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Abstract. Amyloid oligomers have emerged as the most toxic species of amyloid-� (A�). This hypothesis might explain the
lack of correlation between amyloid plaques and memory impairment or cellular dysfunction. However, despite the numerous
published research articles supporting the critical role A� oligomers in synaptic dysfunction and cell death, the exact definition
and mechanism of amyloid oligomers formation and toxicity still elusive. Here we review the evidence supporting the many
molecular mechanisms proposed for amyloid oligomers toxicity and suggest that the complexity and dynamic nature of amyloid
oligomers may be responsible for the discrepancy among these mechanisms and the proposed cellular targets for amyloid
oligomers.
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INTRODUCTION

The aggregation and accumulation of amyloid-�
(A�) plays a significant role in the pathogenesis of
Alzheimer’s disease (AD). A� oligomeric aggregates
are believed to be the main toxic species and the
causative agent underlying the pathological mecha-
nism for AD, aggregating and accumulating within
and around neurons. Excised from the amyloid-�
protein precursor (A�PP) by �- and �-secretases,
the A� peptide has the intrinsic property of form-
ing aggregates with �-pleated sheet structure [1]. The
amyloid hypothesis has undergone several modifi-
cations, mainly concerning the type of A� thought
to cause AD: initially this was the amyloid plaque,
followed by increased concentrations of A�42, then
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increased A�42 : A�40 ratio, and finally oligomeric
A� [2]. Results from clinical trials have shown that
removing plaques will not reverse the damage or stop
AD [3, 4]. Recent evidence suggests that this tox-
icity may be linked to the aggregation state of the
peptide, implicating oligomers, rather than insoluble
fibrils, as the primary toxic species [5, 6]. While both
are found in the brains of postmortem AD patients, sol-
uble A� oligomers are better correlated with disease
severity than are the classic amyloid plaques contain-
ing insoluble A� fibrillar deposits [7–9]. Furthermore,
oligomers are found both extracellularly and intracel-
lularly, and are capable of moving between the interior
of the cell and the extracellular space [10, 11]. How-
ever, A� oligomer structure, size, conformation, and
interrelationships with other amyloid aggregates, as
well as the exact mechanism of A� oligomer-induced
neurotoxicity, remain elusive [12–14]. Monomeric A�
undergoes conformation transitions and proceeds to
form low molecular oligomers (dimer/trimer), and then
soluble high molecular aggregates and progress to form
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spherical oligomers which are composed of 12 to 24
monomers, which prolong to protofibrils and finally
become insoluble fibrils [15]. These various structures
differ not only in aggregation state, but also in their
toxic effects. Recently, many have reported that fibrils,
which were once thought to exhibit the highest levels of
toxicity, are actually second in toxicity to intermediate
aggregates of A� (spherical oligomers and protofibrils)
[14, 16, 17].

Our studies demonstrated the presence of a variety
of A� oligomer conformations [15]. The different con-
formations can be produced by several pathways and
simple manipulation of conditions in which A� aggre-
gates, and underlines the complexity of the mechanism
of oligomer formation [15, 16, 18–23]. Moreover, sev-
eral studies suggest that oligomeric species differ not
only in mechanism of formation, but also in mechanism
of toxicity [24–26].

RECEPTOR-MEDIATED A� OLIGOMER
NEUROTOXICITY

Extracellular A� oligomers bind the cell surface,
leading to functional disruption of a number of
receptors, including the N-methyl-D-aspartate recep-
tor (NMDAR) [27] and others (Fig. 1A), resulting in
synaptic dysfunction and neurodegeneration. A num-
ber of possible mechanisms and targets are under
investigation, including the abnormal activation of sig-
naling pathways.

Recently, Yamamoto et al. [28] suggested that
A� oligomers induce nerve growth factor (NGF)
receptor-mediated neuronal death. NGF can induce
cell death through the p75 neurotrophin receptor
(p75NTR), a member of the tumor necrosis factor
receptor superfamily [29]. A previous report supports
this concept, demonstrating that A�-derived diffusible
ligands (ADDLs) potently alter NGF-mediated signal-
ing in cultured cells [30]. Moreover, several studies
suggested that A� toxicity is produced through the
association with p75NTR [31–37]. Specifically, A�
toxicity mediated by p75NTR depends on a death
domain [38] in the cytoplasmic part of p75NTR
molecules [37]. However, it has also been demon-
strated that p75NTR promotes the survival and
differentiation of vertebrate neurons, indicating that
p75NTR might have diverse functions in both cell
death and cell survival [39]. It should be noted that
conflicting evidence also exists regarding the role of
p75NTR against the toxicity of A� oligomers. Costan-
tini and colleagues showed that soluble oligomers of

A� exert cytotoxic activity independent of p75NTR
and that the expression of p75NTR exerts a protec-
tive role against the toxic activity of soluble oligomers.
The authors also concluded that this role is due to an
active function of the juxtamembrane sequence of the
cytoplasmic region of p75NTR and that the protective
function is mediated by phosphatidylinositide 3-kinase
(PI3K) activity [37]. In another study, it was observed
that low levels of extracellular A� increase the lev-
els of p75NTR in primary cultures of human neurons.
Unexpectedly, it was found that p75NTR protects
primary human neurons against A�-induced toxicity
[40]. These opposite conclusions imply that the sig-
naling pathways of p75NTR are complicated and that
the functions of p75NTR vary depending on several
factors.

Other reports on neuronal receptor-mediated
toxicity mechanisms have shown that A� disturbs
NMDAR-dependent long-term potentiation induction
in vivo and in vitro. Furthermore, these studies suggest
that A� specifically interferes with several major sig-
naling pathways downstream of NMDAR, including
the Ca2+-dependent protein phosphatase calcineurin,
Ca2+/calmodulin-dependent protein kinase II
(CaMKII), protein phosphatase 1, and cAMP response
element-binding protein (CREB) (reviewed in [41]).
In another study of downstream NMDAR effectors,
Zhao et al. determined that low molecular weight
oligomeric A� could also inhibit CaMKII and thereby
disrupt the dynamic balance in place between protein
kinase and phosphatase, presumed to be critical during
synaptic plasticity [42]. In another study, it was found
that ADDLs stimulated excessive formation of reactive
oxygen species (ROS) through a mechanism requiring
NMDAR activation. ADDL binding to neurons was
reduced and ROS formation was completely blocked
by an antibody to the extracellular domain of the NR1
subunit of NMDARs [43]. The authors showed that
the mechanism of ADDL-stimulated ROS formation
requires ADDL targeting and activation of NMDARs,
leading to a rapid increase in neuronal calcium
levels. Taken together, these observations suggest that
dysregulation of NMDAR function induced by ADDL
binding to neuronal synapses may lead to synap-
tic mitochondrial dysfunction and excessive ROS
formation.

Shankar and coworkers found that A� oligomers
decrease spine density through a pathway that requires
NMDA-type glutamate receptors (NMDARs), cal-
cineurin, and cofilin. These results suggest that
A� oligomers mimic a state of partial NMDAR
blockade, by reducing NMDAR activation, reducing
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Fig. 1. A) A� oligomer neurotoxicity can be mediated through their ability to bind multiple receptors leading to the activation of various
signaling pathways. Two possibilities may explain the lack of receptor specificity: 1) A� oligomers are indeed “sticky” as have been reported
having a detergent-like quality, making it easier for them to be promiscuous in their interactions; and 2) oligomers are heterogeneous as indicated
by colors and each oligomeric species has high affinity to a specific receptor or membrane protein. B) A� oligomers insertion in the membrane
and the subsequent formation of ion channels or pores lead to neurodegenerative processes. C) The intracellular accumulation of A� oligomers
and other aggregates cause many key pathological events of AD, including proteasome impairment, mitochondrial dysfunction, disturbance of
autophagy, the production of reactive oxygen species, lipid peroxidation, disruption of lysosomal membrane, and breakdown of many cellular
processes.

NMDAR-dependent calcium influx, or enhancing
NMDAR-dependent activation of calcineurin [44].
It has also been shown that signal transduction by
neuronal insulin receptors (IRs) is strikingly sensitive
to disruption by soluble A� oligomers. In a recent
study, it was found that ADDLs caused a rapid and
substantial loss of neuronal surface IRs specifically on
dendrites bound by ADDLs. Removal of dendritic IRs
was associated with increased receptor immunoreac-
tivity in the cell body, indicating redistribution of the
receptors [45]. The results presented by the authors
identify novel factors that affect neuronal IR signaling

and suggest that insulin resistance in AD brain is a
response to ADDLs, which disrupt insulin signaling.
Townsend and colleagues found that soluble A�
binds to IR and interferes with its insulin-induced
autophosphorylation. Taken together, these data
demonstrate that physiologically relevant levels of
naturally secreted A� interfere with IR function and
prevent the rapid activation of specific kinases required
for long-term potentiation [46]. De Felice et al. also
suggest that ADDLs caused major downregulation of
plasma membrane IRs, via a mechanism sensitive to
CaMKII and casein kinase II inhibition [47].
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Magdesian et al. showed that A� oligomers bind
to the Frizzled (Fz) cysteine-rich domain at or in
close proximity to the Wnt-binding site and inhibit
the canonical Wnt signaling pathway [48]. Wnts are
secreted glycoproteins that bind to and signal through
Fz receptors and mediate cell-cell communication
[49]. Wnt signaling regulates a variety of critical
biological processes, including development, cell
movement, cell polarity, axon guidance, and synapse
formation [50]. Magdesian and colleagues concluded
that A� oligomers bind to Fz receptors, producing
the inhibition of Wnt signaling, which causes tau
phosphorylation and neurofibrillary tangles; that
suggests a Wnt/�-catenin toxicity pathway [48].

A recent study by Lauren et al. [51] identifies the cel-
lular prion protein (PrPC) as an A� oligomers-receptor.
The authors demonstrated that PrPC is a mediator of
A� oligomer-induced synaptic dysfunction and that
A� oligomers bind with nanomolar affinity to PrPC,
but the interaction does not require the infectious PrPSc

conformation. The binding of A� oligomers to PrPC

receptor may disrupt the interaction between PrPC and
co-receptor, such as NMDAR. Despite the fact that A�
oligomers have been strongly implicated in neuronal
dysfunction and neurotoxicity in AD, the signal trans-
duction mechanisms involved in the neuronal impact
of A� oligomers remain to be fully elucidated. A major
unknown is the identity of the neuronal receptor(s) that
binds A� oligomers and mediates neuronal dysfunc-
tion. As we described above, several studies postulate
a great number of possible receptors involved in the
toxicity of A� oligomers, but some of these studies
are contradictory. The final identification of a highly
specific receptor(s) for A� oligomers would provide
considerable insight into mechanisms of pathogenesis
and might reveal novel opportunities for the develop-
ment of strategies to combat AD.

CELLULAR MEMBRANE AND A�
OLIGOMERS TOXICITY

The maintenance of plasma membrane integrity is
critical for cell viability, since the membrane controls
the exchange of materials between the cell and its
surrounding environment. An increase in membrane
permeability and intracellular calcium concentration
has long been associated with amyloid pathogenesis,
although questions remain as to the mechanism under-
lying these observations [52, 53]. One explanation
for the molecular mechanism of neurodegeneration
induced by A� specifically is channel formation and

disruption of calcium homeostasis. Arispe and cowork-
ers demonstrated the incorporation of A� peptides into
artificial lipid bilayers to form cation-specific channels
[54, 55]. Furthermore, others reported cytosolic cal-
cium elevations as a result of this channel formation
by A�, but also by other amyloid-forming proteins
[56]; the results of this study strongly suggest that
incorporation of A� into membranes and the subse-
quent pore formation may be the primary events in
A� neurotoxicity. Specifically, the authors suggested
that after being incorporated into the membrane, A�
will change its structure and accumulated A� become
aggregated on the membranes. They also suggested the
possibility that the ratio of cholesterol to phospholipids
in the membrane alters membrane fluidity and there-
fore affects the process. Micro-circumstances on the
membranes, such as the presence of rafts, may influ-
ence this process [56]. These data and other reports
culminated in what came to be known as the “channel
hypothesis”, implicating amyloid peptide channels in
the pathogenic ion dysregulation observed in degener-
ative disease [57, 58]. In this respect, A� may share
this mechanism of toxicity with the similar mecha-
nism underlying the toxicity of various antimicrobial
or antifungal peptides, such as alamethicin, grami-
cidin, magainin 2, and melittin, which also exhibit
channel forming ability and cell toxicity [59]. Once
A� channels are formed on neuronal membranes, the
disruption of calcium and other-ion homeostasis may
promote numerous degenerative processes, including
free radical formation [60] and phosphorylation of
tau [61], thereby accelerating neurodegeneration. The
free radicals also induce membrane disruption, by
which unregulated calcium influx is amplified and a
vicious circle is initiated. We recently demonstrated
the presences of these A� pores in human cases of AD
[62, 63].

In contrast to the amyloid channel hypothesis, recent
data suggest that homogeneous solutions of amyloid
oligomers increase the conductance of artificial lipid
bilayers, but do not exhibit channel-like properties.
Specifically, the conductance changes observed did not
occur in discrete steps; rather, oligomers appeared to
enhance ion mobility across the lipid bilayer indepen-
dently [64]. This increased conductivity was not ion
specific, and thus has the potential to depolarize the
membrane and lead to cellular dysfunction. A growing
body of evidence points to membrane permeabiliza-
tion by amyloid oligomers as a common mechanism of
pathogenesis in amyloid-related degenerative diseases
[13, 19, 64–77]. These studies suggest that membrane
permeabilization caused by amyloid oligomers is due
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to defects in the lipid bilayer, rather than the forma-
tion of discrete proteinaceous pores. In accordance
with this observation, a study by Demuro et al. showed
that amyloid oligomers consistently produce rapid and
dramatic elevations in Ca2+, whereas equivalent con-
centrations of monomers or fibrils do not. The action
of amyloid oligomers appears to involve a channel-
independent disruption of the integrity of both plasma
and intracellular membranes [68]. The authors pro-
pose that amyloid oligomers exert an immediate action
by increasing the permeability of the plasma mem-
brane and subsequently penetrate cells, as proposed
previously [78], where they similarly disrupt intracel-
lular membranes to cause leakage of sequestered Ca2+.
In another study we reported that soluble oligomers
from several types of amyloid specifically increase
lipid bilayer conductance regardless of the sequence,
while fibrils and soluble low molecular weight species
have no effect. The increase in membrane conductance
occurs without any evidence of discrete channel or pore
formation or ion selectivity [64]. The results presented
in this study indicate that soluble oligomers from
many types of amyloidogenic proteins and peptides
increase membrane conductance in a conformation-
specific fashion and suggest that this may represent
the common primary mechanism of pathogenesis in
amyloid-related degenerative diseases. The increase in
membrane conductivity could lead to depolarization
of the plasma membrane, which would be detrimental
to the function of cells and especially so for neu-
ronal function. The membrane conductance increase
we reported can also account for a wide range of
effects, such as defects of cytosolic ion homeostasis
and signaling as a direct consequence of the membrane
conductance increase [79]. Other experiments sug-
gested that amyloid oligomers break down or reduce
the normal dielectric barrier to ion translocation pro-
vided by the hydrocarbon region of the lipid bilayer
[76]. The authors proposed that A� oligomers increase
membrane conductance and permeability to charged
species by spreading apart the lipid head groups and
consequently thinning the bilayer and lowering the per-
meability barrier [80, 81]. More recently, Demuro and
collaborators were able to image the formation of Ca2+
single-channel and pores formed by A� oligomers
using total internal reflection fluorescence microscopy
[82].

The formation of non-specific A� pores or chan-
nels (Fig. 1B) on neuronal membranes in AD
brain cause the disruption of calcium and other-
ion homeostasis may promote numerous degenerative
processes, including free radical formation [60] and

phosphorylation of tau [61], thereby accelerating neu-
rodegeneration and cell death. The free radicals also
induce membrane disruption, by which unregulated
calcium influx is amplified and a vicious circle is ini-
tiated lipid oxidation and other modifications [83, 84].

INTRACELLULAR A� OLIGOMER
TOXICITY

In addition to extracellular A�, there is a large body
of evidence to demonstrate that A� accumulates intra-
cellularly [85–87]. Intraneuronal A� accumulation has
been identified in AD patients, transgenic mice, and
cultured cells [88–94]. Intraneuronal A� accumula-
tion appears prior to extracellular amyloid plaque
formation and results in synaptic dysfunction [88, 93,
95–102]. A key question that remains to be addressed
is whether the intracellular A� builds up because a
portion of the generated A� is not secreted and conse-
quently remains intracellular, or alternatively, whether
secreted A� is taken back up by the cell to form these
intracellular pools [103–106]. It is well known that is
also localized in the trans-Golgi network [107], endo-
plasmic reticulum, and endosomal, lysosomal [108],
and mitochondrial membranes [109]. The liberation of
A� could potentially occur wherever A�PP and the
�- and �-secretases are localized, and it is likely that
this occurs in several cellular compartments. In addi-
tion to A� being produced intracellularly, previously
secreted A� that forms an extracellular A� pool can
be taken up by cells and internalized into intracellu-
lar pools through various receptors and trasnporters. A
recent study showed that, in mice with a toxin-induced
compromise of the blood-brain barrier, fluorescently
labeled A� that is injected into the tail vein can accu-
mulate intracellularly in pyramidal neurons in the
cerebral cortex [110]. The results presented by the
authors provide direct evidence that neurons can take
up extracellular A�, one of mechanisms that has been
proposed is the endocytocis of A� oligomers [111].

It is well known that A� binds to the �7 nicotinic
acetylcholine receptor (�7nAChR) with high affinity,
and that this binding results in receptor internaliza-
tion and accumulation of A� intracellularly [112, 113].
These findings were recently confirmed in a study
using the mouse model 3xTg-AD, where the authors
show a loss of the �7nAChRs restricted to brain regions
that accumulate intraneuronal A� [114]. Recently,
the analyses of a novel animal model A7KO-A�PP,
revealed the significance of �7nAChR in AD and
its protective role for A� oligomers toxicity in early
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stage AD. Analysis in early stage pre-plaque cognitive
decline revealed neurodegeneration in A7KO-A�PP
hippocampus. These changes occurred concomitant
with the appearance of a dodecameric oligomer of A�
that was absent from all other genotypic groups [115].

Several studies have shown that apolipoprotein E
(APOE) receptors, which are members of the low-
density lipoprotein receptor family, modulate A�
production and cellular uptake [116]. LDL receptor-
related protein, which is another member of this family
of receptors, binds to A� directly, or through ligands
such as APOE, and undergoes rapid endocytosis, facil-
itating A� uptake [116]. It is well known that APOE
�4 is the major genetic risk factor for AD, and it is
remarkable that one of its functions appears to be to
directly mediate the accumulation of intracellular A�.
It has been reported that A� is internalized through the
scavenger receptor for advanced glycation end prod-
ucts (RAGE), in neurons and microglia [117–119]. The
binding of A� to RAGE in neurons initiated a cascade
of events that produces oxidative stress and nuclear
factor-� B (NF-�B) activation, which induce the pro-
duction of macrophage colony-stimulating factor [120]
and an enhanced microglial response. Additionally, it
has been shown that RAGE-A� complexes are inter-
nalized and that they co-localize with the lysosomal
pathway in astrocytes in AD patients [119].

The toxicity mechanism of intracellular A�
oligomers remains unclear. Almeida et al. demon-
strated that in A�PP mutant transgenic mice and in
human AD brain, progressive intraneuronal accumula-
tion of A� occurs, especially in multivesicular bodies
(MVBs) [121]. The authors provided evidence that
A� accumulation in neurons inhibits the activities of
the proteasome and deubiquitinating enzymes. These
data suggest a mechanism whereby A� accumula-
tion in neurons impairs the MVB sorting pathway
via the ubiquitin-proteasome system (UPS) in AD.
Indeed, the authors hypothesize that the inhibition
of the UPS by A� impairs the endocytic traffick-
ing of neuronal receptors and thereby may be the
cause of synaptic dysfunction in AD. Furthermore,
several others studies suggest that an inhibition of
the proteasome leads to an increase of A� levels
[122, 123]. Recent studies by LaFerla’s group have
shown proteasome inhibition in the 3xTg-AD mice at
ages at which oligomeric A� accumulation is seen
within neuronal cell bodies [123, 124]. These find-
ings show that oligomeric A� accumulation within
neuronal cell bodies has pathological consequences,
as proteasome impairment led to the build-up of tau
protein. Another study, by Mousnier and colleagues,

reported a possible prefolding-mediated proteasomal
protein-degradation pathway [125]. This suggests that
A� oligomers-prefolding complex could cause protea-
some dysfunction and subsequent cell death.

Accumulation of A� has also been observed in
mitochondria [126]. Progressive accumulation of intra-
cellular A� in mitochondria is related to diminished
enzymatic activity of respiratory chain complexes III
and IV, and a reduced rate of oxygen consumption
[127]. These observations correlated with the multi-
ple mitochondrial defects reported in AD and mouse
models of the disease [128]. A marked disturbance of
autophagy has recently been appreciated in AD [129,
130], adding to evidence for extensive dysfunction of
the lysosomal system in this disease [131]. A� can
accumulate in lysosomes in the AD brain. A� within
the lysosomal compartment destabilizes its membrane
[132], which will lead to the release of A� in the
cytosolic compartment.

The studies described in this section suggested
that the toxicity mechanism of intracellular oligomers
could be different from the one produced by extracel-
lular oligomers (Fig. 1C). However, further studies are
necessary to determine the exact mechanism of toxicity
produced by A� oligomers in AD.

CONCLUSIONS

Based on the studies discussed here and the count-
less targets associated with toxicity of A� oligomers, it
is conceivable that oligomers are not specific and inter-
act with many targets, or it is possible that the toxicity
is associated with the formation process rather than
a specific oligomeric species, this (kinetic model of
toxicity) model [133, 134] demonstrates that A� aggre-
gation and the formation of the fibrils causes toxicity at
low concentrations. Alternatively, we propose that A�
oligomers possess a large number of exchangeable, still
distinct conformational polymorphisms [135], similar
to the structural polymorphisms described for A� fib-
rils [136–139], and that different subgroups of A�
oligomers and fibrils induce neurotoxicity and may
contribute to AD pathology via different mechanisms
[15, 25, 140, 141]. The unique combination of size,
hydrophobicity, and conformation of each oligomeric
species determines both its toxicity and the final aggre-
gation state (Fig. 2). The existence of polymorphisms
in what are now known as oligomers may be anal-
ogous to the polymorphisms that exist within yeast
prions [142, 143]. Identifying these subtle differences
between oligomers both in vitro and in vivo represents
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Fig. 2. Amyloid oligomers have different sizes and possess different conformations, and the structural diversity of A� oligomers shape the
aggregation pathway of each species and determine their toxicity. This may explain the large number of toxic events associated with A�
oligomers.

the next challenge facing the amyloid field and requires
novel methods and reagents.
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