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Review

Alzheimer’s Disease and the “Valley
of Death”: Not Enough Guidance
from Human Brain Tissue?

Thomas G. Beach∗
Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA

Abstract. Medical science is currently perceived as underperforming. This is because of the relatively slow recent rate of
development of new disease treatments. This has been blamed on cultural, regulatory, and economic factors that generate a
so-called “Valley of Death”, hindering new drug candidates from being moved into clinical trials and eventually approved
for use. We propose, however, that for neurodegenerative diseases, a relative decline of human brain tissue research is also a
contributor. The present pharmacological agents for treating Alzheimer’s disease (AD) were identified through direct examination
of postmortem human brain tissue more than 30 years ago. Since that time the percentage of research grants awarded to human
brain tissue-using projects has dropped precipitously and publication rates have stagnated. As human brain tissue research has
played a central and often initiating role in identifying most of the targets that have gone to AD clinical trials, it is proposed that
the rate of discovery of new targets has been curtailed. Additionally, the continued rejection of cortical biopsy as a diagnostic
method for AD has most probably depressed the perceived effect sizes of new medications and contributed to the high Phase II
clinical trial failure rates. Despite the relative lack of funding, human brain discovery research has continued to make important
contributions to our understanding of neurodegenerative disease, and brain banks have played an essential role. It is likely that
the pace of discovery will dramatically accelerate over the coming decades as increasingly powerful tools including genomics,
epigenetics, transcriptomics, regulatory RNA, gene expression profiling, proteomics, and metabolomics are applied. To optimize
the promise of these new technologies, however, it is critical that brain banks are rejuvenated by enhanced governmental and/or
private support.
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THE “VALLEY OF DEATH” AND HUMAN
TISSUE-BASED RESEARCH

A previous issue of this journal appropriately cele-
brated a century of Alzheimer’s disease (AD) research
and simultaneously raised the question, “Where do
we go from here?” Early in this second AD century,
we have been presented with a challenge that is both
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disheartening and provocative. A nagging uneasiness
with tangible progress, common across all biomedical
research fields, has broken out into the open, forc-
ing our collective gaze into what has been termed the
“Valley of Death” [1]. Despite the stunning avalanche
of data emanating from powerful new technology,
the production rate of new effective medications has
been steadily dropping. Neurodegenerative research is
no exception. The major Food and Drug Association
(FDA)-approved therapeutic agents for AD are based
on work done three to four decades ago. As a result,
our most urgent question has become, “Where have we
gone wrong?”
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The “Valley of Death” has been variously por-
trayed as a chasm between biomedical researchers
and patients, or between basic science researchers in
academia and applied science researchers in the phar-
maceutical industry, or between basic science ideas
and the hurdles they must cross to regulatory approval.
What is clear is that the translation of basic science
discoveries to drugs with obvious real-world benefits is
becoming less, rather than more frequent than any of us
are comfortable with. Multiple reasons for the gap have
been advanced, including a shift in National Institutes
of Health research grants to PhDs rather than MDs,
the increasingly complex barriers to FDA approval,
the cost escalation of large clinical trials, the increas-
ing dependence on for-profit corporate involvement,
and the realization that many diseases are etiologically
heterogeneous [2–4].

Another possible cause has received much less atten-
tion but may be much more important. In 2002, the
National Dialogue on Cancer, convened to under-
stand why the “war on cancer” was falling short
of expectations, concluded that of the ten most
important roadblocks to finding cures for cancer,
the single most critical one was inadequate avail-
ability of “high-quality, highly characterized human
tissues for translational research” (Carolyn Comp-
ton, Former Director, NCI Office of Biorepositories
and Biospecimen Research). As a result, in 2003 the
NCI published the National Biospecimen Network
Blueprint and in 2005 formed the Office of Bioreposi-
tories and Biospecimen Research (OBBR) to stimulate
and coordinate the development of tissue resources and
capabilities. The need for better access to high quality
tissue has been widely cited by other groups, including
the NIH Blueprint for Neuroscience Research [5], the
Genomics and Personalized Medicine Act of 2007, the

Department of Health and Human Services’ “Person-
alized Health Care Report” (2007), and the President’s
Council of Advisors on Science and Technology: Pri-
orities for Personalized Medicine (2008).

This article presents the viewpoint that the stalemate
in AD translational research may be at least par-
tially attributable to a relative decline in human brain
tissue-based research, not only due to poor availabil-
ity of suitable tissue but also to funding declines and
reduced publications emanating from human tissue-
based research. Current FDA-approved therapies for
AD are still largely restricted to cholinergic replace-
ment, an approach that was suggested by human brain
tissue studies in the 1970 s [6–9]. The only other
approach, directed at blocking glutamatergic excito-
toxicity (memantine/Namenda), was approved by the
FDA in 2003 but the first description of excitotoxic-
ity had been in 1957 [10] and its application to AD
was first envisioned in the early 1980 s. Thirty years of
ensuing research has really produced no new effective
agents.

DECLINE IN FUNDING AND
PUBLICATIONS USING HUMAN BRAIN
TISSUE

We investigated whether or not there has
been a decline in both the number of funded
AD research projects and the number of AD
publications that utilize human brain tissue. A
search of the NIH RePORTER website database
(http://projectreporter.nih.gov/reporter.cfm) was
performed using “Alzheimer’s” as a key word within
the text of project titles, abstracts, and terms. The
total number of awards was recorded and all awards
with an abstract were examined to determine the
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Fig. 1. Percentage of NIH awards for AD research that used human brain tissue (A) and total number of NIH awards for AD research
(B) between 1994 and 2010.
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Fig. 2. Percentage of PubMed-listed AD publications that used human brain tissue (A) and total number of AD publications (B) between 1994
and 2010.

proportion that used human brain tissue. For years
with more than 100 projects with abstracts, only the
first 100 abstracts were examined to determine the
proportion. Searches were done every two years over
a time period extending from 1994 through 2010 and
results are shown in Fig. 1. Over this time period, the
proportion of awards that used human brain tissue
peaked at 47% in 1996 and then steadily declined to
only 5% in 2010 (Fig. 1a). As the total number of AD
awards also declined (Fig. 1b), over time the absolute
number of awards that have used human brain tissue
has been considerably reduced.

The US National Library of Medicine was then
searched for AD publications using their PubMed
website (http://www.ncbi.nlm.nih.gov/pubmed). The
percentage of publications that used human brain tis-
sue was estimated by reading abstracts from the first
100 articles listed for each year. The only search term
used other than year was “Alzheimer’s”. Only articles
with an abstract were included and review articles were
excluded. As for funding awards, searches were done
over a time period extending from 1994 through 2010.
The results, shown in Fig. 2, indicate that the percent-
age of AD publications that used human brain tissue in
2010 had dropped to one-quarter of what it was in 1994
(Fig. 2a) while in the same time period the total num-
ber of AD publications more than tripled (Fig. 2b). The
estimated absolute number of AD publications using
human brain tissue remained static, with 492 in 1994
and 443 in 2010.

WHAT IS THE EVIDENCE THAT HUMAN
BRAIN TISSUE-BASED RESEARCH IS
IMPORTANT?

Although it appears that human brain tissue-based
AD research funding and publications have declined,
how do we know that this has had any impact on AD

translational research? We have pointed out that the
major FDA-approved agents for the defining symp-
toms of AD (cognitive loss) act to replace the cortical
cholinergic deficit that was discovered through direct
examination of AD and control brains [7–9]. The only
non-cholinergic FDA-approved agent, memantine, can
be considered to have had contributing origins from
animal, cell culture, and human studies. The animal
studies, dating from 1951 [11, 12], demonstrated the
neurotoxicity of glutamate and molecular analogues.
The term “excitotoxicity” was coined by Olney in 1974
[10]. The idea of using excitotoxic animal models to
model AD appears to have first been mentioned in
the early 1980 s [13]. The first PubMed linkage of
AD to glutamate and NMDA receptors was in 1986
when Geddes and Cotman described the localization
of NMDA receptors to AD-susceptible hippocampal
sectors [14, 15]. A 1985 cell culture study, meanwhile,
had used glutamate to induce paired helical filaments
[16].

What, however, has been the contribution of
human brain tissue studies to approaches developed
in subsequent years? We searched the NIH website
(http://www.clinicaltrials.gov), for agents registered
for AD clinical trials (Table 1). The therapeu-
tic approaches have been loosely grouped into
anti-amyloid, anti-tau, neurotransmitter modulation,
anti-aging, vascular, and anti-inflammatory. Agents
without a clear molecular mechanism are not listed.
For each approach we searched the literature to deter-
mine whether the origin could be attributed to studies
of human brain tissue, cell culture models, animal mod-
els, human molecular genetics, or epidemiology.

The most obvious approach to AD therapy has been
to prevent or remove plaques and tangles. These were
first linked to the clinical entity of AD by Alzheimer
in 1906 [17] but a molecular strategy was not possible
until Glenner and Wong isolated amyloid-� peptide

http://www.ncbi.nlm.nih.gov/pubmed
http://www.clinicaltrials.gov
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Table 1
Agents listed by the NIH website, http://www.clinicaltrials.gov, as
registered for AD clinical trials. Agents are grouped into approaches
by molecular mechanism. A literature search was done for each
approach to determine whether the origin could be attributed to stud-
ies of human brain tissue (HBT), cell culture models (CLCT), animal
models (ANML), human molecular genetics (HMG) or epidemiol-
ogy (EPID). Dates of first conception and important original articles

or reviews are listed

Approach or
mechanism

Agents Discovery method
year and
references

PLAQUES AND
TANGLES

Anti-amyloid HBT 1984
[18–20]

ACC-001
Immunotherapy Affitope AD01

Affitope AD02
AN1792
Bapineuzimab
CAD106
Gammagard (IVIg)
MABT5102A
Ponezumab
Solanezumab
B11B037
AAB003

Gamma-secretase
inhibitors

Besipirdine
(BMS-708163)

LY450139
(Semagacestat)

Alpha-secretase
stimulation

EHT 0202 (Etazolate)

Epigallocatechin-Gallate
Acitretin

Anti-amyloid, other Alzhemed (tramiprosate)
Cerebrolysin
Clioquinil
Curcumin
ELN-D005

(scyllo-inositol)
Flurizan
Huperzine A
PBT-2
resveratrol
Rosiglitazone
Minocylcine
Zinc-cysteine

Anti-tau HBT 1986
Inhibition of tau

phosphorylation
nicotinamide

lithium
TRX-0014

NEUROTRANSMITTERS
Acetylcholine HBT 1976 [6–9]
Anti-cholinesterases donepezil (Aricept)

Dimebon
Eptastigmine
Rivastigmine (Exelon)
galantamine (Reminyl)
Huperzine A
Metrifonate
Phenserine

Table 1
(Continued)

Approach or
mechanism

Agents Discovery method
year and
references

physostigmine
propentophylline
Tacrine (Cognex)
ZT-1

Muscarinic receptor
agonists

xanomeline

AF 102B
AF 267B

Nicotinic receptor
agonists

AZD1446, TC-1734

EVP-6124
RO5313534
TC5619-238
MEM3454
AZD3480

Nerve growth factor CERE-110
Huperzine A
PRX-03140
NGF NSG0202

Cholinergic, other MKC-231
Nefiracetam
Tesofensine
PRX-03140
ST101

Glutamate
NMDA receptor

antagonist
memantine (Namenda) ANML 1951 [11]

CLCT 1985 [16]
HBT 1986 [14,

15]
CX516 (Ampalex)

GABAA receptor
ligands

Suritozole HBT 1980 s [28]

CLCT 1997 [29]
ANML 2003 [30]

SG3742
Histamine
HT3 receptor ligands GSK 239512 CLCT 1988 [31]

Dimebon HBT 1998 [165,
166]

ANML 1996 [33,
34]

ANTI-AGING Extant aging
literature

Sex hormone
replacement

Female hormone
replacement

estrogen (Premarin)

Estrogen/progesterone
Raloxifene

Male hormone
replacement

testosterone

Luteinizing hormone
modulation

Leuprolide

Anti-oxidants Alpha-tocopherol Extant aging
literature

Curcumin HBT [35]
Melatonin
resveratrol
Vitamin C
lutein

http://www.clinicaltrials.gov
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Table 1
(Continued)

Approach or
mechanism

Agents Discovery method
year and references

RAGE inhibitors PF-04494700 HBT CLCT ANML
1996 [167]

VASCULAR HBT 1906 [17]
HBT 1991 [38]
HMG 1993 [39, 40]
EPID 1990 s [49, 168]

Cholesterol-lowering
agents

Atorvastatin (Lipitor)

Lovastatin
Pravastatin
Choline
Clofibric acid
Gemfibrozil
Niacin
Pitastatin

Anti-hypertensive
agents

carvedilol

Platelet aggregation
inhibitors

Cilostazol

Resveratrol
Arteriolar

vasodilatation
NCT01439555

Phosphodiesterase
inhibitor type IV

Cilostazol
Omega 3 fatty acids Docosahexanoic acid
Anti-diabetic Rosiglitazone

Insulin
Oral hypoglycemics
IGF-1
Exenatide

Glucose/energy AC-1204
Acetyl-l-carnitine
Rosiglitazone
Ketasyn

ANTI-
INFLAMMATORY

HBT 1987 [51, 52]

Dapsone
Etanercept
Ibuprofen
Naproxen
Rofecoxib
Thalidomide
Cyclophosphamide
Minocycline
Doxycyline
Rimampin
Prednisone
Interferon-beta
Interferon-alpha
acetominophen
celecoxib
Cycloxygenase

inhibitors
Cycloxygenase-2

inhibitors
Indomethacin
Lornoxicam
Piroxicam
Reficoxib
resveratrol
Rosiglitazone

from AD and Down syndrome cerebrovascular amy-
loid brain tissue in 1984 [18] and further critical steps
toward solidifying the “amyloid hypothesis” included
working out the entire amino acid sequence, localiz-
ing the gene to chromosome 21, developing antibodies,
identifying causal mutations in early-onset AD fami-
lies, discovering the enzymes responsible for cleavage,
and creating transgenic mice bearing the causative
mutations [19, 20]. The amyloid hypothesis clearly
originated from human brain tissue studies but its sub-
sequent elaboration vividly illustrates how a constant
interchange between human brain tissue studies and
those involving cell and animal culture models as well
as molecular genetics leads to the rapid development
of a seed idea.

The molecular dissection of tangles occurred almost
concurrently with that of amyloid as tau presence
and hyperphosphorylation within tangles was first
described from human brain tissue studies by Grundke-
lqbal in 1986 [21]. As with the amyloid hypothesis,
a synergistic attack using multiple methods quickly
established a critical mass of evidence and raised the
idea that the toxicity of abnormal protein aggregates
might be a common cause of neurodegeneration [22,
23].

Neurotransmitter replacement was the first truly
molecular-based approach to neurodegenerative dis-
ease, beginning with the discovery of the striatal
dopaminergic deficit in Parkinson’s disease brains by
Birkmayer and Hornykiewicz in 1961 [6, 24] and then
the cortical cholinergic deficit in AD by three groups
in the United Kingdom in 1976 [6–9]. Subsequently,
several other neurotransmitters have been scrutinized
for a possible role.

While memantine was developed to block NMDA
receptor-mediated glutamate toxicity, another gluta-
matergic approach has been to positively modulate
AMPA receptors. This has been based on a com-
bination of methods, including cell culture and
hippocampal slice model work done in 1990 that
showed long-term potentiation is induced by AMPA
receptor agonists [25], followed by human brain tissue
research in 1993 and 1994 showing decreased AMPA
receptor subunit density in AD entorhinal area and
neocortex [26, 27].

The prospects for GABA receptor modulation were
originally not compelling as studies of human and
control AD brain in the 1980 s showed only mod-
est loss of GABAergic components [28]. However,
in 1997 studies in hippocampal slices indicated that
GABAA receptor inverse agonists enhance long term
potentiation [29] and in 2003 were shown to increase
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performance of treated mice on the Morris water maze
[30].

Tacrine was shown to increase action potential dura-
tion of in vitro central histaminergic neurons in 1988
[31] and the HT3 autoreceptor was shown to regulate
the release of not only histamine but also acetyl-
choline (ACh), norepinephrine, and dopamine from
presynaptic nerve endings. Initial reports in 1989 on
histamine in AD and control brain were contradictory
but later reports agreed on significant cortical depletion
[32]. In 1996, in vivo microdialysis experiments in rat
brain demonstrated HT3 antagonist-mediated release
of ACh in rat cerebral cortex [33] while rats receiving
intracerebroventricular HT3 antagonist had improved
short-term memory [34].

A number of different approaches have first origi-
nated in their identification with the aging process and
therefore credit for their application to AD therapy
is not really possible to assign as it was natural and
obvious from the extant aging literature to investigate
these as possible causes of AD. These include sex hor-
mone modulation, antioxidants, and RAGE inhibitors.
The latter two of these approaches, however, received
important support from human brain tissue studies [35,
36].

The linkage of AD to atherosclerosis, arteriosclero-
sis, and arteriolosclerosis was already being debated,
based on human brain studies showing their coinci-
dence, by Alzheimer and his contemporaries [17, 37],
and the debate continues but has nonetheless resulted
in several agents being given clinical trials. A series
of negative clinicopathological studies in the middle
of the twentieth century stifled this approach but the
discovery in the early 1990 s of the association of the
apolipoprotein E ε4 genotype with AD, followed by
epidemiological identification of vascular AD risk fac-
tors, brought it sharply back into prominence. Human
brain tissue studies can be awarded precedence in
developing the apolipoprotein E ε4 connection with
AD, with two publications in 1991. Diedrich and col-
leagues used differential screening of cDNA libraries
from diseased and normal brains to show increased
ApoE expression in AD and scrapie while in Japan,
Namba and colleagues showed that ApoE is bound to
amyloid plaques in both AD and kuru brains. Sub-
sequently, Sparks and colleagues showed increased
coronary artery stenosis in middle-aged subjects with
brain amyloid plaques [38] and Roses and colleagues
reported increased prevalence of the ε4 allele in famil-
ial and sporadic AD [39, 40]. This was followed up by
multiple epidemiological studies reporting that many
of the risk factors for cardiovascular disease were also

risk factors for AD [41–50]. Several approaches to
AD therapy, including the use of cholesterol-lowering
drugs, anti-hypertensive agents, platelet aggregation
inhibitors, anti-diabetic agents, arteriolar vasodilators,
and glucose/metabolic agents can be logically traced
to this resurgence of the vascular hypothesis.

The only other major approach not yet discussed
is the inflammatory hypothesis. Although phagocytic
glial cells had been known since Alzheimer’s time to
be situated near senile plaque amyloid cores, the viru-
lence of the microglial reaction to amyloid plaques, as
demonstrated with new immunohistochemical meth-
ods by McGeer and colleagues in 1987 [51] was a
startling revelation. Subsequently, localization of many
components of the immune response to AD brain tis-
sue solidified the findings [52, 53] and led quickly to
the first clinical trial of an anti-inflammatory agent [54]
while epidemiological and molecular genetic associa-
tions have continued to come in [55, 56].

This brief review of the origins of experimental ther-
apeutic approaches to AD undoubtedly has not given
adequate credit to all the contributors but it is evident
that human brain tissue-based research has played a
central and often initiating role. It is hard to avoid the
conclusion that the stagnation of such work over the
last 20 years has imposed limitations on the generation
of new ideas and new targets.

DETRIMENTAL EFFECTS OF THE
DECISION NOT TO USE BRAIN
TISSUE-BASED DIAGNOSIS FOR AD

It has been more than four decades since a consen-
sus developed not to use cortical biopsy to diagnose
AD [57]. This may be one of the most significant
factors responsible for the failure to develop new ther-
apeutics. Clinical trials must utilize sufficient numbers
of subjects so that the possibility of a false negative
or false positive result is minimized. Estimating the
appropriate minimal subject number requires an initial
assessment of the effect size of the medication and this
is usually done with pilot studies (e.g., Phase II trials)
where a relatively small number of subjects clinically
diagnosed with AD receive the agent to be tested. For
AD, the effect of the treatment on a measure of cog-
nition, usually the Alzheimer’s Disease Assessment
Scale-cognitive subscale is used. Recently, biomarker
and imaging measures have been proposed as surrogate
measures. Regardless of the specific measure of treat-
ment effect, analysis of the pilot data for treated and
placebo groups gives an estimate of the medication’s
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effect size, most simply represented by the percentage
of subjects that had a statistically or clinically signifi-
cant response. The effect size then is used to calculate
the minimal trial subject number needed to minimize
both false positive and false negative results. A major
problem for AD clinical trials has been that effect sizes
are often low and therefore very large numbers of sub-
jects are needed, making the trials very expensive and
risky. Consequently, many Phase II trials do not pro-
ceed to definitive Phase III trials because of small effect
size; small effect size is the most common reason for
Phase II trial failures across medical fields [58].

Effect size in AD trials is very probably lower than
it might be due to inclusion of subjects whose demen-
tia is not due to AD. According to a recent study of
data from all National Institute on Aging AD Centers
[59], the sensitivity of the clinical diagnosis of AD,
as compared to new consensus autopsy criteria [60],
may be about 80%. If a similar level of accuracy exists
for subject selection for AD clinical trials, then 20%
of subjects entered into trials may not have AD but
another dementing disorder. If the agent being tested
in the pilot study is effective only in patients with AD,
then there will be a 20% reduction in effect size, com-
pared to what it would be if all the pilot study subjects
really had AD. The consequences of this for the calcu-
lation of subject number for the definitive trial depend
on the overall effect size achieved by the test agent in
the pilot trial. For effect sizes over 50%, a 20% diagnos-
tic error does not change the required subject number
much, but if the effect size is lower than 50%, the 20%
diagnostic error may double or even triple the required
subject number, greatly increasing the cost of the trial.
The significance of this may be appreciated by know-
ing that acetylcholinesterase inhibitors, which are the
most commonly-used AD therapeutic agents, all have
effect sizes that are much less than 50% [61–63].

Using cortical biopsy to more accurately select sub-
jects for clinical trials could, for agents with selective
benefit for AD, increase the effect size, reduce the num-
ber of subjects needed for a definitive clinical trial and
therefore increase the number of agents chosen to go
on to Phase III trials. Why then, have cortical biop-
sies not been used? The rationale has been that the
risks outweigh the benefits as disease-modifying treat-
ments for AD have not been available and most elderly
subjects with idiopathic dementia will be treated for
presumptive AD anyway [57]. The usage of cortical
biopsy for clinical trial selection, however, provides a
benefit that has not previously been considered, while
serious complications are rare and could potentially
be reduced by using needle biopsy rather than open

brain biopsy [64, 65]. When faced, decades ago, with
a similar predicament at a time when glioblastoma and
other brain tumors had no effective treatment, neuro-
surgeons and oncologists readily accepted that a biopsy
diagnosis was essential to guide clinical trials.

Furthermore, oncologists have become aware of
disease heterogeneity that further reduces the effect
size of medications. This heterogeneity, originating
in molecular diversity within a given histologically-
defined tumor type, means that not everyone with the
same initial biopsy diagnosis responds the same way
to a given agent, and, due to tumor cell genetic evolu-
tion, even the same patient’s response may vary over
time. Molecular and genetic diversity within what used
to be thought of as homogeneous diseases has given
rise to the concept of “personalized medicine” and
the need to know not only the histological diagno-
sis but also the molecular tissue changes that might
cause one patient to be drug-sensitive and another
drug-resistant [66]. Identifying these changes requires
diseased tissue. While AD and cancer are very different
diseases, there has been an increasing realization, from
many human brain tissue-based studies, that AD is also
pathologically heterogeneous. Aside from having dif-
ferent stages dependent on topographical spread of the
signature plaques and tangles or the severity of amy-
loid angiopathy [67, 68], there are also several subtypes
including AD with Lewy bodies, itself subdivided into
neocortical and amgydala-predominant forms [69, 70],
AD with vascular lesions, with different lesion types
including large infarcts, lacunar infarcts, microscopic
infarcts, and leukoencephalopathy [71–74], AD with
TDP-43 positive protein aggregates [75], AD with hip-
pocampal sclerosis [76–78], and AD with argyrophilic
grains [79–82]. Additionally, AD may co-exist with
progressive supranuclear palsy and other neurodegen-
erative conditions. If patients at different amyloid or
tangle stages of AD or with different AD subtypes dif-
fer in their responses to a test medication, then the
effect size in clinical trials would be further reduced.
It would be extremely useful to be able to subtype
AD trial patients with cortical biopsy as a trial that
initially was thought to be completely negative might
be found, on closer examination, to have had a sig-
nificant benefit for an identifiable patient subset. A
recent study has demonstrated the capability of cortical
biopsy to identify AD with cortical Lewy bodies and
AD with TDP-43 positive pathology [83] and cortical
biopsy with assessment for amyloid-� and phosphory-
lated tau has been shown to predict the probability of
later progression to dementia [84]. A cortical biopsy
could also demonstrate the density and morphological
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types of plaques and whether tangles have spread into
the cortex or are still confined to limbic areas, features
which are likely to affect treatment response. Recent
biomarker approaches to diagnosing AD more accu-
rately [85–87] are a considerable improvement over
previous clinical methods confined to functional and
neuropsychological assessment, but will undoubtedly
still lack sensitivity and specificity compared to biopsy
and will be largely unable to detect AD pathological
heterogeneity. Correlation of these biomarker methods
with human brain tissue, autopsy [88–91], and biopsy
findings [92] have already been used to a limited degree
but more of these studies are critically needed.

WHAT CAN BE DONE TO STIMULATE
HUMAN BRAIN TISSUE-BASED
RESEARCH?

What is the cause of the marked reduction in AD
research using human brain tissue? We postulated two
reasons: 1) declining availability of suitable human
brain tissue, and 2) declining success rate, relative to all
proposals, of research proposals that use human brain
tissue. We did not have access to data on the second of
these factors so we examined the first.

We attempted to determine whether the number of
functional brain banks and available human brain tis-
sue has declined over the past 20 years. A PubMed
search revealed two papers published in 1991 and
1994 that give a baseline for what was available at
that time [93–95]. At the time of the survey pub-
lished in 1995, 69 brain banks were listed for the
US, Europe, and Canada, collectively holding more
than 45,000 brains. A detailed breakdown of diag-
noses was not given but 69 banks held AD brains and
57 held control brains. Thirty-nine banks kept frozen
tissue (fixed tissue is generally universally available)
while 10 did not and 18 did not have that infor-
mation available. Unfortunately there were no such
comprehensive surveys listed by PubMed after this
last 1995 article. We therefore used an open inter-
net search for brain banks to compile a contemporary
listing of brain banks with AD and control tissue.
BrainNet Europe is a consortium of 19 separate brain
banks (http://www.brainnet-europe.org/). Their web-
site lists many brain banks from around the world,
of which 83 or more appear to have AD and control
brain tissue. The International Brain Banking Network
(IBBN) website (http://www.intbbn.org/registry-of-
brain-banks.aspx) lists 87 brain banks that appear to
have AD and control brain tissue; these are composed

mainly of 51 US and 24 European brain banks. A list-
ing of the number of brains banked is not given but
as many of these banks are the same as those listed
in the 1995 survey, it is reasonable to conclude that
many thousands of AD and control brains must be
available for research. Therefore it does not seem that
there should be a lack of AD brain tissue, however,
various sources suggest that there is a critical shortage
of normal control brain tissue [96–128].

Although 45,000 brains would seem enough for
an almost infinite amount of AD research, again the
recent experience of the NCI with tissue procural is
instructive. In 2005 the NCI announced a new initia-
tive, the Cancer Genome Atlas, to catalogue all the
genetic mutations associated with cancer. The pilot
project would aim to do this for three types of can-
cer, glioblastoma, serous ovarian cancer, and squamous
cell lung carcinoma. For all of these, the original plan
was to sequence 1,500 samples, which were to be
derived from dozens of tissue banks. Preliminary esti-
mates from the tissue banks had indicated that each
could provide at least 500 samples. Once collection
was underway, however, the great majority of samples
were found to be unsuitable, due to inadequate con-
sent, not enough tissue, inadequate tissue quality, and
other reasons. One bank had claimed to have more
than 12,000 samples of glioblastoma but in the end
only 18 of these were suitable. Eventually, barely 500
samples were obtained for the ovarian cancer, not even
500 for glioblastoma, and collection efforts for lung
cancer were suspended due to the huge efforts involved
with obtaining the samples (Carolyn Compton, Former
Director, NCI Office of Biorepositories and Biospec-
imen Research). Until such a massive quality-control
assessment is done on AD and control brain tissue, we
will not really know how many of those held in tis-
sue banks are suitable for modern molecular studies.
A major difference between tissue banking for can-
cer and tissue banking for AD is that cancer tissue
banking is almost entirely done from biopsies whereas
AD tissue banking is almost entirely done from autop-
sies. While autopsy offers the ability to obtain large
amounts of tissue, it also brings with it many confound-
ing factors including the tendency for gradual changes
in the final months of life due to chronic illness,
more radical physiological alterations associated with
the agonal period immediately preceding death, and
deterioration associated with the postmortem interval
(PMI). Although studies do not all agree, it appears that
RNA integrity and measures of gene expression both
decline with increasing PMI, although with substan-
tial variability between individual transcripts [120].

http://www.brainnet-europe.org/
http://www.intbbn.org/registry-of-brain-banks.aspx


T.G. Beach / AD and the “Valley of Death” S227

Susceptible transcripts include some that are of interest
to neurodegenerative research, including synapto-
physin [121], hsp-70 [127], ADAM9, LPL, PRKCG,
SERPINA3 [129], and alpha-synuclein [130]. Addi-
tionally, RNA integrity may be lost with repeated
cycles of freezing and thawing [131, 132], a problem
common to all tissue banking. As a result of these
issues, inadequate RNA integrity may substantially
reduce the number of banked brains that are suitable
for gene expression research. Some programs have
reported that only one-third to one-half of cases have
RNA suitable for molecular research methods [133].
Moreover, it is apparent that deterioration of molec-
ular entities after death varies widely depending on
what is being measured. Highly volatile energy storage
molecules such as ATP disappear within minutes [134,
135] and catecholamines drop precipitously within
the first few hours [136]. Some intensely-studied pro-
teins are reported to show degradation within the
first 4–8 hours of death, including �-synuclein and
sarkosyl-insoluble tau [137]. The postmortem integrity
of post-translational protein modifications is largely
unknown, although it has been reported that tau pro-
tein is dephosphorylated within 30 minutes after death
[138, 139]. The advent of “metabolomics”, offering
the comprehensive study of small molecules, may be
severely hampered by long PMI and/or agonal tissue
deterioration. Rapid autopsy programs, currently very
few in number [138, 139], may need to become much
more commonplace.

Although we have no data on the success rate of
NIH grant proposals that are primarily human tissue-
based, anecdotal experience suggests that these are
often rejected on grounds that they are “descriptive
only”, “are not hypothesis-driven”, and any conclu-
sions are “not testable”. The need for a continual
back-and-forth between human tissue and experimen-
tal models seems not to be appreciated as it was in the
not-too-distant past. The evidence put forth here docu-
ments the major role that human tissue-based research
has had in discovering new targets as well as in vali-
dating targets identified with other modalities. Perhaps
there should be an NIH study section devoted to human
tissue-based research and/or a specific subset of the
NIH budget set aside for this.

THE FUTURE OF HUMAN BRAIN
TISSUE-BASED AD RESEARCH

Despite the handicaps limiting human brain tissue-
based research its future is bright, in part because of

the legacy of its past. The linkage of ubiquitin to tan-
gles and plaques [140, 141], Lewy bodies [142, 143],
and frontotemporal lobar degeneration (FTLD) [144,
145] in the 1980 s and 1990 s was instrumental in
leading to the more recent discovery of FTLD and/or
motor neuron disease-associated mutations in progran-
ulin [146, 147], CHMP2B [148], FUS [149], TDP-43
[150, 151], UBQLN2 [152], and C9ORF72 [153, 154]
genes. The discovery of the abnormal phosphoryla-
tion of tau [21] has been repeated with �-synuclein
[155] and then TDP-43 [156]. The value of “deep phe-
notyping” through neuropathological study has been
appreciated by molecular geneticists, who have found
that an accurate diagnosis of AD can greatly reduce the
number of subjects needed for whole genome associa-
tion studies, and such studies have already contributed
handfuls of new targets at a time [157, 157–160].
Additionally, autopsy-referenced molecular genetic
dissection of other neurodegenerative diseases have
provided important comparisons [147, 161, 162]. Post-
genomics studies, including those involving epigenetic
factors, microRNA, transcriptomics, proteomics, and
metabolomics, will all depend even more heavily on
human brain tissue. It is essential that brain banks
receive enhanced governmental or private support, or
exploit user-pay systems more heavily. Once again,
we may look to cancer research to lead the way, as the
NCI has called for an increased understanding of tis-
sue banking economics [163, 164] to help realize their
potential.
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