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Bayesian Graphical Network Analyses
Reveal Complex Biological Interactions
Specific to Alzheimer’s Disease

Alan Rembacha, Francesco C. Stingob, Christine Petersonc, Marina Vannuccid, Kim-Anh Dob,
William J. Wilsone,f , S. Lance Macaulayg, Timothy M. Ryana, Ralph N. Martinsi, David Amesh,
Colin L. Mastersa, James D. Doeckee,f,∗ and the AIBL Research Groupj

aThe Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
bThe MD Anderson Cancer Center, Texas, Houston, USA
cStanford University, Stanford, California, USA
dRice University, Texas, Houston, USA
eCSIRO Digital Productivity Flagship/Australian e-Health Research Centre, Royal Brisbane and Women’s Hospital,
Brisbane, QLD, Australia
f Cooperative Research Centre for Mental Health, Parkville, VIC, Australia
gCSIRO Food and Nutrition Flagship, Parkville, VIC, Australia
hNational Ageing Research Institute, Parkville, VIC, Australia
iSir James McCusker Alzheimer’s Disease Research Unit, Health Department of WA, Perth, WA, Australia
jhttp://aibl.csiro.au/

Accepted 1 October 2014

Abstract. With different approaches to finding prognostic or diagnostic biomarkers for Alzheimer’s disease (AD), many studies
pursue only brief lists of biomarkers or disease specific pathways, potentially dismissing information from groups of correlated
biomarkers. Using a novel Bayesian graphical network method, with data from the Australian Imaging, Biomarkers and Lifestyle
(AIBL) study of aging, the aim of this study was to assess the biological connectivity between AD associated blood-based proteins.
Briefly, three groups of protein markers (18, 37, and 48 proteins, respectively) were assessed for the posterior probability of
biological connection both within and between clinical classifications. Clinical classification was defined in four groups: high
performance healthy controls (hpHC), healthy controls (HC), participants with mild cognitive impairment (MCI), and participants
with AD. Using the smaller group of proteins, posterior probabilities of network similarity between clinical classifications were
very high, indicating no difference in biological connections between groups. Increasing the number of proteins increased the
capacity to separate both hpHC and HC apart from the AD group (0 for complete separation, 1 for complete similarity), with
posterior probabilities shifting from 0.89 for the 18 protein group, through to 0.54 for the 37 protein group, and finally 0.28 for
the 48 protein group. Using this approach, we identified beta-2 microglobulin (�2M) as a potential master regulator of multiple
proteins across all classifications, demonstrating that this approach can be used across many data sets to identify novel insights
into diseases like AD.
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ABBREVIATIONS

A1AT Alpha 1 antitrypsin
�2M Alpha 2 macropglobulin
�2M Beta 2 microglobulin
Adi Adiponectin
Alb Albumin
Ang Angiotensinogen
ANGPT2 Angiopointen 2
ApoD Apolipoprotein D
ApoE Apolipoprotein E
ApoH Apolipoprotein H
AXL AXL receptor tyrosine kinase
BDNF Brain-derived neurotrophic factor
Ca Calcium
CD143 Angiotensin-converting enzyme
CD40 TNF receptor superfamily member 5
CEA Carcinoembryonic antigen
CgA Cromogranin A
CKB Creatine Kinase
EGF Epidermal Growth Factor
EGFR Epidermal growth factor receptor
ENA78 C-X-C motif chemokine 5
FAS TNF receptor superfamily, member 6
FasL TNF receptor superfamily, member 6 receptor
GLP1 Glucagon-like peptide-1
HEGF Human Epidermal Growth Factor
Hb Hemoglobin
HBEGF Human Epidermal Growth Factor
HCC4 Human CC chemokine-4
HCY Homocysteine
HGF Hepatocyte Growth Factor Level
HPT Hygromycin phosphotransferase
ICAM1 Inter-Cellular Adhesion Molecule 1 Level
IGFBP2 Insulin-like growth factor-binding pro-
tein 2
IgM Immunoglobulin M
IL-17 Interluekin-17
IL-8 Interleukin-8
MDC Macrophage-derived Chemokine Level
MIF Macrophage Migration Inhibiting Factor
Level
MIP1� Macrophage Inflammatory Protein alpha
MMP2 matrix metalloproteinase-2
NrCAM Plasminogen Activator Inhibitor-1 Level
PPY Pancreatic Polypeptide
SOD1 Superoxide dismutase 1
VCAM1 Vascular Cell Adhesion Molecule 1
Zn Zinc

INTRODUCTION

The concept that an ideal biomarker should be
directly related to disease pathophysiology and be
informative of the disease process, even in the very
early pre-clinical phase [1], seems unlikely for the
complex and often heterogeneous Alzheimer’s disease
(AD). It is also pertinent that an efficacious biomarker
be non-invasive, easily translatable to routine clini-
cal testing or eventually microfluidic high-throughput
population screening and expedient serial monitor-
ing. Despite enormous resources being poured into the
search for candidate biomarkers that fit this definition,
a consensus is yet to come to fruition. However, periph-
eral tissues, especially blood fractions have been mined
for biomarkers that match at least one or more of the
above characteristics.

With the decreasing cost of non-invasive blood-
based biomarker screening, it is now likely that a
successful biomarker for the early diagnosis of AD
will consist of a panel of analytes from a range of ‘pan-
omic’ screening techniques and sample components.

Biomarker screening for AD has elucidated a long
list of candidates from various platforms, with insuf-
ficient cross-validation. However, the ‘gold standard’
peripheral biomarker for AD that will reliably identify
individuals on a path toward AD, or even correlate with
promising, but invasive and impractical cerebrospinal
fluid (CSF) [2] and positron emission tomography
(PET) biomarkers [3], is yet to emerge. Neverthe-
less, much hope is dedicated to the idea that such a
marker does exist in the periphery. Multiple research
groups have found a panoply of individual markers
using assemblies of statistical methods, methods that
are primarily designed to choose the best representative
from groups of biomarkers.

Recently a number of approaches to screening large
sample data sets have been sought to screen for
biomarkers that have diagnostic and prognostic util-
ity [4–16]. However in many cases, dependant upon
the volume of data accumulated, and the ‘pan-omic’
approach to sample screening and subsequent data
interrogation, biological networks have been uncov-
ered with one or more targets that meet diagnostic
or prognostic utility, but the direct relationship to
pathology has been unexplained [17–26]. A single
analyte (or analyte panel) may be insufficient to
allow the researcher to understand how the marker
fits in the cascade of disease process, which could
lead to novel therapies. For this reason, others have
turned to a Bayesian network classifier to integrate
diverse data sets, incorporate biological information,
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Table 1

hpHC HC MCI AD p-value∗

n 323 336 112 186

Age 69.64 (6.38) 70.73 (6.9) 76.18 (7.69) 78.8 (8.47) p < 0.0001

Gender (F/M) 188/135 188/148 63/49 111/75 p = 0.843

APOE�4 (−ve/+ve) 247/76 239/97 55/57 71/115 p < 0.0001

MMSE 29 (1.12) 29 (1.25) 26 (2.6) 20 (5.22) p < 0.0001

Composite score 1a 0.24 (0.54) −0.09 (0.57) −1.31 (0.57) −1.82 (0.56) p < 0.0001

Composite score 2b 0.3 (0.67) −0.15 (0.61) −0.92 (0.79) −1.85 (0.69) p < 0.0001
aCalculated as the average of the z score for California Verbal Learning Test Second Edition long delayed recall and Rey Complex Figure Test
30 minute delayed recall. bCalculated as the average of the z scores for Rey Complex Figure Test copy, Digit Symbol Coding, Boston Naming
Test, Letter Fluency, Category Fluency, Digit Span (forwards), and Digit Span (backwards). ∗p-values calculated using χ2 test, and generalized
linear model for the marginalized means.

and infer/impute missing data from well character-
ized networks, where all the nodes may not have been
initially screened [27–31].

In this study we applied a novel approach for
Bayesian inference of multiple graphical networks,
using data from the Australian Imaging, Biomarkers
and Lifestyle (AIBL) study of aging. We assessed the
biological networks identified using three biomarker
sets, and highlight the importance of biomarker con-
nectivity in understanding biological processes related
to disease pathology.

METHODS

Population sample and biomarker selection

Of the total 1,112 participants from the AIBL study
at baseline, 659 healthy control (HC), 112 mild cogni-
tive impairment (MCI), and 186 Alzheimer’s disease
(AD) subjects with complete data for each of the
biomarker panels tested, were selected for analyses.
Two neuropsychological composite scores (episodic
memory composite score and non-memory composite
score [32] as well as the Mini–Mental State Examina-
tion (MMSE) were tested as part of the demographic
assessment. Biomarkers were selected in three sets;
Set A) the top 18 biomarkers from [24], Set B) the
top 37 biomarkers as selected using a Linear Mod-
els for Microarray Data (LIMMA) analysis with a
q-value cut off of 0.0003, and Set C) the top 48
biomarkers selected using a LIMMA analysis with a
q-value cut off of 0.05. Biomarker lists and accom-
panying Venn diagrams are shown in Supplementary
Table 1 and Supplementary Figure 1. Biomarkers
included both those proteins measured using the Rules
Based Medicine (RBM) Human Discovery xMAP�

panel [24], and those clinical pathology measures

routinely tested as part of the AIBL protocol [33].
Further information regarding sample preparation and
processing, including biomarker selection, can be
found in [24]. Biomarker data was log transformed
and qq-normalized prior to analyses. As an internal
validation, we split the HC subject into two groups,
high performing HC (hpHC), and normal HC (HC)
via an unsupervised mixed modelling approach (using
six neuropsychological test scores), resulting in a total
of four groups for comparison, hpHC, HC, MCI,
and AD.

Statistical methodology

Sample demographics were tabled and compared
using χ2 and generalized linear modelling. We then
use a graphical model approach, which describes the
conditional dependence relationships among random
variables, in order to make inference on the protein
interaction networks. Specifically we use the approach
of [34] to assess the relationships between biomark-
ers both within and between clinical groups. This
Bayesian approach is designed to simultaneously infer
multiple undirected networks in situations where some
networks may be unrelated, while others may have
a similar structure. The proposed approach infers a
separate graphical model for each group but allows
for shared structures, when supported by the data.
Moreover, this approach allows obtaining a measure of
relative network similarity across groups. This measure
of similarity reflects how appropriate the assumption
that the networks for any two groups have common
edges is, based on the data for each group. This
Bayesian approach was run using the default hyper-
parameter setting and posterior inference procedure as
described in [34].
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Fig. 1. A) Biomarker Set A (18 biomarkers): calculated connections between biomarkers for the hpHC group. B) Biomarker Set A (18 biomark-
ers): calculated connections between biomarkers for the AD group. C) Posterior probability of biomarker connection between classification
groups for Biomarker Set A. D) Biomarker Set B (37 biomarkers): calculated connections between biomarkers for the hpHC group. E) Biomarker
Set B (37 biomarkers): calculated connections between biomarkers for the AD group. F) Posterior probability of biomarker connection between
classification groups for Biomarker Set B. G) Biomarker Set C (48 biomarkers): calculated connections between biomarkers for the hpHC
group. H) Biomarker Set C (48 biomarkers): calculated connections between biomarkers for the AD group. I) Posterior probability of biomarker
connection between classification groups for Biomarker Set C.
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RESULTS

Population demographics

While both MCI and AD groups had significantly
older participants than both HC and hpHC groups
(p < 0.0001), there was no significant difference in the
distribution of males and females per group (p = 0.84).
Both MCI and AD groups had more participants with
the variant APOE�4 allele than the HC groups, while
all three neuropsychological score measures showed
lower scores for participants within the MCI and AD
groups as compared with the HC groups (p < 0.0001).

Biological networks

The inferred biomarker connections, along with the
posterior probability of similarity between networks
were plotted for each of the different clinical groups
and each of the three different sets of proteins where
the posterior probability of connection was greater
than 0.5 (Fig. 1, Supplementary Table 2). Immediately
noticeable across all the plots, was the network hub
surrounding beta-2 microglobulin (�2M), with differ-
ing numbers of connections between �2M and other
biomarkers dependent upon classification group and
the number of biomarkers analyzed. Using biomarker
set A and comparing the connections for �2M between
hpHC and AD groups, we found six biomarkers com-
mon to both groups [pancreatic polypeptide (PPY),
macrophage inflammatory protein 1 alpha (MIP1�),
homocysteine (HCY), CD40, zinc (Zn) and vascular
cell adhesion molecule 1 (VCAM1)], while the AD
group had an extra three unique biomarker connec-
tions [hemoglobin (Hb), insulin growth factor binding
protein 2 (IGFBP2), epidermal growth factor receptor
(EGFR)] (Fig. 1A, B). Due to only a small num-
ber of differences in biomarker connections between
the clinical groups, the posterior probability of net-
work similarity between clinical groups was quite high
(hpHC versus HC: 0.86, hpHC versus AD: 0.90).

Increasing the number of biomarkers in the anal-
yses to 37 (set B) both increased the complexity of
the differences between clinical groups and decreased
the posterior probability of similarity between the
hpHC and AD networks (hpHC versus HC: 0.84,
hpHC versus AD: 0.55). Interestingly, �2M was con-
nected to five biomarkers in both the hpHC and AD
groups [chromogranin A (CgA), tumor necrosis fac-
tor (TNF) receptor superfamily, member 6 (FAS),
receptor tyrosine kinase (AXL), CD40, intercellular
adhesion molecule 1 (ICAM1)]; connected to three

unique biomarkers in the hpHC group [alpha 1 antit-
rypsin (A1AT), angiopoientin 2 (ANGPT2), human
chemokine 4 (HCC4)]; and connected to further
four unique biomarkers in the AD group [epidermal
growth factor (EGF), MIP1�, interleukin 8 (IL8), and
heparin-binding EGF- like growth factor (HBEGF)]
(Fig. 1C, D).

Further increasing the number of biomarkers
to 48, and including two different measures of
apolipoprotein E (one commercial ELISA [35], one
RBM [24]), decreased the posterior probability of sim-
ilarity between the hpHC and AD networks (hpHC
versus HC: 0.84, hpHC versus AD: 0.28). Again
assessing the connections around �2M, we find
seven biomarker connections in common between the
hpHC and AD groups [HCY, CgA, FAS, MIP1�,
VCAM1, CD40, haptoglobin (HAPT)], while the
hpHC group had an extra four unique connections
[HCC4, ANGPT2, macrophage-derived chemokine
(MDC)], and the AD group had an extra five connec-
tions [Hb, albumin (Alb), EGFR, HBEGF, ICAM1]
(Fig. 1E, F).

Although �2M was clearly the most frequently
connected biomarker across all marker sets and
clinical groups, we also sought those proteins that
formed mini biomarker hubs (smaller than the �2M
hub) across the clinical groups. Epidermal growth
factor (EGF) emerged, with five and eight connec-
tions for the hpHC and AD groups respectively,
within biomarker set B, and six and eight connec-
tions for the hpHC and AD groups, respectively,
within biomarker Set C (Fig. 1D, E, G, H). Other
biomarkers with greater than four connections in
either biomarker set A/B included CD40, HGF,
VCAM1, ICAM1, IGFBP2, BDNF, albumin, MDC,
adiponectin, glucagon, and hemoglobin. Furthermore,
a brief analyses of 41 of the 48 biomarkers that
had information available via IPA, identified impor-
tant and well known complexes such as NFκB,
IL12, and P13K, and other markers including PDGF
BB, TNF, and ERK1/2. A graphical representation
of the IPA analyses is presented in Supplementary
Figure 2.

Lastly, we assessed the differences and similarities
between graphical networks for hpHC and AD groups
for all three biomarker sets using the iGraph R pack-
age (http://cran.r-project.org/web/packages/igraph/
igraph.pdf). Supplementary Figure 3 shows an
increasing number of connections appearing in the
hpHC group that were not seen in the AD group
between networks with increasing numbers of
biomarkers (Supplementary Figure 3A, C, E), but

http://cran.r-project.org/web/packages/igraph/igraph.pdf
http://cran.r-project.org/web/packages/igraph/igraph.pdf
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more importantly a greater focus around �2M post
intersection of hpHC and AD groups (Supplementary
Figure 3B, D, F).

DISCUSSION

The aim of this research was to assess biomarker
network interaction using three sets of overlapping pro-
teins and four clinical classifications. We used a novel
Bayesian graphical network approach [34] to assess the
differences between the networks, and present the iden-
tified biomarker �2M as a central network regulator.
We show that by increasing the number of biomarkers
in the analyses spectrum, we see stepwise increases in
both the complexity of the network, and in the infor-
mation provided by the interaction networks. It can
clearly be seen that there is a plethora of informa-
tion that can be mined from these analyses that would
be otherwise missed in variable selection/dimension
reduction analyses. We have, for the sake of brevity,
and due to the strength of the �2M network across
all clinical groups and biomarker sets, chosen to focus
on the key information from the interaction network
surrounding �2M.

In the initial Doecke et al. paper, �2M was shown to
be significantly increased by 1.24 fold (p = 0.006) and
was increased in AIBL, ADNI, and TARC datasets
[18, 24]. Its relationship to other makers in the plasma
proteome was a consistent feature in the Bayesian
graphical network analysis. The centralized relation-
ship of so many proteins leads us to conclude that
�2M may be a master regulator of a number of
downstream pathways, a significant finding that may
have been over looked if not investigated using this
Bayesian approach. In support of this conclusion, �2M
is involved in a range of biological pathways, primarily
through its activity in stabilizing class I MHC com-
plexes.

�2M is the light chain of the MHC-class I com-
plex [36], which is important in t-cell regulation and
the immune system pathway [37]. It also has a role in
iron uptake, through interactions with the hemochro-
matosis protein (HFE), which is a transferrin protein
receptor [38]. The MHC class I complex has also
been reported to affect receptor activity, in particular
that of insulin receptors, albeit only in the absence of
�2M [39]. The broad range of interactions of MHC
I complexes illustrates that �2M is indeed a central
member of a number of regulatory pathways, most
likely through its chaperone-like activity in stabilizing
the MHC complex.

Interestingly, �2M in certain microenvironments
can form toxic fibrillar amyloid aggregates, particu-
larly linked to dialysis related amyloidosis [36, 40–42].
Some studies have shown that the �2M fibrils (not the
monomers) are the cytotoxic species of the protein and
when aggregated can lead to membrane disruption and
permeabilization [40, 41, 43].

�2M has also been implicated in some non-renal,
cardiovascular conditions suggesting its role in phys-
iology is still being elucidated [44]. �2M is highly
expressed on motor neurons and shown to play a role
in the progression in a murine model of motor neu-
ron disease [45]. One of the major hallmarks of AD is
the accumulation of amyloid fibril formation and there
appears to be some commonalities between amyloid-
� [46] and �2M propensity for fibril formation and
membrane disruption. �2M obviously has a role to
play in the sequence of events in AD and needs to
be followed up with more research.

The current research has demonstrated that increas-
ing the number of proteins in the network elucidates
further biomarkers that may have important roles in the
underlying biological disease mechanisms. Analyzing
multiple biomarker sets with overlapping markers has
had the advantage of demonstrating the robustness of
biomarker relationships across biomarker sets. We see
multiple markers besides �2M consistently acting as
mini-biomarker hubs, connected to the same biomark-
ers across the biomarker sets (VCAM1, CD40, EGF,
HGF), while others are consistently not connected
(Ang, ApoE4).

A possible limitation of this study stems from using
only one assay platform to conduct the analyses.
Further work is underway to validate these findings
using a separate protein array platform. Yeh et al.
showed that increasing the number of biomarkers in
analyses via the integration of biological knowledge
enabled the reconstruction of gene regulatory net-
works [47]. Our research follows a similar premise,
where increasing the number of proteins in the network
identified novel interactions for �2M in AD. Similarly,
Wang and colleagues recently used Bayesian network
classifiers to integrate data from multiple platforms
to identify biomarkers confirming previously pub-
lished results [31]. Previous research using Bayesian
networks to define marker connections in AD has pri-
marily been performed using imaging data [28, 29],
however these methods have not defined the posterior
probability of both within and between group connec-
tions.

The strength of the methodology used in the current
study is demonstrated by the posterior probabilities
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shown in Fig. 1. We show that increasing the number
of biomarkers increases the network differences, with
posterior probabilities of network similarity between
hpHC and AD groups decreasing from 0.895 using
18 markers to 0.282 using 48 markers. Assessing
the hpHC and HC groups, we saw only a very
minor decrease in posterior probability; 0.875 using
18 markers to 0.835 using 48 markers, demonstrat-
ing that increasing the complexity of the model did not
decrease the sensitivity of the inter-group comparisons.

Our novel methodology to interrogate the biomarker
interaction networks both within and between groups
for relationships has elucidated biological pathways
and identified critical targets that may be useful in
future biomarker screening. With increasing interest
demonstrated in using protein array technology to
investigate protein-disease pathology relationships, we
advocate the use of graphical network methodologies
to ascertain a better understanding of the underlying
biological relationships that can potentially explain
disease pathology.

In summary, the current study has interrogated
a small set of biomarkers from a large and well-
characterized study of ageing, with the express aim
of searching for changes in biomarker interaction net-
works. We find that by increasing the search space
to include a large number of biomarkers, we gain
a better understanding of biological interactions that
may elucidate disease specific pathways. Since many
biomarker selection studies choose only the best can-
didates to represent the disease classification, it is our
belief that more information could be assembled from
many studies that opt for that smaller set of biomark-
ers to functional modules that predict disease status,
and we look forward to verification of our biological
network results in other populations in the near future.
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