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Editorial

Has Prenatal Folate Supplementation
Established an At-Risk Population for
Age-Related Cognitive Decline?
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Abstract. Nutrition exerts a pervasive impact on normal and pathological conditions of the nervous system throughout life.
Maternal folate supplementation during pregnancy has reduced developmental disorders of the nervous system, but may have
also fostered an increase in individuals harboring genetic polymorphisms that compromise folate usage. Such individuals may
harbor a lifetime requirement for additional dietary folate, often not met beyond peri/postnatal periods. An increased association
of such polymorphisms has been detected in individuals with autism. Prenatal nutritional supplementation may have inadvertently
established latent conditions that, in the absence of continued supplementation, may lead to age-related cognitive decline.
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Inadequate maternal folate during pregnancy
increases developmental abnormalities of the fetal ner-
vous system. Folate deficiency has also been associated
with autism and epilepsy in youth, depression, and
schizophrenia in adults, and neurodegenerative con-
ditions such as Alzheimer’s disease (AD), Parkinson’s
disease, amyotrophic lateral sclerosis, and stroke in the
elderly [1–4].

Folate plays a critical role in one-carbon
metabolism, in which folate and B12 convert
homocysteine to methionine, which generates
S-adenosylmethionine (SAM), the major methyl
donor. The C677T polymorphism of 5′-methylene
tetrahydrofolate reductase (MTHFR; a key enzyme
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required to activate folate for methylation), displays
reduced activity. This polymorphism is associated
with impaired DNA methylation [5]. Folate deficiency
compromises SAM-dependent histone methylation
[6]. Compromised histone methylation is associated
with a wide range of neurological disorders, including
impaired learning and memory, intellectual disability,
addiction, schizophrenia, autism, depression, and
neurodegeneration [4, 7, 8].

Compromise of the one-carbon metabolism can
accompany, and may be causal to, neurodegenera-
tion in AD [9]. S-adenosylhomocysteine (SAH), the
downstream product resulting from SAM-mediated
transmethylation reactions, is elevated in brains of
individuals with AD; SAH competitively inhibits
SAM-dependent reactions, further reducing methyla-
tion in AD [10]. In this regard, the activity of the
enzyme responsible for its generation (methionine-S-
adenosyltransferase) is decreased in the spinal fluid and
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brains of individuals exhibiting neurodegeneration [10,
11]. Resultant impaired methylation likely potentiates
aberrant gene expression, leading to increased gener-
ation of amyloid-� (A�). Oxidative damage resulting
from increased A� may derive from aberrant expres-
sion of AD-related genes as a consequence of impaired
methylation [12]. These findings were augmented by
studies in transgenic mice, in which impaired DNA
methylation resulted in overexpression of presenilin-1,
�-secretase, and �-secretase, which was accompanied
by cognitive decline, reduced acetylcholine levels, and
accumulation of intracellular and extracellular A� and
phospho-tau [9, 13–15].

Recognition of the association of folate insuffi-
ciency with developmental defects fostered increased
consumption of folate-rich foods during pregnancy
over the last 20 years, which significantly reduced
these developmental problems [16, 17]. Since maternal
folate supplementation can mask the adverse effects
of impaired fetal MTHFR enzymatic activity dur-
ing pregnancy, prenatal and perinatal supplementation
may therefore have increased survival rates of infants
possessing the C677T MTHFR polymorphism via
reduction in miscarriage rates. The C677T MTHFR
polymorphism has increased by 24% in individuals
born during the period from 1976–2001; older age
groups displayed no change [18]. Prenatal folate sup-
plementation may therefore have fostered the birth of
a substantial cohort of individuals harboring genetic
deficiency in folate metabolism [19].

While folate supplementation could compensate
for MTHFR deficiency throughout life [20], nutri-
tion unfortunately declines with age, and even more
so in AD [21, 22]. When such an individual’s diet
is no longer adequately supplemented, a deficiency
in MTHFR may present one the above clinical con-
ditions that can stem from impairment in one-carbon
metabolism. In this regard, the C677T polymorphism
has already been found in significantly higher fre-
quency in individuals with autism, and this increased
frequency correlates with the onset of maternal folate
supplementation during pregnancy [19, 23–25]. The
number of individuals for whom folate supplemen-
tation will be critical to avoid dementia may have
increased in parallel; notably, since AD is confined to
aged individuals, it remains to be seen whether or not
any such increased latent risk exists. Notably, MTHFR
polymorphisms, including 677T, are indeed more
prevalent in individuals with AD than in non-demented
individuals [26–29], confirming that genetic MTHFR
compromise can contribute to AD. An additional study
has linked the 677T polymorphism with mild cognitive

impairment [30]. Moreover, the C677T polymorphism
was not associated with impaired cognition or depres-
sion in adult humans receiving with adequate folate
levels [20], supporting the notion that supplementation
can offset this genetic compromise. The characteristic
impaired cognitive performance, diminished neuro-
transmitter levels, and increased oxidative damage in
MTHFR ± mice were alleviated by dietary supplemen-
tation with folate or SAM [15].

As evidence mounts that optimized nutrition, includ-
ing supplementation, can modulate cognitive decline
in dementia, one can hope for a decrease in the inci-
dence of AD [31–33]. However, the considerations
presented herein prompt the speculation that maternal
folate supplementation may, as offspring of moth-
ers receiving supplementation age, also give rise to
an increased population of individuals with a latent
genetic predisposition for age-related cognitive impair-
ment. Similar speculation may hold true for additional
polymorphisms of other enzymes that regulate dif-
ferent metabolic pathways. Supportive animal studies
to determine whether or not prenatal supplementation
can lead to age-related cognitive decline would be of
interest.
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