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Abstract. Accurate blood-based biomarkers of Alzheimer’s disease (AD) could constitute simple, inexpensive, and non-invasive
tools for the early diagnosis and treatment of this devastating neurodegenerative disease. We sought to develop a robust AD
biomarker panel by identifying alterations in plasma metabolites that persist throughout the continuum of AD pathophysiology.
Using a multicenter, cross-sectional study design, we based our analysis on metabolites whose levels were altered both in AD
patients and in patients with amnestic mild cognitive impairment (aMCI), the earliest identifiable stage of AD. UPLC coupled to
mass spectrometry was used to independently compare the levels of 495 plasma metabolites in aMCI (n = 58) and AD (n = 100)
patients with those of normal cognition controls (NC, n = 93). Metabolite alterations common to both aMCI and AD patients were
used to generate a logistic regression model that accurately distinguished AD from NC patients. The final panel consisted of seven
metabolites: three amino acids (glutamic acid, alanine, and aspartic acid), one non-esterified fatty acid (22:6n-3, DHA), one bile
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acid (deoxycholic acid), one phosphatidylethanolamine [PE(36:4)], and one sphingomyelin [SM(39:1)]. Detailed analysis ruled
out the influence of potential confounding variables, including comorbidities and treatments, on each of the seven biomarkers.
The final model accurately distinguished AD from NC patients (AUC, 0.918). Importantly, the model also distinguished aMCI
from NC patients (AUC, 0.826), indicating its potential diagnostic utility in early disease stages. These findings describe a
sensitive biomarker panel that may facilitate the specific detection of early-stage AD through the analysis of plasma samples.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative
disorder characterized by memory loss, cognitive
deterioration, and progressive functional dependence,
ultimately leading to death. It is by far the most com-
mon cause of dementia, affecting 27 million people
worldwide, and is predicted to affect 86 million by
2050 [1, 2]. AD is distinguished from other types of
dementia by several pathological features, including
the progressive appearance of intracellular neurofib-
rillary tangles of hyperphosphorylated tau protein
and neuritic plaques consisting mainly of amyloid-�
(A�) peptide [3, 4]. While the underlying pathology
appears to precede clinical symptoms by decades [5],
the associated molecular mechanisms remain largely
unknown.

AD is diagnosed using clinical criteria and by
excluding other types of dementia. The 2011 revi-
sion of the criteria for the clinical diagnosis of AD,
established by National Institute on Aging (NIA)
and the Alzheimer’s Association (AA), incorporates
biomarkers into the criteria for the first time [6]. These
biomarkers have potential diagnostic utility in each of
the three phases of AD pathophysiology described in
the NIA/AA guidelines, by supporting the presence
of AD in the preclinical phase, before memory loss
occurs; determining the underlying cause of clinical
impairment in the mild cognitive impairment (MCI)
phase; and confirming AD in patients with dementia.
MCI is defined as impairment of one or more cogni-
tive domains that is more advanced than expected for
a patient’s age, but is not accompanied by significant
impairment of functional abilities [7]. This definition
encompasses cognitive impairment due to a wide range
of causes. However, MCI with memory impairment
(including amnestic MCI and multidomain MCI) is
considered the earliest clinical manifestation of AD;
a significant proportion of patients with these symp-
toms progress to AD within 5 years [8]. Molecular
alterations that persist throughout the continuum of AD
pathophysiology, from preclinical stages through to the
dementia phase, may serve as biomarkers that could aid
the early diagnosis of AD, allowing these patients to be

treated much earlier than current diagnostic techniques
allow.

Cerebrospinal fluid (CSF) is currently the best
source of validated AD biomarkers in routine clinical
setting. Alterations in CSF levels of A�, phosphory-
lated tau protein (p-tau), and total tau help distinguish
AD patients from elderly, cognitively normal controls
[9] and predict conversion from MCI to AD [10].
However, the invasive nature of CSF sample collec-
tion limits the clinical utility of these markers; CSF
can only be collected by lumbar puncture, which can
be particularly difficult to perform in elderly patients
and precludes the collection of multiple samples over
time. Neuroimaging approaches such as structural and
functional magnetic resonance imaging (MRI), amy-
loid tracer imaging, and positron emission tomography
(PET), are also effective prognostic tools, but are
expensive and often difficult to implement in routine
settings [11, 12]. Faced with a growing elderly popula-
tion, current CSF and neuroimaging techniques are not
ideal first-line approaches for screening large numbers
of candidate AD patients. There is thus a pressing need
to identify new, specific and sensitive biomarkers that
can be used to establish diagnosis in preclinical and
early clinical AD stages and can distinguish cognitive
impairment due to AD from that which accompanies
aging and other degenerative conditions.

Blood biomarkers of AD are particularly attractive:
samples can be collected easily and inexpensively,
and blood is a valid source for repeated measures.
Blood-based markers are also more suited to less con-
trolled settings than those detected in other matrices.
The last decade has seen the development of several
panels of biomarkers in serum or plasma. Proteomics
approaches have identified blood-based profiles or sig-
natures that can distinguish between healthy controls,
MCI, and AD patients [13–16] and predict conver-
sion from cognitive impairment to prodromal AD [17,
18]. Lipidomics approaches have also been incorpo-
rated into the search for AD biomarkers, and have
revealed alterations in lipid metabolism pathways and
lipid carrier proteins such as ApoE [19]. Major deficits
in brain structural glycerophospholipids and sphin-
golipids have been described in AD patients [20], as
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well as alterations in ceramide to sphingomyelin ratios
[21] and phosphatidylcholine levels [22]. A recent
study reported accurate detection of preclinical AD
via lipid analysis [19]. However, most of these find-
ings remain to be replicated in larger, prospective,
population-based cohort studies, and to date no blood-
based biomarkers have been established or accepted as
an aid to diagnosis [23, 24].

In this cross-sectional study, we used a
metabolomics approach to detect molecules or
species in the blood that were altered in both amnestic
MCI (aMCI) and AD patients as compared with a
normal cognition (NC) control group. Alterations in
metabolite levels were identified by separately com-
paring aMCI and AD patients with the control group.
Metabolites that were significantly altered in both
comparisons were used to generate a classification
rule that accurately distinguished controls from AD
patients. Finally, we investigated the ability of this
classification rule to discriminate aMCI patients from
controls. The influence of comorbidities, pharmaco-
logical treatments, and risk factors for sporadic AD
(gender, vascular risk factors, and APOE genotype) on
the diagnostic efficacy of each blood metabolite was
carefully analyzed to rule out potential confounding
effects. Taken together, our findings describe a robust
panel of plasma biomarkers that accurately discrim-
inates both aMCI and AD patients from healthy
controls, and thus may constitute an important tool in
the early identification of AD pathophysiology.

MATERIALS AND METHODS

Participants

This multicenter, cross-sectional study sought to
identify potential blood markers of early-stage AD.
Participants were aged 60 to 85 years and were
recruited from six Spanish university hospitals and
one Spanish research institution between 18 October
2011 and 3 December 2012. All participants provided
written informed consent, and the protocols were in
accordance with the Declaration of Helsinki (1975)
and approved by the Ethics Committee of the Instituto
de Salud Carlos III, Spain.

Participants were prospectively recruited. Before
inclusion in the study, all participants underwent
a medical examination, which included a semi-
structured interview, a physical examination, a neuro-
logical examination, and a mental-state assessment. In
all recruiting centers, the basic protocol for mental-
state assessment included the Mini-Mental State

Examination (MMSE) test [25], the Blessed Dementia
Scale [26], the Hachinski Ischemic Score [27], and the
Clinical Dementia Rating (CDR) scale [28]. In the case
of participants with normal cognition or aMCI, an addi-
tional battery of tests of memory, attention, executive
functions, and visuospatial ability was administered
by a psychologist. All participants underwent standard
blood tests, which included a hemogram and analy-
sis of the levels of glucose, creatinine, transaminases,
ions, thyroid stimulating hormone, vitamin B12, and
folate. Structural brain imaging (either computerized
tomography or MRI) was also performed in all par-
ticipants. Exclusion criteria included severe hepatic
disease, severe kidney disease, disseminated cancer,
alcohol or drug abuse, Down syndrome, moderate or
severe cranial trauma, and any systemic or acute dis-
ease that could compromise completion of the study.

Participants were divided in three groups accord-
ing to previously described clinical guidelines. Those
included in the NC group scored within the normal
range for their age and education level (i.e., mean ± 1.5
standard deviations) in the battery of neuropsychologi-
cal tests. To ensure that no individuals with early-stage
AD were included in this group, participants who
scored ≥0.5 in the memory box of the CDR were
excluded. Participants with MCI were defined using
criteria described by Petersen et al. [29] and probable
AD patients were defined according to NINCDS-
ADRDA criteria [30]. MCI patients were classified as
amnestic or non-amnestic MCI. For the purpose of this
study, only MCI patients with amnestic MCI (single or
multidomain MCI) were recruited (henceforth referred
to as the aMCI group). Based on these criteria, 93 indi-
viduals were assigned to the NC group, 58 to the aMCI
group, and 100 to the AD group.

Blood extraction and determinations

Blood was collected by peripheral venipuncture by
trained personnel between 8 a.m. and 10 a.m. after
overnight fasting. In all cases, 10-mL samples were
collected in EDTA BD Vacutainer® blood collection
tubes. To obtain plasma, blood samples were first
centrifuged at 2,280 g for 10 min. The supernatant
(3 mL) was then transferred to three 1.5-mL tubes and
centrifuged for 10 min at 13,000 rpm. The resulting
platelet-free plasma (PFP) was stored at −80◦C until
analysis.

APOE genotyping

Total DNA was isolated from peripheral blood fol-
lowing standard procedures. APOE polymorphisms
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(rs429358 and rs7412) were determined by Real-Time
PCR as previously described [31].

Metabolomics analyses

Metabolomics analyses were performed by OWL
Metabolomics (Bizkaia, Spain). Endogenous plasma
analytes were analyzed by mass spectrometry coupled
to ultra-performance liquid chromatography (UPLC-
MS). Samples were analyzed in parallel with a test
mixture of standard compounds before and after the
entire set of randomized sample injections. Moreover,
duplicate samples were injected in order to evaluate
the retention time stability (generally <6 s variation,
injection-to-injection), mass accuracy and sensitivity
of the system throughout the course of the run. The
overall quality of the analysis procedure was monitored
using 5 repeat extracts of the Quality Control (QC)
sample.

To successfully profile a broad concentration range
of chemically diverse metabolites, metabolites were
extracted by fractionating plasma samples into pools
of species with similar physicochemical properties,
using appropriate combinations of organic solvents
[32, 33]. Three separate UPLC-MS platforms were
used to ensure optimal metabolite profiling. A total
of 495 molecules were detected and quantified.

Platform 1: UPLC/MS analysis of acylcarnitines,
bile acids, fatty acids, lysoglycerophospholipids,
and steroids

This platform was used to analyze 210 metabolites
belonging to the following categories: acylcarnitines
(AC), bile acids (BA), non-esterified fatty acids
(NEFAs), oxidized fatty acids, steroids, and choline,
ethanolamine, and inositol lysoglycerophospholipids
(lysoPC, lysoPE, and lysoPI, respectively). Plasma
samples (75 �L) were thawed and proteins pre-
cipitated by adding 4 volumes of methanol at
room temperature. The methanol used for protein
extraction was spiked with the appropriate internal
standards, which are not detected in unspiked human
plasma extracts using the same method: tryptophan-
d5(indole-d5), lysoPC(13:0/0:0), NEFA(19:0), and
dihydrocholic acid. After vortexing briefly, the
samples were incubated overnight at −20◦C. Super-
natants (300 �L) were collected after centrifugation
at 16,000 × g for 15 min, dried and reconstituted
in 75 �L methanol, and were then introduced into
the ACQUITY UPLC® system (Waters Corp., Mil-
ford, USA) with a 1.0 × 100 mm ACQUITY 1.7-�m

C18 BEH column (Waters Corp.) maintained at
40◦C.

Samples (2 �L) were injected onto the column at
a flow rate of 140 �L/min, for a total run time of
18 min. The following linear elution gradien was used:
100% solvent A (0.05% formic acid in water), to
which solvent B (acetonitrile containing 0.05% formic
acid) was added incrementally to reach a concen-
tration of 50% B after 2 min, increasing to 100%
B over the next 11 min, and returning to the ini-
tial composition over the final 5 min. Analysis was
performed using the aforementioned UPLC system
coupled online to a Waters QTOF PremierTM (Waters
Corp.) with electrospray ionization. Capillary and cone
voltages were set in negative ion mode at 2800 V
and 50 V, respectively. The nebulizer gas was set at
a flow rate of 600 L/h and a temperature of 350◦C and
the cone gas at 30 L/h and a source temperature of
120◦C.

Platform 2: UPLC/MS analysis of amino acids

This platform was used to analyze amino acids and
their derivatives (n = 29). Aliquots (10 �L) from the
extracts prepared for Platform 1 were transferred to
microtubes and derivatized for amino acid analysis
[34]. They were then analyzed using an ACQUITY
UPLC® system (Waters Corp.) with a 1.0 × 100 mm
ACQUITY 1.7-�m C18 BEH column (Waters Corp.)
maintained at 40◦C. Samples (2 �L) were injected onto
the column at a flow rate of 140 �L/min with a total run
time of 14 min. The following elution gradient consist-
ing of solvent A (10 mM ammonium bicarbonate [pH
8.8] in water) and solvent B (acetonitrile) was used:
2% solvent B, increasing linearly to 8% solvent B over
6.5 min, to 20% solvent B over 3.5 min, to 30% sol-
vent B over 1 min, and finally to 100% solvent B over
2 min, before returning to initial composition over the
last 2 min. The eluents were then introduced into an
Acquity-SQD system (Waters Corp.) in positive ion
mode with a capillary voltage of 3200 V and a cone
voltage of 30 V. The nebulization gas was set to a flow
rate of 600 L/h and a temperature of 350◦C, and the
cone gas at a flow rate of 10 L/h and a source temper-
ature of 120◦C.

Platform 3: UPLC/MS analysis of glycerolipids,
cholesterol esters, sphingolipids, and
glycerophospholipids

Platform 3 was used to analyze 256 metabolites
belonging to the following categories: diacylglyc-
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erols (DAG), triacylglycerols (TAG), cholesterol
esters (ChoE), sphingomyelins (SM), ceramides (Cer),
monohexosyl ceramides (CMH), choline glycerophos-
pholipids (PC), ethanolamine glycerophospholipids
(PE), and phosphatidylinositol (PI). For PC and PE
species containing an ether moiety, the prefix O-
denotes the presence of an alkyl ether substituent, while
the suffix e indicates the presence of an ether-linked
substituent with one or more double bonds. Plasma
extracts (10 �L) were mixed with 10 �L sodium
chloride (50 mM) and 110 �L chloroform/methanol
(2:1) in 1.5-mL microtubes at room temperature.
The extraction solvent was spiked with the follow-
ing compounds, which are not detected in unspiked
human plasma extracts in platform 3: SM(d18:1/6:0),
PE(17:0/17:0), PC(19:0/19:0), TAG(13:0/13:0/13:0),
TAG(17:0/17:0/17:0), Cer(d18:1/17:0), ChoE(12:0).
After vortexing briefly, the samples were incubated
for 1 h at −20◦C. They were then centrifuged at
16,000 × g for 15 min, 70 �L of the lower organic
phase was collected, and the solvent removed.
The dried extracts were then reconstituted in
100 �L acetronitrile/isopropanol (50:50), centrifuged
(16,000 × g for 5 min) and transferred to vials for anal-
ysis. Analysis was performed using the ACQUITY
UPLC® system (Waters Corp.) coupled online to
a Waters QTOF PremierTM (Waters Corp.) with a
2.1 × 100 mm ACQUITY 1.7 �m C18 BEH column
(Waters Corp.) maintained at 60◦C. Samples (3 �L)
were injected onto the column and eluted at a flow rate
of 400 �L/min with a total run time of 17 min. The
mobile phase consisted of solvent A (water, acetoni-
trile, and 10 mM ammonium formate) and solvent B
(acetonitrile, isopropanol, and 10 mM ammonium for-
mate) and the following elution gradient was used: 40%
solvent B, increasing linearly to 100% over 10 min and
returning to the initial composition over 5 min, at which
it was maintained for a further 2 min. Mass spectrom-
etry was used in positive ion modes with the capillary
current set at 3200 V and the cone voltages at 30 V. The
nebulizer gas was set at a flow rate of 1000 L/h and a
temperature of 500◦C and the cone gas at a flow rate
of 30 L/h and a source temperature of 120◦C.

Data processing

All data were processed using the TargetLynx appli-
cation manager for MassLynx 4.1 software (Waters
Corp.). A set of predefined retention times, mass-to-
charge ratio pairs, and Rt-m/z values corresponding
to the metabolites included in the analysis were
fed into the program. Associated extracted-ion chro-

matograms (mass tolerance window = 0.05 Da) were
then peak-detected and noise-reduced in both the liq-
uid chromatography (LC) and mass spectrometry (MS)
domains to ensure that only true metabolite-related
features were processed by the software.

Normalization factors were calculated for each
metabolite by dividing their intensities in each sam-
ple by the recorded intensity of an appropriate internal
standard in the same sample [35]. Linear regression
(internal standard-corrected response as a function of
sample injection order) was used to detect any intra-
batch drift in the QC calibration samples that was not
corrected by internal standard correction. For all vari-
ables, the internal standard-corrected response in each
batch was divided by its corresponding intra-batch drift
trend, such that the normalized abundance values of
the study samples were expressed with respect to the
batch-averaged QC calibration plasma samples (arbi-
trarily set to 1).

After normalization, the concordance between
duplicate sample injection response values was
assessed. Where coefficients of variation >30% were
found, corresponding sample injection data were
returned for manual inspection of the automated inte-
gration performed by the TargetLynx software, and
modifications made where appropriate. For identi-
fied metabolites, representative MS detection-response
curves were generated using an internal standard for
each chemical class included in the analysis. By assum-
ing similar detector response levels for all metabolites
belonging to a given chemical class, a linear detection
range was defined for each variable.

Data analysis

Statistical analyses of nominal or categorical
variables (gender, APOE genotype, comorbidities,
and treatments) were performed using Pearson’s
chi-squared test. Quantitative variables (e.g., age)
that deviated from normality were identified using
the Kolmogorov-Smirnov statistic with Lilliefors’
significance, and subsequently analyzed using the
Mann-Whitney U-test.

Univariate analyses were used to compare the lev-
els of the 495 starting metabolites between (i) the AD
and NC groups and (ii) the aMCI and NC groups.
For each of the two comparisons, a logistic regres-
sion model was built for each variable of interest
and corresponding receiver operating characteristic
(ROC) curves were generated for each of these metabo-
lites. Metabolites that were significantly altered in
both comparisons (p < 0.05; t-test for continuous vari-
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ables and Pearson’s chi-squared test for categorical
variables) were retained for further analysis. These
metabolites were then used as independent variables
in a logistic regression model to develop a classifi-
cation rule to distinguish AD patients from healthy
controls.

The performance of this classification rule was
evaluated using the conservative method of cross-
validation. The cross-validations consisted of 100
random samples using a 70% sample for the training
dataset, and the remaining 30% for validation. Logis-
tic regression assuming stepwise selection, applying
entry criteria of p < 0.05 and stay criteria of p < 0.1, was
used to generate a final model for each iteration of the
cross-validation. The number of times a variable was
included within the final models across all validations
was recorded. Variables found within at least 25% of
the derived models were then included within a logis-
tic regression model without selection to determine the
final model for classification.

Based upon the derived classification rule, a second
round of cross-validation was performed to determine
the accuracy of the model in distinguishing the AD
from the NC group using ROC curves. This allowed the
calculation of the mean, standard deviation, and 95%
confidence intervals of the accuracy rates for the AD
versus NC comparison. The ability of the final model
to distinguish between the aMCI and NC groups was
also evaluated.

The potential influence of well-established risk fac-
tors for late onset AD such as APOE genotype,
gender, and vascular risk factors, as well as clini-
cal treatments and comorbidities, was analyzed using
Pearson’s chi-squared test and logistic regression anal-
ysis, respectively.

RESULTS

Demographic and clinical analysis of the study
populations

A total of 251 participants fulfilled the inclusion
criteria. Based on the criteria described in the Mate-
rials and Methods, individuals were assigned to the
following groups: NC (n = 93), aMCI (n = 58), and AD
(n = 100). The demographic and clinical characteristics
of the three study populations are show in Table 1.

For all three groups, age at study inclusion followed
a non-normal distribution. Analysis of gender distri-
bution revealed no significant differences in the aMCI
(p = 0.10) or AD (p = 0.38) groups with respect to the
NC group. Analysis of age distribution revealed sig-

nificant differences in AD (p < 0.001), but not aMCI
(p = 0.54) patients, as compared with the NC group.
The distribution of APOE genotypes in the NC, aMCI,
and AD groups is shown in Table 1. APOE polymor-
phic variants at codon 112 and codon 158, as well as the
allelic haplotypes �2/�3/�4, were in Hardy-Weinberg
equilibrium in all three groups. As expected, the APOE
�4 haplotype was over-represented in both aMCI
(p < 0.001) and AD (p < 0.001) patients as compared
with controls. No significant differences were observed
in the distribution of most comorbidities and risk
factors between controls and the aMCI or AD popula-
tions, with the exceptions of alcohol consumption and
smoking history (Table 1). Drug treatments were also
comparably distributed across groups in each of the
two comparisons, with the exceptions of the following
medications: antihypertensives, neuroleptics, and AD-
specific treatments (acetylcholinesterase inhibitors,
NMDA receptor antagonists, and neuroleptics) in the
AD group; anticoagulants and bronchodilators in the
aMCI group; and antidepressants in both the aMCI and
AD groups (Table 1).

Metabolite analyses

From one plasma sample taken from each of the
251 study participants, 517 metabolites were either
fully or partially identified and subsequently quanti-
fied. Of these, 22 were classified as non-identifiable,
and were excluded from the analysis. The remain-
ing 495 metabolites comprised the following groups:
glycerophospholipids (n = 238), glycerolipids (n = 87),
NEFAs (n = 48), sphingolipids (n = 45), amino acids
(n = 21), sterols (n = 17), BA (n = 13), AC (n = 11),
amino acid derivatives (n = 8), oxidized fatty acids
(n = 7). A further 35 metabolites were only partially
identified, and therefore excluded from the analysis.
Before proceeding with group analysis of the remain-
ing 460 metabolites, principal components analysis
was performed to rule out potential bias associated with
sample provenance or the presence of xenobiotics; no
such effect was observed, as evidenced by arbitrary
distribution shown in Fig. 1.

Metabolite alterations in aMCI and AD patients

We performed separate univariate analyses to com-
pare the levels of the 460 metabolites in each patient
group (aMCI and AD) with those of the NC group.
Of these metabolites, 78 were significantly altered in
the aMCI group and 100 in the AD group (p < 0.05;
Fig. 2), as compared with the NC group. We identified
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Table 1
Distribution of demographic variables, treatments and comorbidities across the normal cognition (NC), amnestic mild cognitive impairment
(aMCI), and Alzheimer’s disease (AD) groups. Variables that were non-parametrically distributed (age and Mini-Mental State Examination,
MMSE) were identified using the Kolmogorov-Smirnov test and subsequently analyzed using a Mann Whitney U-test. Categorical variables
including gender, various comorbidities, and APOE genotype were analyzed using Pearson’s chi-squared test. Differences were considered

significant at p < 0.05

Variable/Comorbidity/Treatment NC (n = 93) aMCI (n = 58) p-value AD (n = 100) p-value
Value Value Value

Age (years) Median 74 74 0.538 78 <0.001
Range [min-max] [64–86] [62–86] [60–90]

MMSE Median 29 25 <0.001 17 <0.001
Range [min-max] [24–30] [16–30] [1–27]

Gender % Female 53.8 67.2 0.102 60 0.382
% Male 46.2 32.8 40

APOE (allele �4) % positive 16.9 41.1 0.001 60 <0.001
% negative 83.1 58.9 40

Alcohol consumption history Yes (%) 18.3 3.4 0.008 2 <0.001
No (%) 81.7 96.6 98

Anxiety disorders Yes (%) 16.1 15.5 0.920 4 0.005
No (%) 83.9 84.5 96

Arrhythmia Yes (%) 7.5 13.8 0.211 6 0.672
No (%) 92.5 86.2 94

Depression Yes (%) 19.4 29.3 0.159 17 0.671
No (%) 80.6 70.7 83

Diabetes mellitus Yes (%) 10.8 10.3 0.937 13 0.630
No (%) 89.2 89.7 87

Dyslipidemia Yes (%) 45.2 51.7 0.432 46 0.907
No (%) 54.8 48.3 54

Hypertension Yes (%) 49.5 51.7 0.787 59 0.184
No (%) 50.5 48.3 41

Ictus Yes (%) 4.3 5.2 0.804 7 0.419
No (%) 95.7 94.8 93

Ischemic heart disease Yes (%) 7.5 10.3 0.548 9 0.711
No (%) 92.5 89.7 91

Liver disease Yes (%) 3.2 5.2 0.551 1 0.278
No (%) 96.8 94.8 99

Smoking history Yes (%) 35.5 8.6 <0.001 7 <0.001
No (%) 64.5 91.4 93

Thyroid disease Yes (%) 18.3 10.3 0.187 9 0.059
No (%) 81.7 89.7 91

NSAIDs Yes (%) 5.4 6.9 0.701 2 0.210
No (%) 94.6 93.1 98

Anxiolytics Yes (%) 19.4 32.8 0.063 16 0.541
No (%) 80.6 67.2 84

Antiplatelet agents Yes (%) 19.4 27.6 0.239 27 0.209
No (%) 80.6 72.4 73

Anti-arrhythmic agents Yes (%) 1.1 5.2 0.127 4 0.201
No (%) 98.9 94.8 96

Anticoagulants Yes (%) 3.2 13.8 0.015 4 0.774
No (%) 96.8 86.2 96

Anticholinesterases Yes (%) 0 1.7 0.204 72 <0.001
No (%) 100 98.3 28

Anticonvulsants Yes (%) 1.1 3.4 0.309 3 0.348
No (%) 98.9 96.6 97

Antidepressants Yes (%) 10.8 29.3 0.004 30 0.001
No (%) 89.2 70.7 70

Bronchodilators Yes (%) 2.2 10.3 0.029 1 0.519
No (%) 97.8 89.7 99

Antihypertensives Yes (%) 47.3 56.9 0.252 62 0.040
No (%) 52.7 43.1 38

Memantine Yes (%) 0 0 NA 28 <0.001
No (%) 100 100 72

Neuroleptics Yes (%) 0 1.7 0.204 8 0.005
No (%) 100 98.3 92
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Fig. 1. Principal components analysis of plasma samples from the
251 patients recruited reveals no effect of sample provenance. Sam-
ples are color-coded according to the site at which they were
collected.

Fig. 2. Venn diagram showing the 44 significantly altered metabo-
lites common to both comparisons (NC versus aMCI and NC versus
AD; p < 0.05). These metabolites were retained for further analysis
and used to develop the final model.

44 significantly altered metabolites that were common
to both groups (Fig. 2, Table 2). In all cases the direc-
tion of change was the same in both patient groups.

We observed alterations in the levels of a wide
range of metabolites, which are implicated in diverse
metabolic pathways. The majority were amino acids

and lipid metabolites, although changes were also
observed in the levels of glucocorticoids, different BA
such as deoxycholic acid, glycodeoxycholic acid, and
lithocholic acid, and two AC species, AC(10:0) and
AC(10:1).

The altered amino acid metabolites constituted
a heterogeneous group of compounds with diverse
molecular structures and metabolic functions. Levels
of acidic amino acids (glutamic acid and aspartic acid)
were reduced in AD and aMCI patients with respect
to the NC group, while those of glycine, alanine,
asparagine, methionine, and arginine were increased
(Table 2).

Levels of the vast majority of lipid metabolites iden-
tified were dramatically reduced in AD and aMCI
patients as compared with healthy controls, suggesting
widespread dysregulation of lipid metabolism in AD
(Fig. 3). These included one PI species [PI(40:6)], sev-
eral diacyl PC species [PC(36:5), PC(37:6), PC(38:5),
PC(38:6), PC(40:5) and PC(40:6)], one ether-linked
PC species [PC(O-36:4)], and ether-linked PE species
[PE(38:7e) and PE(40:6e)]. Exceptions to this pattern
included diacyl PE species [PE(36:4) and PE(38:5)]
and the monoacyl PE species [PE(18:0/0:0) and
PE(18:1/0:0)], all of which were detected at higher
levels in aMCI and AD patients as compared with
healthy controls. However, despite these increases in
diacyl PE species, overall levels of PE species, the
majority of which were ether-linked, were decreased
(Fig. 3).

In line with the observed depletion of most lipid
metabolites both patient groups, the levels of several
NEFAs were significantly diminished in aMCI and
AD patients versus healthy controls. These included
one saturated fatty acid (NEFA 16:0, palmitic acid),
unsaturated fatty acids (including NEFA 18:1n-9 [oleic
acid]) and numerous omega-3 fatty acids, including
18:3n-3 (�-linolenic acid), 20:5n-3 (eicosapentanoic
acid; EPA), 22:5n-3 (docosapentanoic acid; DPA),
and 22:6n-3 (docosahexanoic acid; DHA) (Fig. 2).
aMCI and AD patients also showed marked decreases
in the levels of many sphingolipids, including the
sphingomyelins SM(39:1), SM(41:1), and SM(42:1)
and the ceramides Cer(39:1), Cer(40:1), Cer(41:1),
Cer(42:1), and Cer(43:1). The levels of diverse TAG
species were significantly reduced in patient groups
as compared with controls. Alterations in two specific
TAG species, TAG(56:7) and TAG(56:8), were com-
mon to both comparisons. In both patient groups, we
observed significant increases in two AC species, three
BA species, and in the levels of the stress hormone
cortisol.
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Table 2
List of metabolites significantly altered (p < 0.05) in independent comparisons of AD and aMCI patients with controls (NC). The mean and
standard deviation (SD) of the levels of each metabolite are shown. Values are expressed relative to batch-averaged quality-control plasma

samples (arbitrarily set to 1)

NC (n = 93) aMCI (n = 58) AD (n = 100)

Metabolite Mean SD Mean SD p-value Mean SD p-value

Glutamic acid 0.114 0.046 0.089 0.047 <0.01 0.073 0.029 <0.01
Glycine 0.477 0.142 0.563 0.181 <0.01 0.592 0.233 <0.01
Alanine 0.502 0.133 0.589 0.219 <0.01 0.579 0.173 <0.01
Asparagine 0.748 0.136 0.815 0.171 0.01 0.807 0.147 <0.01
Aspartic acid 0.044 0.016 0.036 0.019 <0.01 0.033 0.012 <0.01
Methionine 0.776 0.147 0.928 0.186 <0.01 0.876 0.190 <0.01
Arginine 0.472 0.094 0.514 0.134 0.04 0.531 0.152 <0.01
AC (10:0) 2.939 1.728 3.934 3.138 0.03 4.252 4.008 <0.01
AC(10:1) 1.473 0.644 1.832 0.852 <0.01 1.825 0.910 <0.01
Deoxycholic acid 0.666 0.738 1.006 1.136 0.05 1.164 1.265 <0.01
Lithocholic acid 1.236 0.807 1.833 1.987 0.03 1.785 1.927 0.01
Glycodeoxycholic acid 0.260 0.373 0.498 0.761 0.03 0.476 0.662 <0.01
Cortisol 1.047 0.378 1.477 0.596 <0.01 1.591 0.534 <0.01
NEFA 16:0 0.737 0.249 0.635 0.220 0.01 0.659 0.288 0.05
NEFA 18:1n-9 1.212 0.370 1.021 0.346 <0.01 1.007 0.415 <0.01
NEFA 20:2n-6 0.783 0.329 0.611 0.261 <0.01 0.664 0.280 <0.01
NEFA 20:3n-3 0.349 0.133 0.289 0.099 <0.01 0.307 0.142 0.04
NEFA 20:5n-3 0.453 0.345 0.328 0.231 <0.01 0.300 0.209 <0.01
NEFA 22:5n-3 0.812 0.491 0.602 0.305 <0.01 0.623 0.392 <0.01
NEFA 22:6n-3 1.741 0.805 1.367 0.730 <0.01 1.349 0.683 <0.01
PC(36:5) 5.082 3.877 3.678 2.886 0.01 3.662 3.426 <0.01
PC(37:6) 4.769 2.429 4.053 1.846 0.04 4.073 1.895 0.03
PC(38:5) 3.510 2.178 2.712 1.487 <0.01 2.780 1.952 0.02
PC(38:6) 3.597 0.749 3.215 0.800 <0.01 3.287 0.849 <0.01
PC(40:5) 1.342 0.495 1.108 0.330 <0.01 1.197 0.409 0.03
PC(40:6) 5.045 1.658 4.398 1.496 0.02 4.338 1.596 <0.01
PC(O-36:4) 1.727 0.590 1.558 0.438 0.05 1.557 0.421 0.02
PE(36:4) 1.521 0.780 1.898 1.149 0.03 1.896 1.077 <0.01
PE(38:5) 1.557 0.981 1.924 1.011 0.03 1.825 0.863 0.05
PE(38:7e) 5.332 1.906 4.522 1.809 0.01 4.216 1.576 <0.01
PE(40:6e) 1.727 0.590 1.558 0.438 <0.01 1.557 0.421 <0.01
LysoPE(18:0/0:0) 0.418 0.124 0.463 0.122 0.03 0.476 0.154 <0.01
LysoPE(18:1/0:0) 0.692 0.301 0.870 0.298 <0.01 0.789 0.293 0.03
PI(40:6) 3.079 2.205 2.104 1.729 <0.01 2.376 1.859 0.02
Cer(39:1) 1.959 0.958 1.512 0.599 <0.01 1.601 0.681 <0.01
Cer(40:1) 1.431 0.563 1.232 0.418 0.01 1.280 0.458 0.04
Cer(41:1) 1.105 0.414 0.971 0.331 0.03 0.958 0.336 <0.01
Cer(42:1) 1.496 0.631 1.256 0.480 <0.01 1.326 0.539 0.05
Cer(43:1) 1.335 0.709 1.070 0.549 0.01 1.008 0.524 <0.01
SM(39:1) 1.446 0.582 1.269 0.421 0.03 1.172 0.410 <0.01
SM(41:1) 1.670 0.533 1.494 0.471 0.04 1.376 0.451 <0.01
SM(42:1) 1.397 0.448 1.231 0.379 0.02 1.224 0.413 <0.01
TAG(56:7) 46.228 34.547 31.007 27.162 <0.01 30.049 23.144 <0.01
TAG(56:8) 36.141 29.406 24.819 29.346 0.02 24.265 19.116 <0.01

Multivariate analysis and development of the
diagnostic algorithm

The 44 metabolites that were altered in both aMCI
and AD patients as compared with controls (Table 2)
were used as independent variables to create a mul-
tivariate diagnostic algorithm based on a logistic
regression model using cross-validation of data. The
model-building process was applied within a series
of cross-validations to provide a robust method for

the derivation of a model from the available data.
First, we developed a classification rule to discriminate
AD patients from NC controls. Using logistic regres-
sion models we identified the following set of seven
metabolites, whose levels most consistently showed
the greatest differences between the NC and AD
groups: glutamic acid, alanine, aspartic acid, deoxy-
cholic acid, PE(36:4), NEFA 22:6n-3, and SM(39:1)
(Table 3). The normalized levels of these metabolites
in each of the populations studied are shown in the
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Fig. 3. Lipid biosynthesis pathways: lipid metabolite groups whose levels were altered in AD patients with respect to normal cognition
controls are indicated with red (increased) and green (decreased) arrows. AC, acylcarnitines; BA, bile acids; CE, cholesterol esters; CL,
cardiolipins; Cer, ceramides; DAG, diacylglycerides; FC, unesterified or free cholesterols; LPC, lysophosphatidylcholine; LPE, lysophos-
phatidylethanolamine; LPI, lysophosphatidylinositol; NEFA, non-esterified fatty acid, PA, phosphatidic acid; PC, phosphatidylcholine; PE,
phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; SAMe, S-adenosylmethionine; SM, sphingomyelins; ST, steroids;
TAG, triacylglycerides.

boxplots in Fig. 4. Based on these findings, a final
model consisting of these seven metabolites was gen-
erated and cross-validated. To determine the accuracy
of the model in distinguishing the AD from the NC
group, we generated ROC curves from the second
round of cross-validation analysis (Fig. 5). Determin-
ing the area under the ROC curve (AUC) provides a
measure of the discriminatory power of a diagnostic
model. An AUC of 1.0 indicates a perfect test (100%
specificity and 100% sensitivity), while lower values
indicate less than optimal performance. The model
yielded a consistent mean AUC of 0.905 and a mean
accuracy (1-Misclassification Rate) of 0.83 across the
100 cross-validations. Moreover, application of the
derived model to the full set of AD and NC patients
yielded an AUC of 0.918 (Fig. 5). Importantly, the
application of this algorithm to the aMCI versus NC
comparison yielded a mean AUC of 0.836 and a mean
accuracy of 0.80 across the 100 cross-validations.

An AUC of 0.826 was achieved when the model
was applied to the full set of aMCI and NC patients
(Fig. 5).

Potential confounding variables

The potential influence of APOE genotype, gender,
and age on the diagnostic capacity of each metabolite
included in the final model was explored by logis-
tic regression analysis. Comparison of the controlled
versus the uncontrolled model revealed no significant
changes in the diagnostic capacity of any of the seven
metabolites (data not shown). Interestingly, analysis
of stratified ROC curves for the AD and NC groups
revealed that aspartic acid was more informative in
males than females (AUC: 0.183 and 0.366, respec-
tively), while the opposite effect was observed for
alanine (AUC: 0.545 and 0.729, respectively) (data not
shown).
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Table 3
Metabolites included in the final diagnostic algorithm. AUC, Area under curve; SE, Standard error; CL, 95% confidence limits. *AUC, Area
under ROC curve. This is a measure of the discriminatory power of a diagnostic test. An AUC of 1.0 indicates a perfect test (100% specificity

and 100% sensitivity), while an AUC of 0.5 is considered non-informative

NC versus aMCI NC versus AD

Metabolite AUC* SE Lower CL Upper CL AUC SE Lower CL Upper CL

Glutamic acid 0.677 0.048 0.583 0.770 0.785 0.032 0.722 0.848
Alanine 0.614 0.051 0.513 0.716 0.643 0.040 0.565 0.722
Aspartic acid 0.676 0.046 0.585 0.766 0.709 0.037 0.638 0.781
Deoxycholic acid 0.582 0.049 0.486 0.677 0.640 0.040 0.561 0.718
NEFA 22:6n-3 0.656 0.047 0.565 0.748 0.665 0.039 0.589 0.742
PE(36:4) 0.610 0.048 0.517 0.703 0.630 0.040 0.551 0.709
SM(39:1) 0.573 0.047 0.481 0.664 0.638 0.040 0.559 0.717

Fig. 4. Box plots show comparative levels of each of the seven metabolites included in the final model. Values are expressed relative to batch-
averaged quality-control plasma samples (arbitrarily set at 1). Horizontal lines within each box represent the median of the sample, while the
bottom and top of each box represent the first and fourth quartiles. Error bars represent the standard deviation. Outliers are represented as small
circles and stars.

We also investigated the potential confounding
effects on the final model’s seven metabolites of well-
established risk factors for late onset AD (e.g., vascular
risk factors), as well as clinical treatments and comor-
bidities (Table 4). Correlations were observed between

treatments and certain metabolites included in the final
model, mainly in the AD population. SM(39:1) was the
only metabolite for which a correlation with a specific
treatment (antihypertensives) was observed in both the
aMCI and AD groups.
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Fig. 5. Performance of the final model when applied to the NC ver-
sus AD (AUC, 0.9183) and the NC versus aMCI (AUC, 0.8259)
comparisons, based on the full population for each group.

DISCUSSION

In this study, we analyzed the levels of 495 plasma
metabolites in NC (n = 93), aMCI (n = 58), and AD
(n = 100) subjects using a multicenter, cross-sectional
design. By selecting from a group of 44 metabo-
lites whose levels were significantly altered both
in aMCI and AD patients, we generated a seven
metabolite biomarker panel that accurately distin-
guished AD from NC subjects (AUC, 0.918). This
panel consisted of three amino acids (glutamic acid,
alanine, and aspartic acid), one non-esterified fatty
acid (22:6n-3, DHA), one bile acid (deoxycholic
acid), one phosphatidylethanolamine [PE(36:4)], and

one sphingomyelin [SM(39:1)]. Importantly, the panel
also accurately distinguished aMCI from NC patients
(AUC, 0.826), indicating its potential diagnostic utility
in early disease stages. Thus, this signature consti-
tutes a non-invasive tool that may facilitate the rapid,
early diagnosis of AD, circumventing the many prob-
lems associated with the analysis of CSF, the current
diagnostic sample of choice. The study design and the
methodology used were carefully considered to ensure
the identification of robust and reproducible biomark-
ers, and procedural and technical details were strictly
controlled. A multicenter, cross-sectional design was
used. The recruitment procedure included a complete
neuropsychological evaluation of both patients and
controls, and strict sample procurement procedures
were implemented to ensure sample homogeneity.
To identify biomarkers of early disease stages, we
recruited two independent populations at different dis-
ease stages; patients with aMCI (the earliest clinical
manifestation of AD) and AD patients with demen-
tia. Each of these groups was individually compared
with the NC population. The use of three separate
metabolomics platforms allowed the analysis of a
wide range of different metabolites, and identified
and quantified 495 metabolites in each participant.
These metabolites comprised several molecular groups
including amino acids, bile acids, acylcarnitines, and
several lipid classes such as phospholipids, fatty acids,
and sphingolipids. Importantly, variability or cluster-
ing associated with sample origin was ruled out by
principal component analysis (Fig. 1).

Univariate analysis identified a large number of
metabolites (n = 44) that were significantly altered in

Table 4
Correlations between treatments and each of the metabolites included the final model (p < 0.05 indicates a significant correlation)

NC aMCI AD

Treatments Associated Correlation p-value Associated Correlation p-value Associated Correlation p-value
biomarker coef. biomarker coef. biomarker coef.

NSAIDs – – – – – – – – –
Anxiolytics – – – – – – – – –
Antiplatelet agents SM(39:1) –0.31 0.01 Alanine 0.26 0.03 – – –
Anti-arrhythmic agents NEFA 22:6n-3 –0.86 0.01 – – –

NEFA 22:6n-3 1.22 <0.01 Alanine –0.52 0.03
Aspartic acid –0.55 0.03

Anticoagulants – – – – – – PE(36:4) 0.58 0.02
Anticholinesterases – – – – – – PE(36:4) –0.28 0.01
Anticonvulsants Glutamic acid 0.76 0.05 – – – PE(36:4) 0.67 0.02

SM(39:1) –0.43 0.05
Antidepressants – – – – – – SM(39:1) 0.18 0.02
Bronchodilators – – – – – – – – –
Antihypertensives – – – SM(39:1) –0.22 0.02 SM(39:1) –0.19 0.01

Glutamic acid 0.30 0.03 PE(36:4) 0.22 0.03
Memantine – – – – – – Alanine 0.22 <0.01
Neuroleptics – – – Deoxycholic acid 2.42 0.04 – – –
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both AD and aMCI patients as compared with con-
trols, as expected for a complex, polygenic pathology
like AD. Interestingly, levels of all 44 metabolites
were altered in the same direction in both patient
groups, suggesting that these alterations reflect long-
term changes that persist throughout the course of the
disease process (Table 2). The selected 44 metabolites
were then used as independent variables to develop
a logistic regression model based on the AD versus
NC comparison. The use of the cross-validation strat-
egy described in the Materials and Methods allowed
the generation of a seven-metabolite model that dis-
criminated AD patients from controls, while avoiding
overfitting of the data. This biomarker panel consisted
of three amino acids, one bile acid, one phospho-
lipid species, one free fatty acid, and one sphingolipid
species (Table 3), and distinguished AD patients
from controls with an accuracy of over 80% (mean
AUC = 0.905, mean accuracy = 0.83). Importantly, this
model was also capable of discriminating aMCI
patients from healthy controls (mean AUC = 0.836,
mean accuracy = 0.80).

Among the 44 metabolites altered in both aMCI
and AD patients were seven amino acids; levels of
aspartic and glutamic acid were decreased, while those
of glycine, alanine, asparagine, methionine, and argi-
nine were increased (Table 2). Three of these amino
acids also featured in the final seven-metabolite panel:
aspartic and glutamic acids and alanine. The observed
decreases in glutamic acid are in line with the well-
documented alterations in glutamatergic function that
accompany AD [36], and alterations in both blood and
CSF levels of alanine have been described in several
neurodegenerative processes, including AD [37, 38].
Decreases in CSF levels of aspartic acid have also
been reported in AD patients [39], in agreement with
the lower levels of this amino acid observed in both
our patient groups. Moreover, aspartic acid is an ago-
nist of glutamatergic N-methyl-D-aspartate receptors,
which are strongly implicated in the neuropatho-
genesis of AD [40]. Memantine, a partial NMDA
antagonist, stabilizes cognitive decline in patients with
moderate-to-severe AD [41]. Importantly, circadian
variations of glutamic acid and alanine are unaffected
by diet, likely due to their rapid metabolism [42],
further supporting their use as biomarkers. A recent
study by Mapstone and coworkers also described sig-
nificant decreases in the plasma levels of several
amino acids (proline, lysine, taurine, and pheny-
lalanine) [19]. While none of these amino acids
coincided with those of our biomarker panel, this dis-
crepancy may be due to differences in methodology

and study design (e.g., the age-range of the patient
groups).

aMCI and AD patients showed significant alter-
ations in the levels of several lipid molecules, including
AC, NEFAs, phospholipid molecules, Cer, SM, and
TAG (Table 2). Three of these lipid metabolites were
included in the final 7-metabolite panel: NEFA 22:6n-
3, PE(36:4), and SM(39:1) (Table 3). The proper
balance of sphingolipids, which include SM and Cer,
is essential for normal neuronal function, and sev-
eral authors have also linked changes in sphingolipid
metabolism to the pathophysiology of AD [43, 44]. In
accordance with our findings, decreases in plasma SM
levels have been reported in AD patients [21]. Appar-
ently conflicting results have been reported regarding
blood ceramide levels, with some authors reporting
increases in AD versus NC patients [21, 45, 46],
and others showing no changes in AD patients but
decreases in MCI patients with respect to controls [47].
Diverse studies have proposed that SM and ceramide
levels are altered to varying degrees depending on the
proximity to the onset of memory impairment, suggest-
ing that these lipids may be useful preclinical markers
of the memory impairment that frequently precedes
AD [44, 45].

The alterations in plasma phospholipid and NEFA
levels observed here are supported by previous findings
in both MCI and AD patients [48]. Depleted diacyl PC
species were included in a 10-lipid metabolite panel
that predicted conversion from cognitive normality to
AD [19]. Similar decreases in plasma PC levels [22,
49] and increased CSF levels of PC metabolites [50]
have also been previously described in AD patients.
In agreement with previous reports [51, 52], we also
observed alterations in the levels of PI and PE species
in patient groups as compared with healthy controls:
levels of diacyl PE species were increased, while those
of ether-linked PE species were decreased in aMCI
and AD patients. DHA, which featured in the final
seven-metabolite panel, accounts for 30–40% of the
long chain polyunsaturated fatty acid (LCPUFA) con-
tent of the cerebral cortex, and has been implicated
in multiple brain functions (e.g., cell membrane fluid-
ity, receptor affinity, modulation of signal transduction
molecules). The findings of several epidemiological
studies and clinical trials support a role of LCPUFAs,
particularly DHA, in AD prevention [53, 54].

aMCI and AD patients also showed significant
alterations in the levels of cortisol and bile acids.
Given the well-described diurnal fluctuations and inter-
individual variability in levels of the stress hormone
cortisol, we considered this metabolite unsuitable
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as a robust biomarker of AD [55]. The bile acid
deoxycholic acid was also included in the final seven-
metabolite panel. Bile acids are regulatory molecules
with bioactive properties and play an important role
in lipid digestion [56]. Moreover, bile acids have been
implicated in the etiology of AD [57], and significant
increases in the levels of a secondary bile acid have
been described in AD patients [19].

The heterogeneity of our final biomarker panel is
in keeping with the complexity of AD, in which
diverse metabolic pathways are involved, and mem-
bers of each of these metabolite classes have been
previously implicated in the pathophysiology of AD.
Thus, the alterations observed at different stages of
AD are probably related to long-term metabolic pro-
cesses, comparable to the mechanisms that underlie
other pathologies such as hyperlipidemia and obesity.
These results add to a growing body of research indicat-
ing that dysregulation of lipid metabolism contributes
to the pathophysiology of AD, suggesting that this
group of metabolites may include potential biomark-
ers of AD [20]. Lipids play important roles in myelin
and neuronal membrane structure, signal transduction,
cholinergic function, A�PP processing, A� aggrega-
tion, synaptic activity, and neuronal death, indicating
that dysregulation of lipid metabolism may contribute
to the pathogenesis of AD [20, 43]. Although a general
disturbance of lipid metabolism could be caused by the
pathophysiological processes underlying AD, the fact
that levels of both “unhealthy” and “healthy” lipids
were diminished suggests that these specific changes
are markers, rather than drivers, of the disease process.
While systemic (mainly lipid) metabolic dysregulation
is proposed as an important contributor to the induction
of AD, peripheral metabolic alterations could also be
the consequence of neuronal dysfunction and death due
to other causes (e.g., amyloid deposition or neurofib-
rillary pathologies), even occurring as compensatory
responses.

Our seven-biomarker panel discriminated AD
patients from the NC group with a comparable accu-
racy (AUC = 0.918) to that reported for other blood
and CSF biomarkers of AD [13, 19, 58–60]. Most
importantly, the model was also capable of discrimi-
nating aMCI patients from healthy controls, albeit with
slightly lower accuracy (AUC = 0.826). This decreased
accuracy observed for aMCI patients is unsurpris-
ing: aMCI is a heterogeneous syndrome [8], and thus
aMCI patients by definition are less precisely clas-
sified. While the model’s ability to classify aMCI
patients could undoubtedly be improved by adjusting
coefficients, this would result in unwanted overfitting

of the model to our data. Nonetheless, as aMCI and
AD can be considered different stages of the same
disease, the discriminatory efficacy of the model in
the two separate patient groups strongly supports the
robustness of the selected biomarker panel, and high-
lights its potential for the detection of early changes in
preclinical disease stages. Interestingly, the observed
changes in the levels of most of the seven markers
included in the algorithm followed a marked progres-
sion from NC to aMCI to AD (see Fig. 4). Detailed
analysis of potential modifiers and confounding fac-
tors was performed to ensure the robustness of the final
biomarker panel. Logistic regression analysis, control-
ling for APOE genotype, gender, and age, was used to
study the influence of these variables on the individual
metabolites included in our final model. Comparison
of the controlled with the uncontrolled model revealed
no significant influence of any of these variables.
Furthermore, in each of the three study populations,
correlation analysis was used to examine the influence
of potential confounding variables, including comor-
bidities and treatments, on the seven biomarkers of the
final panel. For certain metabolites in each of the three
populations, correlations with certain treatment types
were observed. However, as the final model was gen-
erated using only metabolites that were significantly
altered in both aMCI and AD patients as compared
with NC participants, only correlations detected in both
patient populations are likely to reflect genuine con-
founding variables. SM(39:1) was the only metabolite
in the final model to show a correlation with any treat-
ment (antihypertensive medications) in both aMCI and
AD patients (Table 3). It thus remains unclear whether
SM(39:1) is a genuine marker of AD or whether the
observed alteration is related to more frequent use
of antihypertensives in both patient groups. The lat-
ter seems unlikely however, given that differences in
the distribution of antihypertensive medications were
observed only for AD patients, and not aMCI patients
(p = 0.252), with respect to the NC group.

This study has several important strengths. Using
rigorous recruitment criteria, 251 patients were
included from seven different centers, providing the
study with an adequate sample size. Moreover, plasma
samples were acquired, handled, and stored follow-
ing strict methodologies to minimize variability. In
order to avoid overfitting, all statistical analyses were
performed using cross-validation. As aMCI is widely
accepted as the earliest clinical manifestation of AD,
the inclusion of the aMCI group ensured that we
identified metabolites that are consistently altered
throughout the continuum of AD pathophysiology. Of
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the two patient groups, the AD group was less likely
to include other non-AD-related pathologies: accord-
ingly, the development of the final model was based
on the NC versus AD comparison. However, inter-
nal cross-validation with a separate patient population
(aMCI) further supported the diagnostic validity of
the model in early stages of AD. Finally, rigorous
analysis of the influence of potential confounding vari-
ables ensured the development of a robust and accurate
biomarker panel.

Our study has some limitations. The first concern is
the diagnosis of the patient groups: patient classifica-
tion based only on clinical criteria resulted in a degree
of diagnostic uncertainty, particularly in the case of the
aMCI patients, some of whom may not represent early
AD. Moreover, the use of clinical criteria meant that
we could not rule out potential concomitant patholo-
gies in the patient groups (e.g., vascular and Lewy body
pathologies). However, because the aim to this study
was to detect early peripheral biomarkers of AD, we
did not evaluate the performance of our 7-metabolite
signature in distinguishing AD from other dementias.
Because we did not compare our diagnostic algorithm
with other, “gold standard” biomarkers, the study was
self-limited by the precision of the clinical diagnosis.
Future studies would thus benefit from a prospective
approach, and by analyzing a subset of neuropatholog-
ically confirmed cases and controls, or by including
CSF biomarkers to increase the accuracy of clinical
classification. A second limitation was that the efficacy
of our biomarker panel was only tested in plasma, and
not in any other matrix (e.g., serum). Finally, given the
significant difference in age between the AD and NC
populations, it is possible that the observed differences
in the levels of some metabolites may reflect normal
aging rather than the disease state per se. This seems
unlikely however, as corresponding alterations were
observed in aMCI patients, whose age did not differ
significantly from that of the NC group.

The incorporation of biomarkers into AD diagnos-
tic techniques is a key research goal in the field of AD
[6]. In particular, blood-based biomarkers show sig-
nificant promise as simple, inexpensive, non-invasive
tools for the diagnosis of AD in early disease stages.
Our results describe the accurate and robust discrim-
ination of both aMCI and AD patients from a normal
cognition control group using a panel of seven plasma
biomarkers. Crucially, these findings will need to be
replicated using other analytical platforms and vali-
dated in prospective cohort studies in order to establish
their clinical utility [61, 62]. Our findings suggest
that this biomarker panel constitutes a robust and

accurate means of detecting early stage AD through
the analysis of plasma samples. Ultimately, the clin-
ical utility of this 7-metabolite signature will need
to be established by replicating this study in differ-
ent populations, and by analyzing its performance
in the differential diagnosis of AD from other types
of dementias, such as vascular and frontotemporal
dementias.
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biological interpretation of metabolomic data can be misled
by the extraction method used. Metabolomics 8, 410-421.

[34] Grumbach E, Wheat T, Mazzeo J (2010) A novel method for
the analysis of amino acids. Waters Application notes. 2007
Lib. Number WA43226.

[35] van der Kloet FM, Bobeldijk I, Verheij ER, Jellema RH (2009)
Analytical error reduction using single point calibration for
accurate and precise metabolomic phenotyping. J Proteome
Res 8, 5132-5141.

[36] Butterfield DA, Pocernich CB (2003) The glutamatergic sys-
tem and Alzheimer’s disease: Therapeutic implications. CNS
Drugs 17, 641-652.



J. Olazarán et al. / Seven blood biomarkers for early AD diagnosis 1173

[37] Ilzecka J, Stelmasiak Z, Solski J, Wawrzycki S, Szpetnar M
(2003) Plasma amino acids percentages in amyotrophic lateral
sclerosis patients. Neurol Sci 24, 293-295.

[38] Basun H, Forssell LG, Almkvist O, Cowburn RF, Eklof R,
Winblad B, Wetterberg L (1990) Amino acid concentrations
in cerebrospinal fluid and plasma in Alzheimer’s disease and
healthy control subjects. J Neural Transm Park Dis Dement
Sect 2, 295-304.

[39] D’Aniello A, Fisher G, Migliaccio N, Cammisa G, D’Aniello
E, Spinelli P (2005) Amino acids and transaminases activ-
ity in ventricular CSF and in brain of normal and Alzheimer
patients. Neurosci Lett 388, 49-53.

[40] Malinow R (2012) New developments on the role of NMDA
receptors in Alzheimer’s disease. Curr Opin Neurobiol 22,
559-563.

[41] Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius
HJ (2003) Memantine in moderate-to-severe Alzheimer’s dis-
ease. N Engl J Med 348, 1333-1341.

[42] Tsai PJ, Huang PC (1999) Circadian variations in plasma and
erythrocyte concentrations of glutamate, glutamine, and ala-
nine in men on a diet without and with added monosodium
glutamate. Metabolism 48, 1455-1460.

[43] Haughey NJ, Bandaru VV, Bae M, Mattson MP (2010) Roles
for dysfunctional sphingolipid metabolism in Alzheimer’s
disease neuropathogenesis. Biochim Biophys Acta 1801, 878-
886.

[44] Mielke MM, Lyketsos CG (2010) Alterations of the sphin-
golipid pathway in Alzheimer’s disease: New biomarkers and
treatment targets? Neuromolecular Med 12, 331-340.

[45] Mielke MM, Bandaru VV, Haughey NJ, Rabins PV, Lyket-
sos CG, Carlson MC (2010) Serum sphingomyelins and
ceramides are early predictors of memory impairment. Neu-
robiol Aging 31, 17-24.

[46] Mielke MM, Ratnam Bandaru VV, Haughey NJ, Xia J, P,
Yasar FL, Varma S, Harris V, Schneider G, Rabins EB,
Bandeen-Roche PV, Lyketsos K, Carlson CG, MC (2012)
Serum ceramides increase the risk of Alzheimer disease. Neu-
rology 79, 633-641.

[47] Mielke MM, Haughey NJ, Ratnam Bandaru VV, Schech S,
Carrick R, Carlson MC, Mori S, Miller MI, Ceritoglu C,
Brown T, Albert M, Lyketsos CG (2010) Plasma ceramides
are altered in mild cognitive impairment and predict cognitive
decline and hippocampal volume loss. Alzheimers Dement 6,
378-385.

[48] Cunnane SC, Schneider JA, Tangney C, Tremblay-Mercier
J, Fortier M, Bennett DA, Morris MC (2012) Plasma and
brain fatty acid profiles in mild cognitive impairment and
Alzheimer’s disease. J Alzheimers Dis 29, 691-697.

[49] Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins
SJ, Au R, Tucker KL, Kyle DJ, Wilson PW, Wolf PA (2006)
Plasma phosphatidylcholine docosahexaenoic acid content
and risk of dementia and Alzheimer disease: The Framingham
Heart Study. Arch Neurol 63, 1545-1550.

[50] Walter A, Korth U, Hilgert M, Hartmann J, Weichel O, Hilgert
M, Fassbender K, Schmitt A, Klein J (2004) Glycerophos-
phocholine is elevated in cerebrospinal fluid of Alzheimer
patients. Neurobiol Aging 25, 1299-1303.

[51] Bennett SA, Valenzuela N, Xu H, Franko B, Fai S, Figeys D
(2013) Using neurolipidomics to identify phospholipid medi-
ators of synaptic (dys)function in Alzheimer’s Disease. Front
Physiol 4, 168.

[52] Han X, Holtzman DM, McKeel DW Jr (2001) Plasmalogen
deficiency in early Alzheimer’s disease subjects and in ani-
mal models: Molecular characterization using electrospray
ionization mass spectrometry. J Neurochem 77, 1168-1180.

[53] Yurko-Mauro K (2010) Cognitive and cardiovascular benefits
of docosahexaenoic acid in aging and cognitive decline. Curr
Alzheimer Res 7, 190-196.

[54] Astarita G, Jung KM, Berchtold NC, Nguyen VQ, Gillen
DL, Head E, Cotman CW, Piomelli D (2010) Deficient liver
biosynthesis of docosahexaenoic acid correlates with cogni-
tive impairment in Alzheimer’s disease. PLoS One 5, e12538.

[55] Young EA, Abelson J, Lightman SL (2004) Cortisol pul-
satility and its role in stress regulation and health. Front
Neuroendocrinol 25, 69-76.

[56] Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P
(2009) Bile acids as regulatory molecules. J Lipid Res 50,
1509-1520.

[57] Ogundare M, Theofilopoulos S, Lockhart A, Hall LJ, Arenas
E, Sjovall J, Brenton AG, Wang Y, Griffiths WJ (2010) Cere-
brospinal fluid steroidomics: Are bioactive bile acids present
in brain? J Biol Chem 285, 4666-4679.

[58] Sattlecker M, Kiddle SJ, Newhouse S, Proitsi P, Nelson
S, Williams S, Johnston C, Killick R, Simmons A, West-
man E, Hodges A, Soininen H, Kloszewska I, Mecocci P,
Tsolaki M, Vellas B, Lovestone S, the AddNeuroMed C,
Dobson RJ (2014) Alzheimer’s disease biomarker discovery
using SOMAscan multiplexed protein technology. Alzheimers
Dement 10, 724-734.

[59] Roe CM, Fagan AM, Williams MM, Ghoshal N, Aeschleman
M, Grant EA, Marcus DS, Mintun MA, Holtzman DM, Morris
JC (2011) Improving CSF biomarker accuracy in predicting
prevalent and incident Alzheimer disease. Neurology 76, 501-
510.

[60] Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtz-
man DM (2007) Cerebrospinal fluid tau/beta-amyloid(42)
ratio as a prediction of cognitive decline in nondemented older
adults. Arch Neurol 64, 343-349.

[61] Bjorkqvist M, Ohlsson M, Minthon L, Hansson O (2012)
Evaluation of a previously suggested plasma biomarker panel
to identify Alzheimer’s disease. PLoS One 7, e29868.

[62] Ioannidis JP, Panagiotou OA (2011) Comparison of effect
sizes associated with biomarkers reported in highly cited indi-
vidual articles and in subsequent meta-analyses. JAMA 305,
2200-2210.


