategy necessarily requires the combined application
of several methods and readouts and, consequentially,
of multiple areas of expertise and laboratory facilities.
The establishment of a collaborative scenario is clearly
mandatory to determine what occurs throughout the
course of AD.

CONCLUSION

Human stem-cell in vitro models, high-throughput
(‘omics’) readouts, computational models, together
with data obtained from meta-analysis of epidemio-
logical and interventional studies, are among the ideal
tools to elucidate etiopathological aspects of AD in
a human-based setting and to predict environment-
elicited biological perturbations occurring in AD,
accounting for multiple levels of complexity, from
population/individual level down to gene level.
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