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Abstract. There is growing evidence that the human brain is a large scale complex network. The structural network is reported
to be disrupted in cognitively impaired patients. However, there have been few studies evaluating the effects of amyloid and
small vessel disease (SVD) markers, the common causes of cognitive impairment, on structural networks. Thus, we evaluated the
association between amyloid and SVD burdens and structural networks using diffusion tensor imaging (DTI). Furthermore, we
determined if network parameters predict cognitive impairments. Graph theoretical analysis was applied to DTI data from 232
cognitively impaired patients with varying degrees of amyloid and SVD burdens. All patients underwent Pittsburgh compound-B
(PiB) PET to detect amyloid burden, MRI to detect markers of SVD, including the volume of white matter hyperintensities and
the number of lacunes, and detailed neuropsychological testing. The whole-brain network was assessed by network parameters of
integration (shortest path length, global efficiency) and segregation (clustering coefficient, transitivity, modularity). PiB retention
ratio was not associated with any white matter network parameters. Greater white matter hyperintensity volumes or lacunae
numbers were significantly associated with decreased network integration (increased shortest path length, decreased global
efficiency) and increased network segregation (increased clustering coefficient, increased transitivity, increased modularity).
Decreased network integration or increased network segregation were associated with poor performances in attention, language,
visuospatial, memory, and frontal-executive functions. Our results suggest that SVD alters white matter network integration and
segregation, which further predicts cognitive dysfunction.
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INTRODUCTION

The most common causes of dementia are mixed
types of dementia, comprising features of Alzheimer’s
disease (AD) and small vessel disease (SVD) [1]. Amy-
loid burdens and SVD markers such as white matter
hyperintensities (WMH) and lacunes are reported to
be independently associated with cognitive impair-
ments [2]. Recent studies also showed that amyloid
and SVD burdens independently affected cortical atro-
phy in specific patterns, and had differential effects on
functional networks [3, 4]. However, there were few
studies evaluating the independent effects of amyloid
and SVD burdens on microstructural change of white
matter [5, 6].

Diffusion tensor imaging (DTI) is a noninvasive
technique that can be used to reflect the microstructural
tissue status. Recent advance in graph theoretical anal-
ysis provides an efficient and quantitative way to model
a large-scale complex network. Using the theoretical
framework of networks and graphs, the brain can be
represented as set of nodes (brain regions) joined in
pairs by lines (white matter connectivity) [7]. The abil-
ity to rapidly combine specialized information from
distributed nodes can be quantified into measures of
network integration (shortest path length, global effi-
ciency), and the ability for specialized processing to
occur within densely interconnected groups of nodes
can be quantified into measures of network segregation
(clustering coefficient, transitivity, modularity) [8].

There is growing evidence that the human brain
is a large scale complex network [9–11]. The ideal
healthy brain exhibits a small-world character [12],
which optimally balances information segregation and
integration, resulting in efficient organization that
reduces the cost of maintaining many connections
but also allows for efficient movement of informa-
tion [13]. The efficient organization of these networks
is affected in various degenerative diseases [14–16].
Furthermore, recent studies suggested that network
disruption follows disease-specific patterns that resem-
ble the architecture of brain connectivity networks
[10, 11]. However, the relationship between pro-
teinopathies in these degenerative diseases, such as
amyloid-� in AD, and brain networks remains unclear.
In addition, there have been few studies evaluat-
ing the effects of SVD markers on large-scale brain
networks [17]. Furthermore, there were no studies eval-
uating whether amyloid burdens and SVD markers
(WMH and lacunes) were independently associated
with white matter network, which were further associ-
ated with cognitive impairments.

In this study, we aimed to determine if amyloid
and SVD burdens independently affect the whole-brain
white matter networks by applying graph analysis to
DTI data in a large sample of patients with varying
degrees of amyloid and SVD burden. The whole-brain
network was assessed by network parameters of inte-
gration (shortest path length, global efficiency) and
segregation (clustering coefficient, transitivity, mod-
ularity). We also examined if network parameters
predict cognitive impairment.

MATERIALS AND METHODS

Participants

We prospectively recruited 251 subjects with
cognitive impairment who underwent Pittsburgh
compound-B (PiB)-PET and structural brain MRI.
We included 45 patients with amnestic mild cognitive
impairment (aMCI), 69 with probable AD dementia, 67
with subcortical vascular MCI (svMCI), and 70 with
subcortical vascular dementia (SVaD). All patients
were clinically diagnosed at the Samsung Medical
Center. Probable AD dementia patients fulfilled crite-
ria proposed by the National Institute of Neurological
and Communicative Disorders and Stroke and the
AD and Related Disorders Association [18]. Patients
with SVaD met the diagnostic criteria for vascular
dementia as determined by the Diagnostic and Sta-
tistical Manual of Mental Disorders–Fourth Edition
(DSM-IV) and fulfilled imaging criteria for SVaD pro-
posed by Erkinjuntti et al. [19]. The aMCI and svMCI
patients met Petersen’s criteria for MCI with modifi-
cations as previously described [20]. All svMCI and
SVaD patients had severe WMH on their MRI scans,
which was defined as a cap or band (periventrivu-
lar WMH, PWMH)≥10 mm and deep white matter
lesions (deep WMH, DWMH)≥25 mm, as modified
from the Fazekas ischemia criteria [21]. All aMCI
and AD cases were classified as having minimal
(PWMH <5 mm and DWMH <5 mm) or moderate
WMH (between minimal and severe grades). The
WMH were in compliance with the WMH of pre-
sumed vascular origin definition proposed by the
Standards for Reporting Vascular Changes on Neu-
roimaging (STRIVE) [22]. Detailed criteria for aMCI
and svMCI are described in Supplementary Text 1.
Patients with aMCI or AD were regarded as having
AD-related cognitive impairment (ADCI), while those
with svMCI or SVaD were considered to have sub-
cortical vascular cognitive impairment (SVCI). We
excluded patients with territorial infarctions and those
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with WMH due to radiation injury, multiple sclerosis,
vasculitis, or leukodystrophy. All patients underwent
a detailed diagnostic process including taking medical
history, semi-structured questionnaires with respect to
cognitive, behavioral, and functional impairments, and
neurological examination [23]. Blood tests included a
complete blood count, blood chemistry test, vitamin
B12/folate measurements, syphilis serology, thyroid
function testing, and APOE genotyping. We calcu-
lated disease duration from symptom onset to date of
PiB-PET scan (see Table 1).

We obtained written informed consent from each
patient and the Institutional Review Board of the Sam-
sung Medical Center approved the study protocol.

PET acquisition

[11C] PiB-PET scanning was performed at Sam-
sung or Asan Medical Center using a Discovery
STe PET/CT scanner (GE Medical Systems, Mil-

waukee, WI) in a 3-dimensional scanning mode that
examined 35 slices of 4.25-mm thickness spanning
the entire brain. Detailed methods are described in
Supplementary Text 2.

PiB-PET data analysis

PiB-PET images were co-registered to individual
MRIs, which were normalized to a T1-weighted MRI
template. The quantitative regional values of PiB reten-
tion on the spatially normalized PiB images were
obtained by using an automated VOI (voxel of inter-
est) analysis using the automated anatomical labeling
(AAL) atlas. Data processing was performed using
SPM version 5 (SPM5) under Matlab 6.5 (Mathworks,
Natick, MA).

Detailed methods for the calculation of global PiB
retention ratios are described in Supplementary Text 3.
We defined PiB retention ratio as a continuous variable
representing amyloid burden.

Table 1
Demographics, clinical characteristics, and imaging MRI markers of study participants

Group Total ADCI SVCI

Subtotal aMCI AD Subtotal svMCI SVaD

Number 232 107 43 64 125 59 66
Demographics

Age, y 72.1 (8.1) 69.9 (8.8)∗ 70.1 (7.9) 69.7 (9.5) 73.9 (6.9) 74.1 (6.6) 73.7 (7.2)
Gender, female, n (%) 131 (56.5) 60 (56.1) 20 (46.5) 40 (62.5) 71 (56.8) 34 (57.6) 37 (56.1)
Education, y 10.1 (5.4) 11.2 (5.4)∗ 12.4 (4.7) 10.4 (5.7) 9.2 (5.2) 9.8 (5.4) 8.7 (5.1)

Cardiovascular risk
factors, n (%)

Hypertension 144 (62.1) 50 (46.7)∗ 16 (37.2) 34 (53.1) 94 (75.2) 43 (72.9) 51 (77.3)
Diabetes mellitus 47 (20.3) 15 (14.0)∗ 5 (11.6) 10 (15.6) 32 (25.6) 16 (27.1) 16 (24.2)
Hyperlipidemia 68 (29.3) 25 (23.4) 10 (23.3) 15 (23.4) 43 (34.4) 18 (30.5) 25 (37.9)
Heart disease 34 (14.7) 12 (11.2) 7 (16.3) 5 (7.8) 22 (17.6) 16 (27.1) 6 (9.1)

APOE genotype, n (%)†
�2 allele carrier 18/225 (8.0) 6/103 (5.8) 3/41 (7.3) 3/62 (4.8) 12/122 (9.8) 7/59 (11.9) 5/63 (7.9)
�4 allele carrier 82/225 (36.4) 49/103 (47.6)∗ 16/41 (39.0) 33/62 (53.2) 33/122 (27.0) 14/59 (23.7) 19/63 (30.2)

Small vessel MRI markers
WMH volume, ml 22.9 (22.3) 4.3 (5.6)∗ 3.2 (3.2) 5.1 (6.7) 38.8 (18.7) 33.8 (17.9) 43.2 (18.5)
Lacunes, n 6.7 (12.1) 0.4 (1.5)∗ 0.6 (2.2) 0.3 (0.8) 12.2 (14.3) 7.5 (8.5) 16.4 (17.0)

Global PiB global 1.8 (0.5) 2.1 (0.5)∗ 1.8 (0.5) 2.2 (0.4) 1.5 (0.4) 1.5 (0.4) 1.6 (0.5)
retention ratio

MMSE 22.4 (5.7) 21.3 (6.4)∗ 25.4 (4.7) 18.5 (5.8) 23.3 (4.9) 26.4 (2.8) 20.6 (4.9)
CDR-SOB 3.8 (3.3) 3.7 (2.7) 1.6 (1.0) 5.1 (2.5) 3.9 (3.8) 1.4 (1.1) 6.3 (3.8)
Disease duration, months 53.8 (29.7) 51.9 (26.7) 42.4 (24.5) 58.2 (26.4) 55.3 (32.1) 46.3 (25.6) 63.4 (35.2)
Network parameters

shortest path length 1.22 (0.08) 1.19 (0.06) 1.18 (0.04) 1.20 (0.07) 1.25 (0.09) 1.22 (0.08) 1.27 (0.09)
global efficiency 0.89 (0.03) 0.90 (0.02) 0.90 (0.02) 0.90 (0.03) 0.87 (0.03) 0.88 (0.03) 0.87 (0.03)
clustering coefficient 3.96 (0.85) 3.52 (0.55) 3.48 (0.44) 3.54 (0.61) 4.34 (0.88) 4.02 (0.77) 4.62 (0.88)
transitivity 3.53 (0.76) 3.12 (0.46) 3.05 (0.36) 3.17 (0.52) 3.88 (0.78) 3.59 (0.73) 4.14 (0.74)
modularity 0.53 (0.05) 0.51 (0.04) 0.51 (0.03) 0.51 (0.04) 0.55 (0.05) 0.54 (0.05) 0.57 (0.04)

aMCI, amnestic mild cognitive impairment; AD, Alzheimer’s disease; ADCI, Alzheimer’s disease related cognitive impairment; SVCI, sub-
cortical vascular cognitive impairment; svMCI, subcortical vascular mild cognitive impairment; SVaD, subcortical vascular dementia; APOE,
Apolipoprotein E; WMH, white matter hyperintensities; PiB, Pittsburgh compound B; MMSE, Mini-Mental State Examination; CDR-SOB,
clinical dementia rating-sum of boxes. ∗P<0.05 in the chi-square test or independent t-test comparing ADCI and svMCI. †APOE genotyping
was performed in 225 out of 232 participants. Values are expressed as mean (standard deviation) or number (%).
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MR imaging techniques

Three dimensional fluid-attenuated inversion
recovery (FLAIR) and DTI images were acquired from
all subjects at the Samsung Medical Center using the
same 3.0T MRI scanner (Philips 3.0T Achieva). In all
subjects, these images were obtained in one session and
all MR images were obtained in the same orientation
and slice positions. Detailed imaging parameters are
described in Supplementary Text 4. For whole-brain
DT-MRIexaminations, setsofaxialdiffusion-weighted
single-shot echo-planar images were collected with the
following parameters: 128 × 128 acquisition matrix,
1.72 × 1.72 × 2 mm3 voxel size, 70 axial slices with a
22 × 22 cm2 field of view, echo time (TE) 60 ms, repeti-
tion time (TR) 7696 ms; flip angle 90◦; slice gap 0 mm;
b-factor of 600 smm–2. Baseline images were without
weighting [0, 0, 0] and diffusion-weighted images were
acquired from 45 different directions. All axial sections
were acquired parallel to the anterior commissure-
posterior commissure line and perpendicular to the
mid-sagittal plane.

Measurement of regional WMH volume

We quantified WMH volume (in ml) on FLAIR
images using an automated method as previously
described [20]. First, we extracted the WMH candidate
regions using T1-weighted images to avoid misclassi-
fication in the subarachnoid space and cerebrospinal
fluid interface, which cannot be excluded by intensity
threshold or the conventional brain extraction tools.
Second, in order to extract WMH, a threshold method
was applied to the masked FLAIR MRI (the regions
of white matter and gray matter in FLAIR images).
Even though the threshold value was selected con-
sidering the range of image intensities, segmented
results could contain false positive or false negative
regions depending on the extent of WMH. The rate
of agreement between two neurologists was 92.3%. If
the results contained an error, the threshold value was
reselected through visual inspection by two raters, and
they reached a consensus in the case of discrepancy.

Assessment of lacunes on MRI

A lacune was defined as a lesion ≥3 mm and
≤15 mm in diameter with low signal on T1-weighted
images, high signal on T2-weighted images, and per-
ilesional halo on FLAIR images. This is in compliance
with the definition for a lacune of presumed vascular
origin as recommended by STRIVE [22]. Two expe-

rienced neurologists blinded to the clinical patient
data reviewed the number and location of the lacunes
on 80 axial slices of FLAIR imaging. The kappa
value between the two neurologists for the presence
of lacunes was 0.78 and a consensus was reached in
any case of discrepancy.

Network node definition

We used the AAL atlas [24] to parcellate the whole
cerebral cortex into 78 areas (39 regions in each
hemisphere) and define the nodes of the brain graph.
Individual T1-weighted images were nonlinearly reg-
istered to the ICBM152 T1 template in the MNI space
[25]. The AAL atlas was transformed from the MNI
space to the T1 native space using the inverse transfor-
mation with a nearest-neighbor interpolation method.

Network edge definition

Distortions in diffusion tensor images caused by
eddy currents and simple head motions were cor-
rected by the diffusion toolbox of the FSL package
(http://www.fmrib.ox.ac.uk/fsl/fdt). Diffusion tensor
models were estimated and the fractional anisotropy
(FA) and mean diffusivity (MD) were calculated at
each voxel. We reconstructed whole-brain white mat-
ter fiber tracts in native diffusion space for each
subject using the fiber assignment by continuous
tracking algorithm [26] embedded in the Diffusion
Toolkit (http://www.trackvis.org/) [27]. We terminated
tracking when the angle between two consecutive ori-
entation vectors was greater than the given threshold
of 45◦ or when both ends of the fibers extended out-
side of the white matter mask which was generated by
the tissue segmentation process [28]. Fiber cutoff filter
was applied so that noisy short and false-positive long
fibers (shorter than 20 mm and longer than 200 mm)
were filtered out [29].

T1-weighted images were co-registered to the
b0 images using the affine registration tool from
the FSL package (http://www.fmrib.ox.ac.uk/fsl/flirt).
Reconstructed whole-brain fiber tracts were inversely
transformed into the T1 space and fiber tracts and
AAL-based parcellated regions were located in the
same space. Two nodes (regions) were considered to
be structurally connected by an edge when at least the
end points of three fiber tracts were located in these
two regions. A threshold of the number of fiber tracts
was selected to reduce the risk of false-positive con-
nections due to noise or limitations in the deterministic
tractography [28, 30]. FA value is an important index

http://www.fmrib.ox.ac.uk/fsl/fdt
http://www.trackvis.org/
http://www.fmrib.ox.ac.uk/fsl/flirt
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to evaluate fiber integrity [31]. In this study, mean FA
value along all fibers connecting a pair of regions was
used to weight the edge. Finally, weighted structural
networks represented by symmetric 78 * 78 matrices
were constructed for each individual.

Network analysis

Graph theoretical analyses were carried out on
weighted connectivity networks using the Brain
Connectivity Toolbox (http://www.brain-connectivity-
toolbox.net) [8]. To measure network integration, we
calculated the average shortest path length between
all pairs of nodes in the network. This is known as
the characteristic path length, L, of the network [32],
which is computed as follows:

L = 1

N

N∑

i=1

∑N
j /= i Lij

N − 1

In addition, the global efficiency, E, was computed
as the average inverse shortest path length [13].

E = 1

N

N∑

i=1

∑N
j /= i L

−1
ij

N − 1
,

where N is the number of nodes and Lij is the shortest
weighted path length between node i and j.

We calculated the weighted clustering coefficient, C,
and transitivity, T, as measures of network segregation
[33], which were computed as follows:

C = 1

N

N∑

i=1

2ti

ki(ki − 1)
,

ti = 1

2

∑

j, h∈N

(wijwihwjh)1/3,

T =
∑N

i=1 2ti∑N
i=1 ki(ki − 1)

,

where ki is the degree of a node i (the number of
links connected to a node i), w is a connection weight,
and ti is the weighted geometric mean of triangles
around i.

The graph measures were scaled against the mean
values of graph measures obtained from 1,000 matched
random graphs that preserved the same number of
nodes, edges, and degree sequence [34].

A brain graph can generally be subdivided or par-
titioned into modules of nodes. A module is defined

as a group of nodes that have strong connections to
other nodes within the module but weak connections to
nodes outside the module. Optimal modular structures
and modularity values were estimated by maximiz-
ing the ratio of within-modular to between-modular
edges with optimization algorithms, and the number
of modules was measured [35].

Of 251 subjects, we excluded six patients who failed
in WMH volume measurement and 13 patients whose
quality of diffusion image (low signal-to-noise ratio)
was not sufficient to reconstruct reliable fiber tracts.
Finally, 232 subjects (43 aMCI, 64 AD, 59 svMCI,
and 66 SVaD) were analyzed in this study.

Cortical thickness data analysis

T1-weighted images were processed using the stan-
dard MNI anatomic pipeline. Further image processing
for cortical thickness measurements is described in
Supplementary Text 5.

Neuropsychological tests

A total of 230 subjects out of 232 participants
underwent neuropsychological tests using a stan-
dardized neuropsychological battery [36, 37]. The
battery contains digit span (forward and backward),
Boston Naming Test, Rey-Osterrieth Complex Figure
Test (RCFT; copying, immediate and 20-min delayed
recall, and recognition), Seoul Verbal Learning Test
(SVLT; 3 learning-free recall tests of 12 words, 20-min
delayed recall test for those 12 items, and a recognition
test), a phonemic and semantic Controlled Oral Word
Association Test (COWAT), and Stroop Test (word and
color reading of 112 items during a 2-min period).

Statistical analysis

To evaluate the association between neuroimaging
markers (PiB retention ratio, WMH volume, and num-
ber of lacunes) and network parameters, multiple linear
regression analysis was performed. In model 1, we
entered age, gender, education, PiB retention ratio,
WMH volume, and number of lacunes to find the inde-
pendent effects of each imaging marker. In model 2,
we additionally entered mean cortical thickness as an
independent variable. During the analysis, we tested
for assumption of multiple regression such as nor-
mality and homoscedasticity, which revealed to be
non-violated.

To evaluate the association between network param-
eters and neuropsychological results, multiple linear

http://www.brain-connectivity-toolbox.net
http://www.brain-connectivity-toolbox.net
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regression analysis was performed. In model 1, we
entered age, gender, education, PiB retention ratio,
WMH volume, number of lacunes, and each network
parameter as independent variables and each neuropsy-
chological result scoreasdependentvariables. Inmodel
2, mean cortical thickness was additionally entered as
an independent variable. False discovery rate correc-
tion was performed to correct for multiple comparisons
of 14 tests in the neuropsychological test battery.

We also performed subgroup analyses in ADCI
(aMCI or AD) and SVCI (svMCI or SVaD) to evalu-
ate the association between neuroimaging markers and
network parameters and between network parameters
and neuropsychological results in each group.

RESULTS

Demographics

Our participants had a mean age of 72.1 years
and had varying degrees of SVD and amyloid bur-
den (Table 1). The neuropsychological test results
of the participants are shown in Supplementary
Table 1.

PiB retention ratio, SVD markers, and network
parameters

In both model 1 and model 2, greater WMH volumes
were significantly associated with disrupted network
integration, indicated by increased shortest path length
and decreased global efficiency; and increased network
segregation, indicated by increased clustering coeffi-
cient, increased transitivity, and increased modularity
(Table 2). Likewise, a greater number of lacunes was
significantly associated with disrupted network inte-
gration and increased network segregation (Table 2).
Fig. 1 shows the significant correlations between SVD
markers and network parameters. In model 1, greater
PiB retention ratios were significantly associated with
decreased global efficiency. However, in model 2, PiB
retention ratios were not associated with any measures
of network parameters (Table 2).

Subgroup analyses showed that in both ADCI
and SVCI subgroups, SVD but not PiB retention
ratios were associated with altered network parameters
(Supplementary Table 2).

Network parameters and neuropsychological
results

In model 1, we observed significant correla-
tions between network parameters and cognitive

performance as shown in Table 3. Increased shortest
path length was associated with poor performance in
digit span backward, RCFT copy, RCFT delayed recall,
SVLT immediate/delayed recall, COWAT supermar-
ket, and Stroop color reading. Decreased global
efficiency was associated with poor performance in
digit span backward, RCFT copy, RCFT delayed
recall, SVLT immediate/delayed recall, and COWAT
supermarket. Increased clustering coefficient was
associated with poor performance in digit span
backward, BNT, RCFT copy, RCFT delayed recall,
SVLT immediate recall, COWAT animal/phonemic,
and Stroop color reading. Increased transitivity was
associated with poor performance in digit span back-
ward, BNT, RCFT copy, RCFT immediate/delayed
recall, SVLT immediate/delayed recall, COWAT ani-
mal/supermarket/phonemic, and Stroop color reading.
Increased modularity was associated with poor perfor-
mance in RCFT copy.

In model 2, increased shortest path length remained
to be associated with poor performance in digit span
backward, RCFT copy, and SVLT delayed recall;
decreased global efficiency remained to be associ-
ated with poor performance in SVLT delayed recall;
and decreased clustering coefficient, transitivity, and
modularity remained to be associated with poor per-
formance in RCFT copy. However, the significant
association between network parameters and perfor-
mances in other cognitive domains disappeared.

Subgroup analyses also showed that in both ADCI
and SVCI groups, when cortical thickness was addi-
tionally controlled, the significant association between
network parameters and cognitive performances disap-
peared in most domains (Supplementary Table 3).

DISCUSSION

This study analyzed DTI data using graph theoret-
ical analysis to examine alterations in white matter
networks related to amyloid and SVD burdens in cog-
nitively impaired patients. Our main findings were
as follows: 1) Greater WMH volume or number of
lacunes were associated with decreased network inte-
gration and increased network segregation; and 2)
decreased network integration or increased network
segregation correlated with decreased neuropsycho-
logical performance in variable domains including
attention, language, visuospatial, memory, and frontal-
executive functions regardless of amyloid or SVD
burdens. Taken together, our findings suggested that
SVD burdens are associated with an imbalance in the
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large-scale brain networks which leads to cognitive
deficits.

Our major finding was that SVD burdens alter
the white matter network toward decreased network
integration and increased network segregation, which
is characterization of ‘regular’ topology. Regular
topology has increased short-range connections but
decreased long-range connections, eventually result-
ing in inefficient organization [13]. Our findings
suggested that altered network patterns induced by
SVD burdens might be different from those shown
in AD, in which white matter network is imbalanced
toward a more ‘random’ topology, as indicated by
decreased network segregation and increased network
integration [38]. Although several studies have shown
the relationships between SVD markers and white mat-
ter injury [5, 6], our study is notable because this result
shows the effect of SVD on changes in network char-
acters, independent of amyloid and cortical atrophy.

The pathobiology of altered networks induced by
SVD burdens is important. Regarding decreased inte-
gration of network, it might be explained to the
fact that ischemia, usually located in periventricu-
lar or deep white matter areas, causes demyelination
and axonal loss of long projection fibers, resulting
in reduced global efficiency of signal propagation
[39, 40]. Regarding increased network segregation,
there are several possible interpretations. First, the
increased network segregation might be related to
some changes in microstructure and white matter con-
nectivity in hub regions in particular. The loss or
damage of hubs is likely to fragment a network into
disconnected parts, resulting in increased network seg-
regation [41]. Second, it might not stem from an actual
higher segregation but an artifact arising from relative
decrease in network integration [28].

We found that amyloid burdens were not asso-
ciated with any white matter network parameters.
Previous studies regarding structural network in AD
patients show inconsistent results, as some reported
increased network integration [38], while others
reported decreased network integration [16]. However,
to our knowledge, there have been no studies investi-
gating alterations of white matter network according
to ‘amyloid-� burden’ in particular. It is possible that
in previous studies of AD, not amyloid burden itself,
but other factors characterizing AD might have been
responsible for altered white matter network.

Our final major finding was that decreased network
integration or increased network segregation corre-
lated with decreased neuropsychological performance
in variable domains including attention, language,

visuospatial, memory, and frontal-executive functions
regardless of amyloid and SVD burdens. There are sev-
eral clinical implications. First, altered network toward
a ‘regular’ topology predicts worse performances in
cognition. Previous studies regarding the relationship
between white matter network parameters and cogni-
tion have shown that decreased network integration
and decreased network segregation were related to
cognitive impairments in AD patients [16, 42]. Inter-
estingly, our findings suggested that altered network
toward a ‘regular’ topology is not only a characteris-
tic of a network driven by SVD burdens but also the
predictor of cognitive impairments in these patients.
Second, multiple cognitive domains were related to
white matter network parameters. Frontal-executive
dysfunction by white matter lesions has been largely
studied [43]. Recent approaches on graph theoreti-
cal analysis have shown that white matter network
parameters are associated with memory and frontal
dysfunctions [16, 42]. Our data additionally shows
that visuospatial dysfunction is strongly associated
with altered white matter network parameters. Third,
it is noteworthy that most of the association between
altered white matter network and cognitive profiles
were not independent of cortical atrophy, which sug-
gests that cortical atrophy might have mediated the
effect of white matter network disruption on cognitive
impairment in various domains. Meanwhile, the asso-
ciation between increased network segregation and
visuospatial dysfunction was not modulated by cortical
thickness. This provides a unique clue that the net-
work of white matter and thinning of grey matter have
complex relationships and have different roles leading
to cognitive impairment according to their respective
cognitive domains. The complex relationships between
amyloid, SVD, white matter network, cortical atro-
phy, and cognition need to be further studied. Finally,
network parameters independently affect cognition
regardless of amyloid and SVD burdens. A recent
study based on AD patients showed that disturbances
in white matter connectivity explained a substantial
proportion of the variance in cognitive function on
top of markers of brain atrophy and SVD [42]. Along
with previous studies, our findings suggest that white
matter network parameters may explain a substan-
tial portion of the variation in cognitive impairments
in these subjects. Longitudinal studies are neces-
sary to further validate our suggestion in individual
subjects.

There are several limitations in our study. First,
we used a single diffusion tensor-based determinis-
tic tractography algorithm, which does not detect fiber
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crossings. More recent acquisition sequences, such as
the high angular resolution diffusion imaging methods
including diffusion spectrum imaging, where cross-
ing fibers are included in the model [44] have been
shown to generate networks with a higher probability
of long-distance connections [45]. For future studies,
such advanced diffusion acquisition methods can be
used to construct enhanced anatomical networks. Sec-
ond, the FA value, which we used to weight the edge
in white matter network, may not precisely reflect
connectivity [46]. However, there is currently no for-
mal consensus regarding selection of the edge weight
which best describes the fiber tract connectivity and
change in FA value probably reflect differences or
damages in some aspects of connectivity. Third, due
to limitations of the software package that we used
for motion correction (FSL package), we could not
apply rotation derived from subject head motion to
the encoding vectors. This process will enhance the
estimation of diffusion indices in future studies [46].
Finally, PiB-PET may not be sufficiently sensitive
to detect soluble amyloid oligomers, diffuse amyloid
plaques, or neurofibrillary tangle-predominant AD.
Fourth, although we excluded patients with demen-
tia with Lewy bodies and tau frontotemporal dementia
using clinical criteria, patients with synuclein or tau
pathologies might have been included in the present
study.

This study shows that the approach of characterizing
the brain as a network using DTI and graph theoretical
analysis can provide new insights into how amyloid
and vascular burdens affect white matter connectivity
in patients with cognitive impairment.
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