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Abstract.

Background: Although genome-wide association studies have shown that genetic factors increase the risk of suffering late-onset,
sporadic Alzheimer’s disease (SAD), the molecular mechanisms responsible remain largely unknown.

Objective: The aim of the study was to investigate the presence of somatic, brain-specific single nucleotide variations (SNV) in
the hippocampus of SAD samples.

Methods: By using bioinformatic tools, we compared whole exome sequences in paired blood and hippocampal genomic DNAs
from 17 SAD patients and from 2 controls and 2 vascular dementia patients.

Results: We found a remarkable number of SNVs in SAD brains (~575 per patient) that were not detected in blood. Loci with
hippocampus-specific (hs)-SNVs were common to several patients, with 38 genes being present in 6 or more patients out of the
17. While some of these SNVs were in genes previously related to SAD (e.g., CSMD1, LRP2), most hs-SNVs occurred in loci
previously unrelated to SAD. The most frequent genes with hs-SNVs were associated with neurotransmission, DNA metabolism,
neuronal transport, and muscular function. Interestingly, 19 recurrent hs-SNVs were common to 3 SAD patients. Repetitive loci
or hs-SNVs were underrepresented in the hippocampus of control or vascular dementia donors, or in the cerebellum of SAD
patients.

Conclusion: Our data suggest that adult blood and brain have different DNA genomic variations, and that somatic genetic
mosaicism and brain-specific genome reshaping may contribute to SAD pathogenesis and cognitive differences between
individuals.
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INTRODUCTION

Alzheimer’s disease (AD) is classified into two
types: familial AD (FAD), predominantly associated
with early onset, and sporadic AD (SAD) associated
with late onset. Genomic analyses have shown that
FAD is caused by mutations in amyloid-3 protein
precursor (ABPP), presenilin 1 (PSEN1), and prese-
nilin 2 (PSEN2) genes, and by duplications in the
ABPP gene [1-4]. In contrast, the mechanisms that
trigger SAD are largely unknown, although various
risk factors have been established, including vascular
disease (VaD), elevated cholesterol levels, and obe-
sity/diabetes [3, 5, 6]. Neuropathological hallmarks for
SAD include amyloid-B (AB) pathology and aggre-
gation, and tau phosphorylation [2, 7]. Moreover, the
APOE4 allele is strongly associated with SAD [8, 9].
Large-scale genome-wide association studies (GWAS)
have identified several additional loci, including CLU,
PICALM, CRI1, BIN1, ABCA7, EPHA1, TREM2,
CD33, PTK2B, and INPP5D as genetic risk factors
for SAD [10-19].

Some diseases, particularly cancer, are associated
with somatic genomic events, which occur in only one
generation or one group of cells and which may affect
specific genes. Approximately 80% of cancers arise
from somatic mutations [20, 21]. It is generally held
that the initial step in many tumors is mediated by DNA
damage and mutations, which trigger activation of
proto-oncogenes, the inactivation of tumor-suppressor
genes, and ultimately tumor progression and metas-
tasis. The identification of genes that are mutated in
cancer has been critical not only for our understanding
of the pathogenesis, but also for the design of novel
therapeutic tools [22, 23].

To our knowledge, systematic studies for the search
of somatic brain mutations in SAD or other neuro-
logical diseases have not been performed so far. Here
we use whole-exome sequencing to investigate the
presence of single-nucleotide polymorphisms (SNPs),
single nucleotide variations (SN'Vs), and mutations (all
referred to here as SNVs) that are specific to brain
genomic DNA in SAD, and which are not present
in the blood genome of the same donors. We found
a striking number of brain-specific SNVs in SAD
patients. Together with recent studies reporting brain-
specific retrotrasposon insertions [24, 25] and somatic
copy number variations (CNVs) in control human
neurons [26], our results highlight variability in the
brain genome, and suggest that genetic mosaicism and
brain-specific genetic variations may contribute to the
pathogenesis of SAD.

MATERIALS AND METHODS
Brain tissue processing and characterization

Shortly after the death of the donor, the whole brain
was obtained through a neuropathological autopsy
and divided into two symmetrical halves through a
midsagittal section. Thereafter, the right half was
immediately cut in coronal (hemisphere), sagittal
(cerebellum), or transversal (brainstem) slices. Each
tissue slice was individually frozen by immersion in
—50°C isopentane (Shandon Histobath™ 2) and trans-
ferred to a —80°C freezer for long-term storage. The
left brain half was fixed in 4% buffered formaldehyde
and sectioned. Multiple tissue blocks were obtained
from cortical and subcortical regions and processed
for paraffin sectioning and hematoxylin-eosin staining.
Additionally, a battery of immunostaining detections
was performed on selected sections, and a neu-
ropathological diagnosis and classification of cases
was obtained according to well-established consensus
criteria. Classification and staging of Alzheimer-type
pathology was based on density and score of neuritic
plaques according to CERAD criteria, and Braak’s
staging of neurofibrillary pathology. Frozen tissue
samples of hippocampus and cerebellum were taken
from previously frozen tissue slices. The hippocam-
pus was dissected with the aid of a stereomicroscope
so as to obtain samples limited to CA1-CA3 sectors
of the hippocampal cortex. Samples of the cerebellum
corresponded to lateral hemispheric foliae. Blood sam-
ples were obtained simultaneously with routine blood
extractions for laboratory evaluation of patients.

Genomic DNA was extracted from brain tissue sam-
ples and from the blood of donors who had been
clinically and neuropathologically confirmed as SAD.
Brain tissue and blood samples were obtained from
two Spanish brain banks (Banco de Tejidos CIEN [BT-
CIEN] and Banco de Cerebros de la Regién de Murcia
[BCRM]) working with similar processing protocols,
approved by their respective ethical committees. Sam-
ples from two control donors (with no neurological and
neuropathological signs) and from two donors clini-
cally and neuropathologically diagnosed as VaD, were
also included in the study. DNA was extracted using
Qiagen Kkits.

Sample processing for exome sequencing

Three pg of genomic DNA (from blood, hippocam-
pus, and cerebellum) was fragmented to an average
size of 200 bp using a Covaris LE220 instrument. Short
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insert libraries were obtained with Illumina’s TruSeq
DNA Sample Preparation Kit. Exonic sequences
were enriched using NimbleGen’s Sequence Capture
Human Exome 2.1M Array. Paired-end sequences of
91 nucleotides from each end were generated using an
[llumina’s HiSeq 2000 instrument to an average of 50x
coverage. Sequences were generated in fastaq format.

Sequencing quality control

All samples passed quality filters after sequencing
according to the following criteria: 1) Reads with
ambiguous bases (represented by letter N) more than
5% of bases or poly-A structure constituents; 2) Reads
that have 20 bases with quality score less than or
equal to 7 for the library were filtered. 3) Reads with
adapter contamination: reads with more than 10 bp
aligned to the adapter sequence (no more than 3 bp
mismatch allowed); 4) Small insert-size reads in which
readl and read2 overlapped by 10 bp or more (10%
mismatch allowed); 5) PCR duplications (reads are
considered duplications when readl and read2 of the
same paired end reads are identical). Individual reads
not passing any one of these filters were discarded
from the analysis. Furthermore, overall quality was
controlled with the fastqc software (http://www.
bioinformatics.bbsrc.ac.uk/projects/fastqc) ensuring
that all samples passed checks with default parameters.

Mapping and initial base calling

Samples were aligned to the human reference
genome version hgl9 [27] using the BWA aligner
software [28] with default parameters. For each
patient, brain and blood samples were preprocessed
by removing duplicate reads [29] using Picard (http://
picard.sourceforge.net/index.shtml). Samples from the
same patients were merged using SAMtools and pre-
processed before base calling. Local realignment was
performed around INDELs to improve SNP calling
in these conflictive areas (IndelRealigner from [30]).
After merging patient samples to avoid recalibration
biases to affect samples independently, base quality
scores were recalibrated using the baseRecalibrator
tool from the Genome Analyzer Toolkit [30]. Once
recalibrated, samples were split by tissue with BAM-
tools [31]. The UnifiedGenotyper algorithm from [30]
was then used with default parameters (see [32] and
[33] for details) to call SNPs in the merged file. For
each of the variants called which had a read depth >25
reads in both tissues, we performed a Fisher test on the
observed number of reads with the alternative allele

in each sample. Candidate SNVs with a p-value larger
than 0.05 were discarded. Finally, variants were anno-
tated using the dbSNP database version 132 [34], the
UCSC human RefGene [35], and the software snpEFF
[36] (see Supplementary Methods).

Tissue-specific SNV discovery

The routine UnifiedGenotyper from GATK was
used to call candidate SNVs in each tissue sample.
These SNVs were filtered with parameters recom-
mended in Best Practices of the GATK website
(http://www.broadinstitute.org/gatk/), with the excep-
tion of the quality of the SNV call (QUAL) which was
lowered to 20 to allow for more candidates when com-
paring tissues. SNPs were annotated using snpEff2.0.5
[37] and GATK’s SNPannotator. In order to find SNVs
specific to the hippocampus, we compared the num-
ber of reads for the reference and alternative alleles in
each candidate position for both samples. A Fisher test
was performed comparing the number of reads of the
reference allele and the most frequent alternate allele
in each sample. We declared as blood/brain specific
SNVs those SNVs whose Fisher’s test p-value was
lower than 0.05 and whose read depth was >25 for
both samples. Tissue-specific SNVs were considered
as hippocampus-specific SNVs (hs-SNVs), blood-
specific (bs-SNVs), or cerebellum-specific (cs-SNVs)
considering the tissue which contains the alternative
allele or its higher percentage.

Further statistics calculations

Further statistics were calculated as follows: dbSNP
coverage was calculated against dbSNP version 132
[34]. Exonic SNPs were found using annotations from
UCSC version hg19 [35].

RESULTS

Exome sequencing and genotyping of blood and
hippocampi reveal brain-specific SNVs

To test the hypothesis that somatic variations and
mutations may contribute to the genetic component of
SAD, we sequenced the exomes of 17 clinically and
neuropathologically confirmed SAD patients, compar-
ing genomic DNA from blood and hippocampi from
the same donors (Supplementary Table 1). Briefly,
we enriched exonic sequences from genomic DNA
using the NimbleGen’s Sequence Capture Human
Exome 2.1 M Array and performed Illumina’s HiSeq
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2000 paired-end sequencing (Fig. 1a). On average, we
obtained 6.2 Gb of mappable sequence data per indi-
vidual after exome enrichment, targeting 37 megabases
(Mb) from exons and their flanking regions. Overall,
we covered 1.22% of the genome, a fraction cor-
responding closely to the NCBI Consensus Coding
Sequences database (CCDS). Quality controls using
the fastaQC program were applied to reads from each
sample and showed high per base and per sequence
quality, even G/C content along reads and no overrep-
resented or high Kmer content.

We aligned reads from each sample independently to
the human reference genome [27] using the Burrows-
Wheeler Aligner [28]. An average of 99.1% of the
reads aligned correctly with the genome. The mean
read depth in targeted regions was 60.8 reads. In
addition, 79.4% of the captured exonic regions were
covered with at least 25 reads.

In order to identify genomic variations we applied
various processing and genotyping tools. Briefly, we
removed duplicated reads from individual samples
[29]. In the first step, we used the GATK software
for calling SNVs in blood and brain samples [30, 32].
To this end we merged samples from both tissues for
each patient and realigned reads around problematic
areas with indels (indel realigner). We then recalibrated
read qualities (quality recalibration) and split the data
into blood and hippocampus reads. We applied the
UnifiedGenotyper (from the GATK package) to find
SNVs using the default parameters. We filtered SNVs
as described [33] with the exception of higher calling
quality (QUAL <25). We also filtered out the SNVs
found in duplicated regions in the human genome
annotated in the UCSC database [38, 39] with a seg-
mental duplication score larger than 0.8.

Once the positions of the SNVs were known, we
calculated the distance between samples based on the
observed proportion of the four bases in all SNVs
from all samples. As expected, paired samples clus-
ter together. A heatmap is presented in Fig. 1b showing
that the distance between paired samples is much lower
than the distance to any other sample.

In order to identify hs-SNVs, we compared the
SNVs from hippocampus with the corresponding
genomic positions in blood. We selected positions
with confident calls whose proportions of reference
and alternative alleles were significantly different.
SNVs with p-values (Fisher test) lower than 0.05 were
retained. Only SNVs with a read depth >25 were
considered.

The great majority of SNVs found in the hippocam-
pus, whether heterozygous or homozygous, had similar

percentages of non-reference allele reads in the blood
counterpart (Fig. lc, right insert). Nevertheless, some
positions showed very different proportions between
blood and hippocampus (Fig. 1c, left), including those
with a clear increase or decrease in non-reference
alleles in hippocampus. We also noticed a significant
number of hippocampal variations that were present
with low numbers of reads with the alternative allele
(usually 20-30%), which may suggest mosaicism.
For 3 SAD donors we sequenced samples from the
cerebellum and repeated the procedures describe above
for the hippocampal sequences in order to identify
SNVs that were shared or unique to the cerebellum.

Characterization and specificity of hs-SNVs in
SAD

We found an average number of 37.605 SNVs per
single genomic DNA sample (Fig. 2a). Overall, a
very large fraction of SNVs were annotated in dbSNP
database (version 132) (94%), which bears witness to
the quality of sequencing and analysis (Fig. 2a). An
average of 15,484 SNVs (41%) were found in exonic
regions, with a ts/tv ratio of ~2.31 in these regions
(Fig. 2a). Although most (~97%) of these SNVs were
common to both blood and hippocampal DNA, in all
patients we found a consistent number of hs-SNVs
(average 577, Fig. 2b, ¢; Supplementary Table 2). Simi-
larly, we also found SNVs that were specific for blood
(Fig. 2b and Supplementary Table 2). A large num-
ber of hs-SNVs were annotated in dbSNP (~95%,
Fig. 2c). About 43% of the brain-specific variations
were present in exons, with the remaining variations
being located in intronic, downstream or intergenic
regions (Fig. 2d).

We annotated SNVs according to their potential
functional impact as defined in the annotation pack-
age snpEFF [39] (Supplementary Tables 2 and 3).
Overall, 17.3% of the hs-SNVs had high to moder-
ate impact whereas 19% had low impact and 63.7%
of hs-SNVs had modifier impact. We found a number
of non-synonymous coding hs-SNVs (1661), transla-
tional start gains (25) and losses (2), stop gains (12),
and losses (3) and splice site donors and acceptors (19)
(Fig. 2e).

We next analyzed the chromosomal distribution
of hs-SNVs. As illustrated in Fig. 3, hs-SNVs were
present in all chromosomes with a regional distribu-
tion which largely paralleled the distribution of all the
identified SNVs.

The loci with hs-SNVs in SAD donors are listed in
Supplementary Table 4. To discern whether these loci
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Fig. 1. a) Flow chart illustrating the experimental approach used. Blood and hippocampal genomic DNAs from the same donors were exome
sequenced and blood-specific (bs) and hippocampus-specific (hs)-SNVs were identified. b) Distance heatmap demonstrating high sequence
similarities between blood and brain DNAs from the same patients, and high distance between patients. ¢) IGV view of blood (upper) and
hippocampal (below) DNA sequence in chromosome 15, illustrating one example of a variation common to blood and hippocampus (right) and

a hs-SNV (left) in the ATP8B4 and RHPN2P1 loci, respectively.

were specific to SAD, we compared sequences from
hippocampal and blood genomic DNAS obtained from
2 control individuals, with no neural disease, and 2
donors clinically and neuropathologically diagnosed
with VaD (Supplementary Table 1). As in SAD, we
detected both blood- and hs-SNVs, with numbers of
hs-SNVs being similar to those in SAD (Fig. 4 a-c;

Supplementary Tables 2 and 5). We next calculated the
percentage of coincident loci with SAD. About 13%
and 21% of loci with hs-SNVs in control and VaD
samples overlapped with SAD loci, respectively. Con-
versely, 8% and 10% of loci with hs-SNVs in SAD
samples overlapped with those in control and VaD
brain samples (Fig. 4d, e).
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their location in exonic and non-exonic regions. d) Overall distribution of hs-SNVs, according to their genetic location. e) Overall distribution

of hs- SNV in 17 SAD patients according to their functional impact.

We also screened brain-specific SN'Vs in the cere-
bella of 3 SAD patients (Fig. 4f-i; Supplementary
Table 6). We found that only about 9% of brain-specific
loci were common to the hippocampus and cerebellum
of the same donors (Fig. 4i, Supplementary Table 7).
Taken together, the data suggest that the hippocampus
of SAD brains may display a specific somatic genetic
signature.

Common hippocampus-specific genes in SAD:
Relationship to AD pathogenesis and neurological
diseases

The list of genes with hs-SNVs ordered by the
number of patients with at least one mutation in
the corresponding gene is shown in Supplementary
Table 4. Interestingly, 2 genes (SYNE1, AC073995.2)



A. Parcerisas et al. / Somatic Signature of Brain-Specific Single Nucleotide Variations in Sporadic Alzheimer’s Disease

Chromosome 1 Chromosome 2

Chromosome 3

Chromosome 10 Chromosome 11

Chromosome 17 Chromosome 18 Chromosome 19 Chromosome 20

-338888%
-

88888

Chromosome 4

Chromosome 12

Chromosome 21

1363

Chromosome 5 Chromosome 6 Chromosome 7

Chromosome 13~ Chromosome 14 ~ Chromosome 15 Chromosome 16

SRR

oa3aB8RE

Chromosome 22

Density of all SNVs
(top axis)

ook
¢

) Frequency of hs-SNVs
(bottom axis)

Fig. 3. Chromosomal distribution of hs-SNVs (dots, upper axis scale), compared to the entire population of SN'Vs (continuous line, bottom axis
scale). hs-SNVs were present in all chromosomes with an uneven distribution among chromosomal regions.

displayed hs-SNVs in 10 out of the 17 patients, 3
loci (MAP2K3, OR4C3, ZNF806) were common to
9 patients, 6 genes had hs-SNVs in 8 patients (e.g.,
PDE4DIP, CD109), 7 loci were common in 7 patients
(AQP7, PTPN14, PRIM2, CSMDI1), 20 loci were
found in 6 patients, and 51 and 129 genes were common
to 5 and 4 patients, respectively. Overall, 11 loci were
common to ~45% of patients (8 or more patients), and
up to 218 genes were present in at least 24% of patients
(4 or more patients).

We next focused on hs-SNVs within the FAD
genes: ABPP, PSEN1, and PSEN2 [1, 13]. These loci
displayed SNVs reported in dbSNP that were all com-
mon to blood and brain. We found one hs-SNVs
in the PSEN1 gene in one patient (rs165932, Sup-
plementary Tables 2 and 4), which was nevertheless
non-pathogenic although it may be a risk factor [40].
We also screened for loci that bore hs-SNVs and that
are related to the pathogenesis of AD or other demen-
tia. A comparison with genes that have been associated
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Fig. 4. Distribution and characteristics of hippocampus-specific (hs)-SNVs identified in control (CT) and vascular dementia (VaD) patients, and
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f) Distribution of SN'Vs found in the cerebella and blood of 3 SAD patients, according to their annotation in dbSNP and their location in exonic
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in GWAS analyses with SAD and related dementias ated with arecessive centronuclear myopathy [41]. Ten
identified BIN1 (1 patient), ABCA7 (2 patients), and members of the ABC (ATP-binding cassette, ABCA)
PICALM (1 patient) as genes bearing hs-SNVs (Sup- family, which transports lipids and cholesterol, bore
plementary Table 2). However, none of these hs-SNVs hs-SNVs (Supplementary Tables 2 and 4).

was coincident with the polymorphisms in the GWAS We also screened for genes located in the chr21 crit-

studies, although rs61748157 (BIN1) has been associ- ical region of Down syndrome which shares features
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with AD [42-44]. Up to 28 loci in the critical region
exhibited hs-SNVs, with all 17 patients displaying
at least one hs-SNVs (Supplementary Table 9). The
most frequent loci were BAGE2 (8 patients), TPTE
(6 patients), MX2 (6 patients), TTAM1 and EVAIC (5
patients) and HSF2BP (4 patients). BAGE2 and TPTE
are included in the Robertsonian translocation region
[42] and TPTE belongs to the PTEN phosphatase fam-
ily related to multiple signaling cascades, including
p53/p73 [45, 46] and is associated with autism [47].
TIAMI is a Rho guanine nucleotide exchange factor
linked to TrkB signaling and dendritic spine physiol-
ogy and plasticity, which is activated by A3 [48, 49].
Finally, TTC3 (2 patients) encodes an E3 ligase that
facilitates degradation of phosphorylated AKT [50],
and NCAM?2 (1 patient) has been implicated in prion
disease, Down syndrome, SAD, and psychiatric dis-
ease susceptibility [51-55].

Other common loci exhibiting hs-SNVs and related
to AR and SAD pathogenesis include CSMD1 (7
patients), LRP2 (Megalin), RYR2, PRUNE2, and
SVIL (all of them in 6 patients), RYR1, LRPIB,
ANKS1B, C3, and PION (all of them in 5 patients), and
KALRN, NOS2, DCHS2 (4 patients) (Table 1 and Sup-
plementary Table 4). PION (or GSAP) is a y-secretase
activating protein which increases A3 production [56,
57] and ANKS1B (or AIDA-1) binds the AID fragment
of ABPP and modulates ABPP/AB processing [58].
CHRNAT7 (a7 subunit of neuronal nicotinic actetyl-
choline receptor) regulates y—secretase and reduces
ABPP processing, and is genetically associated with
SAD and myoclonic epilepsy [59-61].

In addition, many recurrent loci bearing hs-SNVs
have been implicated in neurodegeneration and in the
pathogenesis of neurological and psychiatric diseases
(Tables 1 and 2). For instance, the most recurrent
loci (SYNE1) is a component of the nuclear lamina
A complex that is mutated in neural diseases includ-
ing cerebellar ataxia with spinal motorneuron disease
[62, 63], autism [64], and Emery-Dreifuss muscular
dystrophy [65, 66].

Functions of hippocampus-specific loci bearing
SNVs in SAD

Our screening highlights genes involved in essential
neuronal and biological functions (Tables 1 and 4 and
Supplementary Table 4). Thus, in addition to genes
linked to ion channel activity, neurotransmission,
and synaptic-linked proteins (e.g., GRM7, PTK2B,
RYR2, SYNEI1, and TPTE), hs-SNV-containing
loci regulate endoplasmic reticulum (ER)-to-Golgi

trafficking and protein secretion, endocytosis and
axonal/dendritic transport (e.g., DNAH3, 8§, 11, and
14, PDE4DIP, SVIL, and several DOCK members),
DNA-RNA metabolism/DNA damage response and
genomic instability (e.g., PRIM2, HEATR1, MKI67,
and CNOT), extracellular matrix/adhesion (FRASI,
COL27A1, DST, TNS1, and DCHS2) or muscular
function (MYH13, NEB, DYSF, and OBSCN).

Further, hs-SNVs were identified in loci linked
to functions which have been documented as risk
factors for SAD: cardiac and vascular function,
hypertension and blood circulation (e.g., CYP4F2,
AKAP9, CASQ?2, and BAZ2B), and cholesterol/lipid
metabolism, and obesity/diabetes (e.g., MGAM,
LRP2, FAT1, and LPA) (Table 4).

Recurrent hippocampus-specific SNVs in SAD

Many loci displayed several hs-SNVs (more than
2) in the same patient: for instance 7 hs-SNVs in the
KIR3DL1 (patient 7), 6 hs-SNVs in the MAP2K3 gene
(patients 5 and 12) and 6 hs-SNVs in the PTPN14
(patient 5) (Supplementary Table 4). In addition, sev-
eral loci displayed recurrent hs-SNVs in the same
positions (Table 3), suggesting that recurrent hs-SNVs
target certain genes preferentially.

A search for recurrent mutations in SAD samples
revealed that 19 hs-SNV positions were common to
3 patients (Fig. 5a, b, e.g., TMEM67, SGIP1, NLN,
KNCTCI1, PTPN1) and 517 additional hs-SNVs were
shared by 2 SAD patients (Supplementary Table 8).
Some of these repetitive hs-SNVs were in the most
frequent SAD loci, including SYNE1, MAP2K3,
OBSCN, PDE4DIP, and PTPN14.

We next analyzed the overlap between these
recurrent SAD hs-SNVs and control samples (Sup-
plementary Tables 2, 6, and 8). From the 19 most
recurrent hs-SNVs in SAD (common to 3 patients;
Fig. 5b and Supplementary Table 8), none were present
in the hippocampus of control and VaD brains or
in the three cerebellar samples (Fig. 5c¢; Supplemen-
tary Table 8). Such differential frequency of recurrent
hs-SNVs, in SAD versus control tissue, also held
true for the hs-SNVs found in 2 samples (Fig. Sc
and Supplementary Table 8; 516 recurrent positions
in 2 AD samples). Overall, each SAD sample dis-
played ~64 recurrent hs-SNVs (1089 hs-SNVs/17
samples) which were underrepresented in control
brains (~3.75 hs-SNVs per Control; 15 hs-SNVs/4
samples). These data suggest that there is little over-
lap between recurrent hs-SNVs in SAD and control
samples.
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Table 4
Examples of genetic loci involved in essential neuronal and biological functions and molecular pathways

Neurotransmission; Extracellular DNA and Protein trafficking and Muscle Risk factors for SAD
ion channel matrix RNA secretion; axonal and function
activity components; metabolism dendritic transport

adhesion
GRM7 COL19A1 CNOT1 CEP104 DYSF Cardiac and vascular function
PKDIL2 COL27A1 DDXI11 DNAHI1 MYHI3 RYR2
PTK2B DCHS2 DNMTI DNAHI14 NEB CYP4F2
RYR2 DDX60L HEATR1 DNAH3 OBSCN AKAP9
SYNEI DOCK4 MKI67 DNAHS SYNEI1 CASQ2
TPTE DST MLL3 DOCK4 BAZ2B

FRAS1 MOV10L1 DST Lipid metabolism; diabetes

HMCNI1 PRIM2 MYO5B LRP2

LAMA4 ZNF285 NBEA PRKAG2

PPFIBP2 ZNF806 PDE4DIP MGAM

PRR4 SVIL FAT1
TNS1 LPA

DISCUSSION reads with the alternative allele, which may repre-

The present whole-exome sequencing analyses
show that the hippocampus of SAD patients displays a
substantial, and constant (~575), number of loci with
SNVs which were not found in blood DNA from the
same donors. Importantly, some of the genes bear-
ing hs-SNVs were common in a large proportion of
patients (e.g., 5 genes in 9 or more patients out of
17; see details in Supplementary Table 4) and 19
loci with important functions exhibited recurrent hs-
SNVs in 3 patients (e.g., TMEM67, SGIP1, NLN;
Table 3). Finally, in addition to the large number of
hs-SNVs with high functional impact, including non-
synonymous exonic variations and other events (e.g.,
start lost, stop gain, stop lost), hs-SNVs in intronic
events may act as cis-regulatory elements and regu-
late transcriptional levels [67-69]. Taken together, our
data suggest that a specific signature of hs-SNVs and
wiring of the neuronal genome might contribute to the
pathogenesis of SAD.

Recent studies using retrotransposon capture report
the presence of somatic insertions of L1, Alu, and SVA
retrotransposons in the human brain (~7,300 for each
whole genome sequence) suggesting somatic genome
mosaicism [24, 25], with a large number of these inser-
tions being intergenic and intronic, and some being
predicted to lead to coding mutations. In the present
study, we found an average of ~575 hs-SN'Vs/sample
after deep sequencing of the exome which covered
about ~1.2% of the human genome. Extrapolation of
these data to the whole genome would suggest high
genomic variability between blood and brain DNAs.
Indeed, the number of hs-SNVs may be higher, given
the large number of SNVs with low percentages of

sent somatic mosaicism at the single neuronal level
[25]. Thus, the present study, together with the deep
retrotransposon insertional screenings [24] and the
epigenetic regulation of the brain [70], suggests unex-
pected and complex wiring of the brain genome, in
comparison to the human reference genome [27] and
to the blood DNA from the same individuals.

As the number of hs-SNVs/patient exceeds the num-
ber of retrotransposon insertions [24], our data suggest
that several genetic and molecular mechanisms may
converge to the generation of somatic mosaicism.
Somatic variations and mutations could arise from dif-
ferent DNA replication/repair and genetic mechanisms
that take place during development or in adulthood
[25, 71]. The appearance of somatic mutations at very
early developmental stages (either in blood or neural
precursor cells) is likely to affect most of the cel-
lular progeny. In fact, some hs-SNVs are de novo
variations non-annotated in dbSNP. In addition, loss
of heterozygosity occurs early in development [72].
Finally, some of the hs-SNVs displayed low, though
highly significant, percentages of reads with a given
allele, suggesting either somatic mutations at late
stages of development in subsets of neuroglial progen-
itors [25] or genomic instability events taking place in
the adult or as a consequence of the disease itself. Inter-
estingly, recent studies have shown that AP induces
DNA double-strand breaks [73] and that control
human neurons bear somatic CNVs in a mosaic-like
manner [26]. Nevertheless, the exact mechanisms gen-
erating the reported brain variations remain to be
determined.

The distribution of hs-SNVs along the human
genome is uneven, targeting discrete genomic regions
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Fig. 5. a) IGV view showing detail of aligned reads to human genome demonstrating that two patients share 1 hs-SNVs (arrows) in the TPTE
gene in chromosome 21. b) List of genes and chromosomal positions displaying recurrent hs-SNVs in 3 patients, out of 17. ¢) Average of
recurrent hs-SNVs/patient in SAD and control hippocampi, and in the cerebellum of SAD patients. The averages are shown halved for the top
recurrent hs-SNVs present in 3 or 2 patients (Mann-Witney W test; ***p <0.001).
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and even particular loci (Supplementary Table 4),
which is consistent with L1 mutational insertion
analysis [24], in which brain-specific retrotransposon
insertions may correlate with transcriptionally active
genes [24]. It has been proposed that somatic muta-
tions are more likely to affect transcriptionally active
open chromatin [74] and that DNA bases are oxidized
(and modified) preferentially during transcription, with
oxidized bases being removed by the Base-Excision
Repair enzyme complex, thereby resulting in the
appearance of somatic mutations [75, 76]. On the other
hand, factors related to aging and SAD progression,
including tau and SIRT-1 proteins, increase oxidative
stress and decrease DNA repair capacity, and they
have all been implicated in neuronal DNA damage
and repair [77-79]. Interestingly, some recurrent loci
with hs-SNVs found in the present study target genes
that play a role in DNA metabolism, instability and
repair (e.g., PRIM2, DNMT1, HEATR1, MKI67, and
PDEA4DIP).

We did not detect pathogenic hs-SNVs in the ABPP,
PSENI1, or PSEN2, the loci responsible for FAD.
Large-scale GWAS analyses also failed to detect asso-
ciation of these genes with SAD [13], suggesting that
mutations in these genes other than those reported
in FAD may be rare or lethal. Some of the top
genes bearing hs-SNVs, however, have been asso-
ciated with ABPP metabolism or AD genetics and
pathogenesis. These include PION, LRP2, PRUNE2,
CSMD1, BIN1, and NOS2 [57, 80-86] (Table 3).
The data also highlight the possible involvement of
novel loci and molecular pathways in SAD, the most
enriched of which are neurotransmission and synaptic
function, neurodegeneration and neural diseases, ER-
Golgi protein trafficking and transport, extracellular
matrix/adhesion, DNA/RNA metabolism, repair and
genomic instability (Table 4). Moreover, several of the
identified loci encode for proteins with important func-
tions in muscular physiology which are responsible
for inherited neuromuscular disorders and dystrophies
(e.g., DYSF, MYH13, NEB, OBSCN, and SYNEI1)
[87-93]. Some of these muscular proteins are highly
expressed in brain, including amyloid deposits [94],
and their mutations cause severe synaptic and neu-
rological deficits [91, 95, 96]. A very recent GWAS
meta-analysis reports several novel risk loci, among
them PTK2B, INPP5D, and SORLI [19]. Interest-
ingly, our results show that these 3 loci bear hs-SNVs
in 6 (PTK2B), 2 (INPP5D), and 1 (SORL1) patients
(Table 2 and Supplementary Table 2) suggesting con-
vergence of inherited and somatic genetic events on
particular loci.

Lastly, we identified recurrent hs-SN'Vs in the hip-
pocampus of SAD patients which were not present
either in control hippocampi, or in the cerebellum of
SAD patients (Fig. 5). Although further large scale
genomic screening and functional studies are needed
to confirm direct links between hs-SNVs and SAD
pathogenesis and diagnosis, our results suggest novel
chromosomal positions, loci and molecular pathways,
targeted by hs-SNVs and relevant to neural function,
that may participate in the pathogenesis of SAD.

In conclusion, our results suggest an unexpected
number of somatic SNVs in the hippocampus of SAD
and control patients which were not present in genomic
blood DNA, suggesting that somatic brain wiring may
be anatural consequence of aging. However, SAD sam-
ples display a specific somatic signature that might be
important for the understanding of SAD pathogenesis
and suggest the convergence of distinct genetic mecha-
nisms and risk factors, from different origins (germline
and somatic mosaicism), in the generation of both the
common and differential traits of SAD phenotypes.
Interestingly, it has recently been shown that amyloid
leads to double-strand DNA breaks [73]. Globally, our
data also indicate that hitherto unsuspected wiring and
reshaping of the human brain genome may contribute
to both human cognitive diversity and the pathogen-
esis of neurological diseases, opening up avenues for
therapeutic interventions.
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