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GLOSSARY FOR WGCNA ANALYSIS

We have used gene expression data consisting
of individual probes from microarrays to perform
a Weighted Gene Co-expression Network Analysis
(WGCNA). A gene co-expression network is a
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graphical representation of the relationship between
genes according to the similarity of their expres-
sion profiles and thus potentially their biological
relatedness. Within the network, a node represents
a probe and an edge exists between two probes if
they exhibit similar expression patterns across the
samples, i.e., they are co-expressed. The following
terms and definitions are used to represent different
features of the network and associated analyses.
For further details we refer readers to the glos-
sary provided at the WGCNA web site: http://www.
genetics.ucla.edu/labs/horvath/CoexpressionNetwork/
Rpackages/WGCNA/Tutorials/Simulated-00-
Background.pdf.
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ALZHEIMER’S DISEASE

Supplementary Figure 1. Over represented KEGG pathways (p < 5 × 10−4) identified by DAVID analysis (http://david.abcc.ncifcrf.gov/) [4]
using probes with higher-than-median module membership and trait significance for each module (i.e., probes highlighted in green in Fig. 5
and listed in column Q, supplementary Tables 2–7). KEGG pathways with significantly over-represented modules include: Alzheimer’s disease
(p = 1.8 × 10−4; black module), Oxidative Phosphorylation (p = 3.9 × 10−5; black module), Ribosome (p = 6.6 × 10−5; black and p = 1.7 × 10−7;
red module), Leukocyte Transendothelial Migration (p = 1.2 × 10−4; blue module). In each KEGG pathway probes with higher-than-median
module membership and trait significance are indicated by a star with the color of the star indicating their assigned module, except the black
module which is represented by grey.

Probe: A probe assesses the expression levels of a
particular gene within a given sample.

Connectivity: In its simplest form, the connectivity
of a probe is computed as the number of neighbors it
is connected to in a co-expression network, or:

Connectivityi = ki =
∑

aij

j /= i

In a weighted network, connectivity can be mea-
sured by different parameters, including topological
overlap (see below). Probes with high connectivity

values share a similar profile of gene expression with
a relatively large number of other probes.

Topological Overlap (TO): Topological Overlap
provides the score/weight for the edges in the co-
expression network. To calculate the topological
overlap for a pair of probes, their connections with
all other probes in the network are compared. If the
two probes show similar patterns of correlation with
other probes, then they have a high topological over-
lap. Several studies have shown that probes showing
high topological overlap are more likely to be func-
tionally related than probes that do not. For two nodes

http://david.abcc.ncifcrf.gov/
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LEUKOCYTE TRANSENDOTHELIAL MIGRATION

Supplementary Figure 1. (continued)

i and j, the topological overlap of the two nodes (tij) is
computed as follows:

tij = (Ijj + aij)/ (min{ki, kj} 1 − aij) if i /= j

= 1 if i = j

Where Ijj ki and kj are the connectivity measures of
nodes i and j as defined earlier.

Topological Overlap Matrix (TOM): The Topologi-
cal Overlap Matrix describes the pairwise TO between
all probes in the network [1]. The numbers in the
matrix measure similarity amongst the probes in the
network. In this work, the TOM was used to define
edges between probe pairs.

Modules: Modules are sub-networks of the larger
network, comprising probes with similar expression
patterns across samples. Probes belonging to the
same module are thought to be functionally related,
e.g., represent genes encoding a pathway or a pro-
tein complex or related biological function and are
therefore considered biological important [2]. The bio-
logical characteristics and behavior of modules may
reveal far more than only considering individual genes
in isolation. Computationally, a network module is

comprised of a set of probes which are closely con-
nected according to a suitably defined measure of
interconnectivity (TOM) and the set of samples from
which the expression data is derived.

Module Eigengene (ME): A Module Eigengene is
the expression profile chosen to represent that of the
module. Module Eigengenes are important for estab-
lishing whether there are correlations between modules
and clinical traits and each other. Mathematically, an
eigengene is computed as the first eigenvector of the
adjacency matrix of the module and represents the first-
principal component of the genes within the module
[2].

Module Membership (MM): Module Membership
is a measure of the extent to which a probe conforms
to the characteristics of the module it is assigned to. It
is measured by the correlation between the expression
profile of a probe and the Module Eigengene (ME) of
the corresponding module to which the probe belongs.

Gene Significance (GS): A Gene Significance mea-
sure of a gene is used to assess the biological
significance of a particular probe and therefore gene,
with respect to a trait (e.g., disease severity). GS is
defined as the correlation coefficient resulting from
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RIBOSOME

Supplementary Figure 1. (continued)

correlating the outcome of the trait in question with
the expression profile of the gene [3]. GS can take
positive or negative values depending on the correla-
tion relationship (a positive GS results from a positive
correlation while a negative GS results from a negative
correlation). A GS value of zero indicates no signifi-
cance while higher absolute values indicate a higher
significance of the gene to the trait [3].

Weighted Co-expression Network: A Weighted Co-
expression network is a network in which the edges are
annotated with numbers (weights) denoting the extent
to which two nodes (probes) are similar. In this case
the weights represent the topological overlap between
nodes, i.e., the numbers represent the strength of the
correlation of the expression profiles of the nodes con-
nected via the edge.

Signed Weighted Co-expression Network: Signed
weighted co-expression network is a variant of
weighted co-expression networks which attaches a sign
to the weights assigned to its edges. The sign designates

the direction of expression change among the expres-
sion profiles. Signed networks are thought to be more
biologically relevant than unsigned networks whereby
the modules are created based on absolute measures
of correlation, i.e., genes assigned to the same module
can have opposite directions of change in their gene
expression profiles.

Table 1: Differential gene expression in blood sam-
ples from AD, MCI, and control subjects. A total of
2,908 significant differences were identified between
the three groups (FDR corrected p < 0.01). Positive or
negative fold-change indicates increased or decreased
expression in MCI and/or AD with respect to control
blood or AD with respect to MCI blood (p < 0.001 in
post-hoc T-test).

Tables 2–7: A list of probes assigned to the disease-
associated modules red, black, pink, brown, blue, and
turquoise, respectively. Probe level associations with
the diagnostic traits control, MCI-MCI, MCI-AD, AD,
ALL AD, and disease severity are indicated. Gene
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significance (GS) of a gene describes the strength and
sign of the correlation between the probe and the trait
in question, while the module membership score (MM)
quantifies the extent to which a gene conforms to the
characteristics of a module. The combination of MM
and GS identifies genes which play important roles
in a given network module and their significance for
the clinical trait in question. Probes with higher-than-
median module membership and trait significance for
each module are indicated in column Q.

Table 8: Compiled gene lists comprising top
Alzheimer’s GWAS genes, other candidate genes
thought to be associated with Alzheimer’s, OXPHOS
genes, MRP genes, and immune genes. Genes are
annotated with their module membership.

Table 9: Test for over-representation of MCI-
associated (A) and AD-associated (B) gene expression
changes in specific blood cell populations in blood
samples from AD patients or normal elderly controls.
A total of 19,161 probes were used in the analysis
(see methods) of which some had significantly altered
expression in MCI (n = 1,999 with FDR <0.01) and/or
AD (n = 1,319 with FDR <0.01). These were mapped
to a set of probes previously reported to be enriched
in particular blood cell types by Watkins et al. [5]
using RNA from blood analyzed with the same arrays.
Over-representation of cell-type enriched transcripts
was examined using Chi-square or the Fisher’s exact
test if the number of probes was less than 10 (*).
To increase confidence in our results, we also tested
whether more cell lineage probes attained a given p-
value than would be expected by chance by randomly
selecting 1,319 or 1,999 of the 19,161 used in the
analysis and repeating the analysis for each cell-type
enriched probe list for 10,000 permutations. We fur-
ther tested for over- rather than under-representation
of significantly altered probes in particular blood cells
in AD blood by a hypergeometric probability test.

Table 10: We tested the blood modules (column A)
for enrichment using a large pre-defined collection of
brain-related gene sets (column C) [6–27]. Classifica-
tion categories and functional annotation for each test
dataset were defined by the individual study (column
G). Significance was computed using a hypergeomet-
ric test. Each dataset is identifiable by the publication
first describing each study (column B).
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