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Abstract. This article presents a new approach for the analysis of biomedical data to support the management and care of
patients with Alzheimer’s disease (AD). The increase in prevalence of neurodegenerative disorders such as AD has led to a need
for objective means to assist clinicians with the analysis and interpretation of complex biomedical data. To this end, we propose
a “Bioprofile” analysis to reveal the pattern of disease in the subject’s biodata. From the Bioprofile, personal “Bioindices” that
indicate how closely a subject’s data resemble the pattern of AD can be derived. We used an unsupervised technique (k-means)
to cluster variables of the ADNI database so that subjects are divisible into those with the Bioprofile of AD and those without it.
Results revealed that there is an “AD pattern” in the biodata of most AD and mild cognitive impairment (MCI) patients and some
controls. This pattern agrees with a recent hypothetical model of AD evolution. We also assessed how the Bioindices changed
with time and we found that the Bioprofile was associated with the risk of progressing from MCI to AD. Hence, the Bioprofile
analysis is a promising methodology that may potentially provide a complementary new way of interpreting biomedical data.
Furthermore, the concept of the Bioprofile could be extended to other neurodegenerative diseases.
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INTRODUCTION

As a result of the rise in life expectancy, the num-
ber of people suffering from long-term conditions is
increasing and this places a huge burden on national
healthcare systems. Thus, there is a need for health-
care provision to evolve in order to meet the challenges
of improved patient management. Interpretation of the
vast amounts of biomedical data that are now becoming
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available to support early detection and monitoring of
disease can be assisted by novel methods of analysis.
In this context, we hypothesize that the healthcare of
subjects with neurodegenerative disorders would bene-
fit from the creation of a “Bioprofile” and “Bioindices”
of disease from the patients’ data.

We define a Bioprofile as an objective ‘fingerprint’
or ‘pattern’ in the data that provides information about
a complex underlying disease that evolves with time.
It represents the pattern of changes that the disease
imposes on the variables. Moreover, an individual’s
data patterns can be compared against the Biopro-
file of the disease. This is reflected by the Bioindex,
a measure of how closely the subject’s data patterns
resemble such Bioprofile of disease. When it is feasi-
ble to acquire periodic measures of clinical variables
for a subject, this information can be used to update
the subject’s Bioindices and, over time, this could pro-
vide an indication of disease progression and response
to treatment. The long-term vision is to create a set
of Bioprofiles for various conditions and different
data modalities so that individual patient data can be
compared against a set of Bioprofiles to provide a
holistic view of his or her health status and aid in
the early detection of disease. This idea is particu-
larly appealing in complex conditions that evolve over
a long period of time [1], such as neurodegenerative
diseases.

Alzheimer’s disease (AD) is the most common neu-
rodegenerative disease [2]. In 2010, there were 35.6
million people with dementia in the world and the num-
ber of patients is expected to double every 20 years
[2]. AD pathology starts years before the first symp-
toms appear, with quality of life already affected by
the time any clinical diagnosis is made [3]. Thus, there
is a need for new objective means to help clinicians
in the analysis of AD-related data, particularly at the
mild cognitive impairment (MCI) stage, to allow tar-
geted interventions and to monitor disease progression
and response to treatment [3].

Several biomarkers have been proposed in a num-
ber of studies [4–15] to overcome the difficulties of
traditional neuropsychological scores in the charac-
terization of AD [16]. In the context of Bioprofile
analysis, biomarkers are relevant neuroimaging or bio-
chemical features with potential information about the
disease. A hypothetical model of biomarker dynam-
ics in AD has recently been introduced [17–20]. This
model may help to contextualize changes using some
common biomarkers of AD as the disease progresses.
For example, it suggests that the level of the 42-amino
acid amyloid-� (A�42) protein becomes abnormal first

[10] and that AD would later result in decreased brain
glucose metabolism [4, 8, 9]. Afterwards, tau protein
levels [10] would alter and AD would also cause brain
atrophy [5–7]. Finally, the biological changes would
lead to cognitive and other impairments which inform
clinical diagnosis [17, 18].

Machine learning provides useful ways of ana-
lyzing data. These techniques can be categorized
into supervised and unsupervised methodologies [21].
Whereas the supervised methods require ground-truth
labels to learn which data patterns correspond to
the predefined classes, the unsupervised techniques
are able to reveal patterns in the data without the
need for ground-truth references [21]. Some studies
have used supervised methodologies to find ‘signa-
tures’ or ‘fingerprints’ that represent AD features in
a number of subjects diagnosed with the disease [10,
22–27], but unsupervised techniques can also be rel-
evant in this setting. Unsupervised machine learning
provides simple and easy-to-interpret algorithms for
data analysis and it offers complementary perspectives
to those of supervised classifiers [21, 28]. Unsuper-
vised machine learning methods are data-driven and
tend to be less subject to over-fitting [21, 28]. Thus,
to develop the Bioprofile of AD, we selected unsu-
pervised machine learning. We hypothesized that it
may be well suited to reveal the pathological pro-
cess of AD that takes place before clinical symptoms
appear [29–31]. Cognitive normal (CN), MCI, and AD
subjects have recently been analyzed with clustering-
related techniques [29–32]. One study assessed if
cerebrospinal fluid (CSF) biomarkers reflect the AD
pathology in the three groups of subjects without
using diagnosis labels [30]. Other authors clustered
a mixed set of data from CN people to reveal that
this is not a completely homogeneous subject group
[29]. In another study, MCI subjects were consid-
ered unlabeled cases and a semi-supervised classifier
was applied to the magnetic resonance imaging (MRI)
data [32]. Hence, unsupervised data-driven processing
based on machine learning may provide useful insights
into AD.

In this article, our goal is to investigate if a Bioprofile
of AD can be revealed from biomedical data and to
present the Bioprofile methodology in tasks related to
the assessment of progression from MCI to AD. This
study, which extends previous preliminary results [31],
makes the following contributions:

1) Introduction of the Bioprofile of AD as a new
way to analyze biomedical data and to study the
disease.
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2) Provision of evidence of the link between the
Bioprofile and a recent hypothetical model of AD
evolution.

3) Illustration of the potential use of the Bioprofile
and Bioindices to assess the risk of developing
AD at the MCI stage.

4) Assessment of the change in the Bioindices with
time for MCI subjects.

MATERIALS AND METHODS

ADNI database

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.ucla.edu/).
The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharma-
ceutical companies, and non-profit organizations, as a
$60 million, 5-year public-private partnership. The pri-
mary goal of ADNI has been to test whether serial MRI,
positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of
MCI and early AD. Determination of sensitive and spe-
cific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treat-
ments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

The principal investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and Uni-
versity of California-San Francisco. ADNI is the result
of efforts of many co-investigators from a broad range
of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across
the US and Canada. The initial goal of ADNI was to
recruit 800 adults, ages 55 to 90, to participate in the
research, approximately 200 cognitively normal older
individuals to be followed for 3 years, 400 people with
MCI to be followed for 3 years, and 200 people with
early AD to be followed for 2 years. For up-to-date
information see http://www.adni-info.org/.

Selection of variables

The ADNI data used in this study are as of May 3,
2011. The database was queried for basic demographic,
clinical, CSF, MRI, and 2-fluorodeoxy-D-glucose

(FDG)-PET data of CN, MCI, and AD subjects. The
retrieved biomarkers and clinical scores were used to
construct six scenarios. The first five correspond to
the modalities considered in the hypothetical model
of AD evolution [17] (1: CSF A�42, 2: FDG-PET, 3:
MRI, 4: CSF tau, and 5: neuropsychological scores).
These five scenarios are located at different times in
the evolution of the disease [17]. We also consid-
ered a sixth scenario composed of the data from the
subjects for whom all variables are simultaneously
available at baseline. Further details about the variables
included in each scenario are available in the Supple-
mentary Data (available online: http://www.j-alz.com/
issues/32/vol32-4.html#supplementarydata04).

The subjects’ age, gender, years of education, and
the number of apolipoprotein E (ApoE) �4 alleles were
retrieved. The follow-up diagnoses of all MCI sub-
jects were also obtained from ADNI. The diagnosis is
only used for validation purposes and not to drive the
clustering-based Bioprofile analysis.

Concept of cluster-based Bioprofile analysis for
AD

The Bioprofile is a general concept that hypothe-
sizes:

1) that long-term conditions impose a characteristic
pattern on the biomarkers and clinical variables;

2) that such pattern can be revealed with machine
learning methods (either supervised or unsuper-
vised, depending on the nature of the condition)
so that appropriate indices can be computed to
reflect changes due to the disease.

In the case of AD, the abnormalities reflected in
most biomarkers follow a sigmoid function over a rel-
atively long period of time [19, 20]. Such changes start
even before the manifestation of clinical symptoms [3,
16–18, 29, 30]. The gold standard for diagnosis of AD
is only available postmortem, but we hypothesize that
unsupervised techniques would allow the estimation of
Bioprofiles of AD and “health” from a pool of data so
that a disease signature can be revealed.

After clustering the data in each scenario, one cluster
is assigned to the Bioprofile of AD, and the other to the
Bioprofile of normality, on the basis of how this demen-
tia is known to modify the variables (e.g., MRI atrophy
for scenario 3). In this way, we account for two under-
lying populations: subjects with and without signs of
pathology. Then, for each subject, we compute a Bioin-
dex, a continuous variable ranging from 0 to 1. Concep-
tually, clusters of pathology and normality are depicted

http://adni.loni.ucla.edu/
http://www.adni-info.org/
http://www.j-alz.com/issues/32/vol32-4.html#supplementarydata04
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in Fig. 1, which also shows how the data of a hypothet-
ical subject with a disease “D” may evolve over time.

Clustering with k-means

Clustering splits a set of instances into categories
to explore their structure. It provides insights for
data analysis and it has applications in diagnosis
and knowledge extraction [21, 28, 33]. For a review,
see [28].

We clustered the data with k-means [21, 28, 33].
This is a classic iterative distance-based method that
works well in many practical problems [28]. A certain
number of clusters (k) is specified in advance [21, 33].
Then, k-means partitions a number of data cases into
k groups so that each case is assigned to the group
(cluster) with the closest mean [21, 28, 33]. For the
technical details of this procedure, the reader is referred
to the Supplementary Data.

Computation of the Bioindices

A Bioindex is derived from the Bioprofile to provide
information about a single subject. It is a continuous
variable ranging from 0 (Bioprofile of normality) to +1
(Bioprofile of the disease). It can be seen as the like-
lihood that the subject’s data belongs to the Bioprofile
of disease and not to the Bioprofile of normality. Alter-
natively, the Bioindex shows the normalized distance
from the subject’s data to the Bioprofile of disease
in comparison to the distance to the Bioprofile of
normality.

The computation of the Bioindex depends on the
machine learning algorithm. In the case of cluster-
ing though, all procedures revolve around the ideas
of internal homogeneity and external separation of
clusters [28]. Thus, all these methods incorporate a
formulation of similarity, distance, or degree of mem-
bership to each cluster [28]. Using these formulations,
we define the Bioindex as the normalized difference

Fig. 1. Conceptual representation of the Bioprofile of a disease, “D”.
Panel (a) shows two variables collected from a pool of subjects.
Some participants (grey filled circles) have been diagnosed with
“D”, while others are not (empty circles). Some asymptomatic sub-
jects may actually have an on-going pathological process of “D” or
some patients of “D” may have been misdiagnosed. Panel (b) shows
hypothetical Bioprofiles derived with clustering. There is a Biopro-
file of “D” and a Bioprofile for the absence of “D” (or “health”).
Panel (c) illustrates the temporal evolution of the data of a new sub-
ject who, over 24 months, develops the disease “D”. The subject’s
data progressively move from the Bioprofile of “health” to the Bio-
profile of “D”. A Bioindex can be computed to reflect this evolution
and help in the monitoring and prediction of disease.
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between a subject’s degrees of membership to the Bio-
profile of the pathology and normality. This definition
is general and it can be used with different techniques
and diseases.

In the case of k-means and AD, we compute the dis-
tances from the subject’s data to the centroids of the
clusters corresponding to the Bioprofile of AD and nor-
mality and the inter-cluster distance. Let these values
be dAD, dNor, and dInter, respectively, once all vari-
ables have been normalized to the [0,1] interval. The
Bioindex is then defined as:

Bioindex = 1

2

(
dNor − dAD

dInter

+ 1

)
(1)

Higher Bioindices suggest the presence of more AD-
related abnormalities in the subject’s data.

Experimental procedures

Four experiments were performed. In each of them,
the variables were normalized to the [0,1] interval
using only the corresponding training data. Further
details about each experiment are provided in the Sup-
plementary Data.

Experiment 1: Bioprofiles of AD
The first experiment aims at introducing the Bio-

profile analysis and to evaluate whether a Bioprofile of
AD can be found in different data modalities. k-means
[28, 33] is used to group the subjects’ data into two
clusters, which are then allocated to the Bioprofiles
of AD and normality considering how AD affects the
variables. This procedure is repeated for each scenario
and the proportion of Bioprofiles of AD in each subject
group (CN, MCI, and AD) is measured. We compute
the χ2 statistic and p-value for the cross-tabulation of
the results to clarify whether the Bioprofiles convey
information about the disease.

Experiment 2: Link between the Bioprofile and a
model of AD evolution

The second experiment investigates whether the
Bioprofiles agree with the model of AD evolution [17,
18]. High Bioindex values are expected in scenarios
that change early with the disease as the variables of
such scenarios will have the most abnormal values.

The results of this experiment are based on the pro-
cess of experiment 1 but only the first five scenarios
are considered because the aim of this experiment is to
inspect the relationships between individual modalities
and the model of AD evolution.

We inspect the distributions of the resulting
Bioindices visually with boxplots. Additionally, within
each diagnostic group (CN, MCI, and AD), we apply
a one-way ANalysis Of VAriance (ANOVA) with a
Bonferroni correction to assess whether the Bioindices
differ among scenarios, thus implying an ordering of
the biomarkers in AD.

Experiment 3: Relationship between the Bioprofile
of AD and the risk of developing AD at the MCI
stage

The third experiment is concerned with the potential
link between the risk of progression from MCI to AD
and the Bioprofiles and Bioindices. The training set for
this experiment consists only of CN and AD subjects.
The Bioprofiles derived from them are then used to
estimate the Bioindices and Bioprofiles for the MCI
people.

Cox proportional hazard models are used to assess
the risk of conversion from MCI to AD associated with
the Bioprofiles and Bioindices. A feature selection pro-
cess is used to decide which covariates are informative
for this. The empirical cumulative survival distribution
was estimated for the MCI subjects in the Bioprofile of
AD and normality. To evaluate the relationship of the
Bioprofiles and Bioindices with the progression from
MCI to AD at the level of individual patients [34], two
metrics were computed for each scenario:

1) The area under the ROC curve (AUC) [21] of
the Bioindex for the separation of MCI convert-
ers (MCI subjects that progressed to clinical AD
at some follow-up, cMCI) versus non-converters
(those who remained as MCI, nMCI).

2) The accuracy [21] defined as the fraction of cMCI
and nMCI subjects that were correctly assigned
to the Bioprofile of AD and Bioprofile of normal-
ity, respectively.

For the sake of a fair comparison between super-
vised and unsupervised approaches, we also compute
the classification performance of a state-of-the-art
supervised classifier (support vector machine) in the
classification of cMCI versus nMCI subjects. Further
details are given in the Supplementary Data.

Experiment 4: Evolution of the Bioindices with
time

The fourth experiment assesses how the values of the
Bioindices change with time. Bioprofiles are calculated
only with baseline data of CN and AD subjects. Then,
they are used as a reference to monitor the change in the
MCI patients over time by computing their baseline and
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follow-up Bioindex values. High Bioindices are asso-
ciated with data similar to the Bioprofile of AD. Thus,
we hypothesize that subjects who progressed toward
AD faster will have larger increases in their Bioindices.
The MCI subjects were split into cMCI and nMCI for
illustration purposes.

A sigmoid function is fit to the Bioindex values at
the level of individual MCI subjects to visualize their
evolution. The sigmoid function is selected because
current evidence suggests that changes in the biomark-
ers and clinical variables follow this contour as the
disease progresses [17–20]. Whereas previous studies
fit a sigmoidal-shape function to data gathered from
large groups of subjects, we fit it to data of individual
subjects.

The sigmoidal function used to fit the baseline and
follow-up Bioindices is defined in [19] as:

f (t) = a

1 + exp
[
(b − t) /c

] (2)

where a, b, and c are the parameters of the function. t
represents the time of follow-up. The outcome of the
function is the expected value of the Bioindex accord-
ing to Equation (2). For additional details about this
function, the reader is referred to [19].

RESULTS

Experiment 1: Bioprofiles of AD

Two clusters were revealed (for the Bioprofile of AD
and normality) from the baseline data in each of the six
scenarios. Table 1 contains the fraction of CN, MCI,
and AD subjects with the Bioprofile of AD in each
case. Most AD and CN subjects had the Bioprofiles of
AD and normality, respectively. A χ2 test confirmed
(p-value < 0.0001) that the Bioprofile had information
about the disease.

We assessed whether age, gender, number of ApoE
�4 alleles, and number of years of education differed

Table 1
Percentage of control (CN), mild cognitive impairment (MCI), and
Alzheimer’s disease (AD) subjects in the Bioprofile of AD for the
six scenarios. Most AD patients had the Bioprofile of AD while most

CN subjects had the Bioprofile of normality

Scenario % CN subjects % MCI subjects % AD subjects

1: CSF A�42 37.7 72.2 91.2
2: FDG-PET 27.2 51.2 85.6
3: MRI 8.7 46.6 75.5
4: CSF Tau 9.6 31.8 43.0
5: Scores 0.4 38.3 96.9
6: All 0.0 46.7 95.7

between Bioprofiles. There were significant differ-
ences (t-test, p-value < 0.0001) between the mean age
and education level of the subjects in each Bioprofile in
scenarios 3 and 5, respectively. The number of ApoE
�4 alleles also varied significantly between the Bio-
profiles in all scenarios (χ2 test, p-value = 0.0023 for
scenario 2; p-value = 0.0004 for scenario 6; otherwise:
p-value < 0.0001).

Experiment 2: Link between the Bioprofile and a
model of AD evolution

We investigated the relationship between the
Bioindices derived from the Bioprofiles and the model
of AD evolution [17]. In Table 1, the percentage of sub-
jects in the Bioprofile of AD tended to decrease from
scenarios 1 to 4, something that suggests a temporal
order in the biomarkers.

For the sake of a fair comparison among scenarios,
we only considered the 186 subjects with all vari-
ables available. Figure 2 contains the boxplots of the
Bioindices for CN, MCI, and AD subjects. In all three
diagnosis groups, the overall level of the Bioindices
tended to decrease from scenario 1 to 4. A one-way
ANOVA with Bonferroni correction was carried out
and it confirmed the significance of the differences
in the Bioindices among scenarios and subject groups
(detailed in the Supplementary Data).

Experiment 3: Relationship between the Bioprofile
of AD and the risk of developing AD at the MCI
Stage

In each scenario, we clustered only the CN and AD
subjects’ baseline data. Then, we derived from them
the baseline Bioindex values and Bioprofiles for the
MCIs.

The subjects’ age, gender, number of ApoE �4 alle-
les, and years of education were introduced in Cox
regression models with a forward feature selection
applied to all MCI subjects with available follow-up
data. Only the number of ApoE �4 alleles was selected
for inclusion in scenarios 1 to 5 but such variable was
not selected in scenario 6. This could be due to the
smaller number of subjects in this scenario. Then, the
presence of the Bioprofile of AD in the subject’s data
(a binary variable: yes/no) was entered into the Cox
regression. Alternatively, the Bioindex value was used
instead of the Bioprofile assignment.

The Bioprofile was significantly associated with the
progression from MCI to AD in all scenarios but 4.
Table 2 shows the corresponding p-value and the risk
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Fig. 2. Boxplots showing the distribution of the baseline Bioindex
values for (a) CN, (b) MCI, and (c) AD subjects for inspection of the
relationship between Bioprofile and the model of AD evolution in
the five scenarios composed of individual data modalities. There is
a trend to have lower Bioindices from scenario 1 to 4. This suggests
that some biomarkers might become abnormal earlier than others in
the disease.

factors associated with the Bioprofile of AD (with
95%CIs). The survival analysis was replicated with
the Bioindices instead of the Bioprofiles and similar
results were found (also in Table 2). The empirical
survival functions for the Bioprofiles of AD and nor-
mality appear in Fig. 3, showing that the MCI subjects
in the Bioprofile of AD are more likely to convert to
AD than those with the Bioprofile of normality in all
six scenarios.

We also computed results at the level of individ-
ual subjects for the ability of the baseline Bioprofile
analysis to predict the progression from MCI to AD in
terms of AUC and accuracy values. These results are
contained in Table 3.

Experiment 4: Evolution of the Bioindices with
time

The fourth experiment assessed whether the
Bioindices reflected changes over time in each of the
six scenarios. The CN and AD subjects’ baseline data
were used to derive the Bioprofiles. From these clus-
ters, we computed the Bioindices for baseline and
follow-up data of nMCI and cMCI subjects. For the
subjects with three or more follow-ups (the process
needs at least as many points as parameters), we fit
a sigmoidal function to their Bioindex values. These
results are plotted in Fig. 4. Grey dots and thin lines
represent individual measures and sigmoidal fits for
individual subjects, respectively, while the thick black
line depicts the median of the sigmoidal regressions for
the groups of cMCI and nMCI subjects. Steeper incre-
ments indicate that the subjects’ data become more
similar to the Bioprofile of AD. Of note is that, in sce-
narios 1, 4, and 6, there were a much smaller number
of subjects with data available because these scenarios
require the acquisition of CSF not only at baseline, but
also at two or more follow-ups.

DISCUSSION

We have presented the Bioprofile as a surrogate
method of reflecting the underlying pathological pro-
cesses of AD using clinical variables and biomarkers
collected in different clinical scenarios. The Bioprofile
may also be useful in other neurodegenerative condi-
tions such as Parkinson’s disease. Our main objectives
were to show that a Bioprofile of AD can be found in the
data with unsupervised machine learning and to illus-
trate the potential utility of this approach in specific
tasks. In order to do so, we ran four experiments.
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Table 2

p-values and hazard ratios [with their 95%CI] for the progression from MCI to AD associated
with the Bioprofiles and Bioindices in each scenario. The Bioprofile and Bioindex were

associated with the risk of decline from MCI to AD

Scenario Bioprofile as predictor Bioindex as predictor

p-value Risk for unit of change p-value Risk for unit of change
in the predictor in the predictor

1: CSF A�42 0.0027 2.778 [1.424, 5.421] 0.0014 3.509 [1.627, 7.566]
2: FDG-PET <0.0001 3.147 [1.934, 5.121] <0.0001 5.526 [2.570, 11.879]
3: MRI <0.0001 2.053 [1.471, 2.866] <0.0001 3.505 [2.189, 5.612]
4: CSF Tau 0.3162 1.258 [0.803, 1.972] 0.0503 1.879 [0.999, 3.535]
5: Scores <0.0001 2.133 [1.557, 2.922] <0.0001 6.539 [3.418, 12.509]
6: All 0.0482 1.917 [1.005, 3.655] 0.0010 23.011 [3.561, 148.702]

The first experiment assessed the presence of the
Bioprofile of AD in six scenarios. Except for scenario
4, the Bioprofile of AD emerged from the data in over
75% of the AD patients, even though the diagnosis
was not considered in the clustering procedure that
led to the Bioprofiles. Yet, this study included only
AD-related data. The methodology assumes that one
Bioprofile is associated with each pathological process
so that other diseases would have their own Bioprofiles.
This is, though, a hypothesis that requires future work
with datasets containing more than one disease.

The results from scenario 1 agreed with those
reported with a Gaussian mixture model of CSF
A�42 [30]. Furthermore, the results suggest that unsu-
pervised machine learning can consistently reveal a
Bioprofile of AD in other data modalities, either when
considered on their own (scenarios 2 to 5) or combined
(scenarios 6) [31]. Moreover, the significant differ-
ences in mean age and education level of subjects
in each Bioprofile in scenarios 3 and 5 support that
these covariates are relevant factors in brain atrophy
and cognitive performance, respectively [3]. In addi-
tion, the number of ApoE �4 alleles varied significantly
between the subjects in both Bioprofiles in all six sce-
narios. This agrees with the fact that ApoE �4 is a major
risk factor for AD [3, 16, 35]. Current guidelines for the
clinical diagnosis of AD do not consider the carriage of
ApoE �4 allele specific enough to increase the certainty
that the dementia suffered by people who meet the core
clinical criteria for probable AD is indeed caused by
AD [36]. However, ApoE �4 increases the risk for pro-
gressing from MCI to AD within a few years [37] and
a recent study [35] advocated raising the importance of
the role of ApoE �4 in AD. In our study, we consider
ApoE as a covariate not to downplay its relevance in
AD, but because the genotype does not change during
the patient’s lifetime. On the other hand, the values
of all other variables in our scenarios change with the
disease [14, 18, 38].

Experiment 2 was carried out because experiment 1
showed that the number of subjects in the Bioprofile of
AD decreased from scenario 1 to 4. Differences in the
average level of the Bioindices in those scenarios were
inspected both visually (with boxplots) and statistically
(with a Bonferroni-corrected ANOVA). The results
confirmed that the Bioindices tended to decrease from
scenario 1 to 4. This suggests the following sequence
of biological changes from healthy aging to AD:
A�42 −→ FDG-PET −→ MRI −→ tau. This order-
ing mostly agrees with [17, 18] and complements the
first validations of the model of AD evolution, where
the values of the biomarkers were regressed against
Alzheimer’s Disease Assessment Scale-cognitive
subscale scores [19, 20]. However, this neuropsycho-
logical test is not an optimal instrument to measure
disease progression [16, 26] and nMCI subjects were
left out of the analysis in [19]. In our results, the aver-
age level of the Bioindices for CSF tau seems lower
than that of MRI. This may indicate that changes in tau
occur slightly after, not before, the atrophy measured
in the MRI, something that has been found in other
studies [11, 20]. However, this may be because CSF
tau might stabilize at later stages of the disease [16].

For a single patient, the presence of the Bioprofile
of AD in a number of scenarios might serve as an indi-
cator of a potentially abnormal pathological process
requiring closer inspection by a clinician. There is a
number of healthy elderly people (about 30%) who are
“amyloid positive” but do not suffer from AD. This
percentage roughly corresponds with the prevalence
of AD dementia one decade later [18, 38] and it is
also similar to the number of CN subjects assigned to
the Bioprofile of AD in the first two scenarios of our
study. However, it is unclear whether abnormal levels
of such biomarkers are a risk factor for developing the
clinical syndrome of AD or whether they constitute an
early stage of AD itself [18]. Hence, the presence of
the Bioprofile of AD in a number of scenarios cannot
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Fig. 3. Empirical survival functions for the conversion from MCI to AD for both Bioprofiles in scenarios 1 (a) to 6 (f). The lines represent the
cumulative ratio of nMCI subjects over time. The presence of the Bioprofile of AD in the subject’s data (black dashed line) implies a higher
risk of progression to AD than the Bioprofile of normality (grey full line). Temporal axis shows the number of years for which follow-up data
is available for both Bioprofiles in each scenario.

Table 3

AUC and Accuracy values for the unsupervised Bioprofile-based separation of cMCI versus
nMCI subjects in experiment 3. The baseline Bioprofile analysis showed some ability to

predict the future progression from MCI to AD at the level of individual subjects

Scenario 1: CSF A�42 2: FDG-PET 3: MRI 4: CSF Tau 5: Scores 6: All

AUC 0.642 0.682 0.649 0.654 0.650 0.642
Accuracy 0.601 0.675 0.601 0.579 0.620 0.578
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Fig. 4. Temporal evolution of the Bioindex values for the nMCI (left) and cMCI (right) subjects in scenarios 1(a) to 6 (f). Grey dots and lines
represent individual measures and fittings of a sigmoidal function, respectively. The full black line shows the median trajectory of each group.
The Bioindices of the cMCI subjects tended to increase faster than those of the nMCI, suggesting that the Bioindices may help to illustrate
disease progression.

be considered yet as an early diagnosis of AD in an
otherwise healthy person.

Experiment 3 elucidated whether the Bioprofiles
and Bioindices had information about the risk of
developing AD at the MCI stage. The Bioprofiles were

computed only from baseline data; follow-up infor-
mation was not used in their calculation. Even so,
the clustering of MCI people into Bioprofiles of AD
and normality was significantly associated with their
future rates of conversion to AD in all scenarios but
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4. Moreover, the Bioindex had a closer association
with the risk of progression than the crisp rule of the
assignment to either Bioprofile, including the case of
scenario 6 (combination of all variables). This could be
due to the fact that the Bioindices, being a continuous
variable, are better able to provide a faithful represen-
tation of the continuum of AD pathological changes
than the binary assignment to either Bioprofile. The
results show that the Bioprofile analysis is linked with
decline from MCI to AD. The AUC and hazard ratio
values for the Bioprofiles and Bioindices are compara-
ble to those reported in the literature. Semi-supervised
and supervised MRI-based machine learning classifi-
cations provided an AUC of 0.69 [32] and accuracies
of about 70% [5] for the separation of nMCI versus
cMCI. A number of biomarkers and clinical variables
have been associated with hazard ratios for this task
ranging from 2 to 6.3 [4]. These values are comparable
to those found in this study.

Finally, experiment 4 illustrated the evolution of the
Bioindices with time. cMCI subjects showed steeper
progressions over time toward the Bioprofile of AD
than nMCI people. We fit the sigmoidal functions at
the level of individual subjects rather than grouping
together the data of all subjects as in previous arti-
cles [19, 20]. It is also worth noting that the results
obtained in scenarios 1, 4, and 6 in experiment 4 are
limited by the fact that fewer participants had follow-
up CSF measures in the ADNI. For instance, scenario
6 in experiment 4 included very few subjects (10 CN,
8 nMCI, 7 cMCI, and 6 AD).

These experiments illustrate the process of deriving
Bioprofiles and Bioindices from a biomedical dataset
in AD. This dementia affects the brain years before
the clinical symptoms appear [17, 18]. Bearing this in
mind, we introduced the Bioprofile as a tool to aid in the
identification of a potentially ongoing process of AD.
We suggest that, if routinely collected data are avail-
able in the future, the Bioprofile approach, together
with other disease models, could be used to extract
knowledge from such data for clinical and research
purposes.

The Bioprofile analysis was carried out using several
scenarios, which represent different data modalities
located at different times in the progression of AD
pathology [17, 18]. We included variables frequently
reported in AD literature, which are also discussed
in the diagnostic criteria for this disease [5–11, 14,
16–18, 36–38]. The scenarios enabled us to assess the
usefulness of different multimodal data in this con-
text. The neuropsychological scores of scenario 5 can
be obtained in a General Practice without the need

for additional biomarker analysis facilities. However,
many current clinical scales have intrinsic limitations
in their measurements [16]. On the other hand, the
lumbar puncture to collect CSF provides information
about both A�42 and tau proteins but patients usually
consider it a very invasive procedure. MRI is not inva-
sive and can be performed several times without the
learning effects of the clinical scores but it is not suit-
able for some patients (e.g., people with pacemakers).
PET can also provide in vivo information about the
brain, but it is expensive. Thus, every scenario entails
its own advantages and limitations and requires differ-
ent specific facilities. In practice, not all facilities may
be available. Our analysis accounts for this because,
by working with different scenarios, the results can
be directly extended to cases where only some of the
modalities are available. Additionally, we also consid-
ered scenario 6 as a combination of variables because,
in clinical practice, all available evidence should be
considered. However, the results seem to suggest that
just grouping the information from different modalities
may not outperform the results obtained from the most
relevant modality on its own. For instance, FDG-PET
seems to be better suited to track the clinical decline
from MCI to AD than just considering all variables
equally informative like in scenario 6. We hypothesize
that this is because different modalities evolve at differ-
ent rates with the disease [17] and some variables are
better suited to monitor different disease stages than
others.

There is no universally agreed-upon definition of
cluster [28]. Considering our aims, we can define a
cluster as a set of data that conveys the pattern of a
disease in contrast with the pattern corresponding to
health. The usefulness of the clustering approach in
this analysis relies on the absence of gold standard
evidence for the presence of AD while the patient
is still alive, as this can only be obtained in an
autopsy [3]. Results from experiment 3 showed that
the Bioprofile provided similar performance in the
separation of cMCI from nMCI patients to that of
a state-of-the-art optimized supervised classifier (see
the Supplementary Data). We used diagnostic infor-
mation only to validate the results in experiments 1
and 2 and to split the subjects into training and test-
ing sets in experiments 3 and 4. Our analysis does
not use that information in the computations of the
clusters. Although it might be possible that we intro-
duced a small bias in the results by considering the
diagnostic labels to create the training and testing sets,
such bias, if existing at all, would be smaller than that
of studies relying on the diagnosis of patients with-
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out autopsy confirmation of AD to train supervised
classifiers.

It is important to relate our results to the cur-
rent clinical and research guidelines for AD diagnosis
[18, 36–38]. Such criteria advocate the distinction
between the AD pathological process and the clini-
cally observable symptoms caused by that process [38].
The clinical diagnosis of AD and MCI must only be
made on the basis of the patient’s cognitive and behav-
ioral symptoms [18, 36–38]. Further research about
biomarkers is needed because the biomarkers cannot
be included in the core criteria for clinical diagnosis
yet [18, 36–38]. However, biomarkers can increase or
decrease the certainty that clinical symptoms are due to
AD pathology [18, 36, 37]. In the light of these recom-
mendations, we suggest that high AD Bioindex values
may support AD pathology as the cause of cognitive
deficit. It is also possible to establish a hypothetical link
between Bioindices and the spectrum of AD pathology;
the Bioindices, being a continuous variable ranging
from 0 to 1, reflects the suggestion that AD pathology
is a continuum [18, 36–38]. Another potential clinical
application of the Bioprofile concept lies on the fact
that the assignment to the Bioprofile of AD or the Bio-
profile of normality represents a clear distinction of
normality from disease. This distinction might be use-
ful in the future to decide up to which level biomarkers
can be considered normal. This matter is still open to
question because, nowadays, there are no established
cut-off points that define when a biomarker can be con-
sidered normal or abnormal [36–38]. Finally, if the
Bioprofile approach is confirmed by further results,
the concept could contribute to defining stages in the
disease process, i.e., the presence of abnormally high
Bioindices in some early scenarios but not in other
later ones could reflect a specific stage. Obviously, we
acknowledge that the ultimate diagnostic decision must
rely on the clinician’s judgment [36, 37].

Some limitations merit consideration. Further anal-
yses are needed with other clustering methods to
corroborate our results and extend them to other modal-
ities, paying special attention to genotype information.
Secondly, autopsy-confirmed diagnoses are not avail-
able for all ADNI subjects [16]. Hence, it is impossible
to ensure that the Bioprofile of AD appears in, and only
in, the subjects with autopsy-confirmed pathology.
Finally, we also acknowledge that additional research
on biomarkers and on the Bioprofile methodology is
needed before these can be incorporated into clinical
practice [18].

To sum up, it is essential to develop techniques to
assist clinicians in the interpretation of data related to

AD [16]. To this end, we introduced the Bioprofile
and Bioindices of AD to quantify abnormal disease
patterns in the subjects’ data. We used k-means [21,
28, 33] to derive Bioprofiles of AD in six scenar-
ios. The Bioprofile emerged from the subjects’ biodata
without considering the diagnosis. Moreover, the Bio-
profiles and Bioindices mostly agreed with a recent
hypothetical model of AD evolution and they contained
information related to the evolution of the disease.
Therefore, they are a promising methodology that may
help in the understanding of AD.

Yet, additional analyses are needed to extend the
Bioprofile concept to more variables (including elec-
tromagnetic brain activity [12, 13] and functional
connectivity assessments [14, 15]) and diseases. The
collection of Bioprofiles across populations would
constitute a valuable resource for research and
personalized healthcare. An individual’s relative char-
acteristics with respect to a set of Bioprofiles could
be studied to help in the interpretation of his or her
data. In this sense, it is expected that the pattern of
biological changes in other conditions, such as Parkin-
son’s disease, will also be revealed with Bioprofile
techniques.

ACKNOWLEDGMENTS

The authors are grateful to the reviewers for the
detailed and useful feedback about our study.

This article presents independent research commis-
sioned by the NIHR under its Programme Grants for
Applied Research Programme (Grant Reference Num-
ber RP-PG-0707-10124). The views expressed in this
article are those of the authors and not necessarily those
of the NHS, the NIHR, or the Department of Health.

This article was funded by the National Institute for
Health Research (NIHR) under its Programme Grants
for Applied Research Programme (Grant Reference
Number RP-PG-0707-10124.

Authors’ disclosures available online (http://www.j-
alz.com/disclosures/view.php?id=1434).

Data collection and sharing for this project was
funded by the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) (National Institutes of Health
Grant U01 AG024904). ADNI is funded by the
National Institute on Aging, the National Institute of
Biomedical Imaging and Bioengineering, and through
generous contributions from the following: Abbott;
Alzheimer’s Association; Alzheimer’s Drug Discovery
Foundation; Amorfix Life Sciences Ltd.; AstraZeneca;
Bayer HealthCare; BioClinica, Inc.; Biogen Idec

http://www.j-alz.com/disclosures/view.php?id=1434


J. Escudero et al. / Bioprofile Analysis for AD Biodata 1009

Inc.; Bristol-Myers Squibb Company; Eisai Inc.;
Elan Pharmaceuticals Inc.; Eli Lilly and Company;
F. Hoffmann-La Roche Ltd and its affiliated com-
pany Genentech, Inc.; GE Healthcare; Innogenetics,
N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy
Research & Development, LLC.; Johnson & Johnson
Pharmaceutical Research & Development LLC.; Med-
pace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics,
LLC.; Novartis Pharmaceuticals Corporation; Pfizer
Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical
Company. The Canadian Institutes of Health Research
is providing funds to support ADNI clinical sites in
Canada. Private sector contributions are facilitated by
the Foundation for the National Institutes of Health
(http://www.fnih.org). The grantee organization is the
Northern California Institute for Research and Educa-
tion, and the study is coordinated by the Alzheimer’s
Disease Cooperative Study at the University of Cali-
fornia, San Diego. ADNI data are disseminated by the
Laboratory for Neuro Imaging at the University of Cal-
ifornia, Los Angeles. This research was also supported
by NIH grants P30 AG010129 and K01 AG030514.

REFERENCES

[1] Hu P, Sun L, Ifeachor E (2009) A Framework for Bioprofile
Analysis Over Grid. IEEE Sys J 3, 520-535.

[2] Wimo A, Prince M (2010) World Alzheimer Report 2010: The
global economic impact of dementia. Alzheimer’s Disease
International.

[3] Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s
disease. Lancet 368, 387-403.

[4] Chen K, Ayutyanont N, Langbaum JBS, Fleisher AS, Reschke
C, Lee W, Liu X, Bandy D, Alexander GE, Thompson PM,
Shaw L, Trojanowski JQ, Jack CR Jr, Landau SM, Fos-
ter NL, Harvey DJ, Weiner MW, Koeppe RA, Jagust WJ,
Reiman EM (2011) Characterizing Alzheimer’s disease using
a hypometabolic convergence index. NeuroImage 56, 52-60.

[5] Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S,
Habert M-O, Chupin M, Benali H, Colliot O (2011) Auto-
matic classification of patients with Alzheimer’s disease from
structural MRI: A comparison of ten methods using the ADNI
database. NeuroImage 56, 766-781.

[6] Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM
(2010) The clinical use of structural MRI in Alzheimer dis-
ease. Nat Rev Neurol 6, 67-77.

[7] Holland D, Brewer JB, Hagler DJ, Fennema-Notestine C,
Dale AM, the Alzheimer’s Disease Neuroimaging Initiative
(2009) Subregional neuroanatomical change as a biomarker
for Alzheimer’s disease. Proc Natl Acad Sci U S A 106, 20954-
20959.

[8] Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman
EM, Foster NL, Weiner MW, Jagust WJ (2011) Associations
between cognitive, functional, and FDG-PET measures of
decline in AD and MCI. Neurobiol Aging 32, 1207-1218.

[9] Nordberg A, Rinne JO, Kadir A, Langstrom B (2010) The use
of PET in Alzheimer disease. Nat Rev Neurol 6, 78-87.

[10] Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM,
Aisen PS, Petersen RC, Blennow K, Soares H, Simon A,
Lewczuk P, Dean R, Siemers E, Potter W, Lee VM-Y,
Trojanowski JQ (2009) Cerebrospinal fluid biomarker signa-
ture in Alzheimer’s Disease Neuroimaging Initiative subjects.
Ann Neurol 65, 403-413.

[11] Fagan AM, Head D, Shah AR, Marcus D, Mintun M, Morris
JC, Holtzman DM (2009) Decreased CSF A�42 correlates
with brain atrophy in cognitively normal elderly. Ann Neurol
65, 176-183.

[12] Hornero R, Abásolo D, Escudero J, Gómez C (2009)
Nonlinear analysis of electroencephalogram and magnetoen-
cephalogram recordings in patients with Alzheimer’s disease.
Philos Trans R Soc A-Math Phys Eng Sci 367, 317-336.

[13] Babiloni C, Vecchio F, Lizio R, Ferri R, Rodriguez G,
Marzano N, Frisoni GB, Rossini PM (2011) Resting state cor-
tical rhythms in mild cognitive impairment and Alzheimer’s
disease: Electroencephalographic evidence. J Alzheimers Dis
26, 201-214.

[14] Drago V, Babiloni C, Bartrés-Faz D, Caroli A, Bosch B,
Hensch T, Didic M, Klafki H-W, Pievani M, Jovicich J, Ven-
turi L, Spitzer P, Vecchio F, Schoenknecht P, Wiltfang J,
Redolfi A, Forloni G, Blin O, Irving E, Davis C, Hårdemark H,
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