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Abstract. A key pathological feature of late-onset Alzheimer’s disease (LOAD) is the abnormal extracellular accumulation of
the amyloid-3 (ARB) peptide. Thus, altered AP degradation could be a major contributor to the development of LOAD. Variants in
the gene encoding the AB-degrading enzyme, angiotensin-1 converting enzyme (ACE) therefore represent plausible candidates
for association with LOAD pathology and risk. Following Alzgene meta-analyses of all published case-control studies, the ACE
variants rs4291 and rs1800764 showed significant association with LOAD risk. Furthermore ACE haplotypes are associated with
both plasma ACE levels and LOAD risk. We tested three ACE variants (rs4291,1rs4343, and rs1800764) for association with LOAD
in ten Caucasian case-control populations (n = 8,212). No association was found using multiple logistic models (all p > 0.09). We
found no population heterogeneity (all p >0.38) or evidence for association with LOAD risk following meta-analysis of the ten
populations for rs4343 (OR = 1.00), rs4291 (OR =0.97), or rs1800764 (OR = 0.99). Although we found no haplotypic association
in our complete dataset (p =0.51), a significant global haplotypic p-value was observed in one population (p =0.007) due to an
association of the H3 haplotype (OR =0.72, p=0.02) and a trend towards an association of H4 (OR=1.38, p=0.09) and H7
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(OR=2.07, p=0.08) although these did not survive Bonferroni correction. Previously reported associations of ACE variants with

LOAD will be diminished following this study. At best, ACE variants have modest effect sizes, which are likely part of a complex

interaction between genetic, phenotypic and pharmacological effects that would be undetected in traditional case-control studies.
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INTRODUCTION

Late-onset Alzheimer’s disease (LOAD; MIM
104300) is the most common form of dementia,
accounting for almost two-thirds of all dementia
cases. Its key pathological features include the forma-
tion of intracellular neurofibrillary tangles comprised
of microtubule-associated tau, abnormal extracellular
accumulations of amyloid-f3 (AB) peptide in the form
of characteristic senile plaques and in most LOAD
cases, deposition of intracerebrovascular A in the
form of cerebral amyloid angiopathy [1, 2]. It is
increasingly recognized that altered degradation and
clearance of AP is likely to be of importance in the
development and progression of LOAD [3] and that
this may be contributed to by both environmental and
genetic factors. Cumulative evidence from in vitro, in
vivo, and ex vivo studies now strongly support the role
of ACE (EC 3.4.15.1), a zinc metalloprotease widely
expressed in the brain, as an AP degrading enzyme
(reviewed in [4]). Taken together with the observation
that increased ACE levels and activity are observed
in LOAD brains (reviewed in [5]) and are associated
with increased plasma levels of AP [6] and reduced
levels of AP in CSF [7, 8], these all point to the likely
involvement of ACE in AB-related pathology in AD.
This is further supported by evidence that variation in
the gene encoding ACE (ACE; OMIM 106180), may
play arole in LOAD pathology and modify LOAD risk.
For example, the insertion/deletion (indel) of a 287 bp
Alu repeat in intron 16 (rs1799752 Alu 1/D) of ACE,
and perhaps the most widely studied for LOAD associ-
ation, is predicted to explain 29-47% of the variation in
plasma ACE levels [9—11]. In their meta-analysis of 39
case-control series, comprising 6,037 LOAD cases and
12,099 controls, Lehmann et al. reported that homozy-
gotes for the Alu deletion were at reduced risk of LOAD
(p=0.0004), while heterozygotes were at increased
risk [12], thus supporting a genetic association of ACE
with LOAD. The fact that the indel does not account
for all of the observed variation in ACE levels suggests
that other functional ACE variants may be present and
in turn associated with ACE levels and/or LOAD risk.

The APOE &4 allele (107741) remains the most
widely studied and accepted susceptibility gene for
LOAD since its first report as a candidate gene almost
20 years ago [13, 14]. The remaining genetic compo-
nent of AD risk may involve many genes, each with
individually small-to-moderate effect sizes that inter-
act to produce greater effects on disease susceptibility
and/or disease modification. However, detection and
confirmation of the involvement of genes with these
effect sizes requires very large sample sizes. For exam-
ple, over the last two decades, 664 different genes and
almost 3,000 variants have been investigated as suscep-
tibility factors for LOAD risk [15] and until recently,
the majority of these studies have been relatively under-
powered, often resulting in inconclusive or inconsistent
results for the majority of putative candidate genes.
AlzGene (http://www.Alzgene.org) [15] was designed
and established to resolve this problem to some extent
by regularly performing meta-analyses of published
data as it emerged to continually compile a list of “Top
LOAD genes” that show the strongest associations in
LOAD. A relatively constant member of this list has
been ACE for which two (rs4291 and rs1800764) of
the six variants studied show significant association
with LOAD risk following the AlzGene meta-analyses
based on total sample sizes of n=10,588 and n =4,756,
respectively. Notably, rs 1800764 has also been associ-
ated with elevated CSF AB42/AB4p ratio [7].

Despite the large number of reported independent
genetic associations between ACE variants and LOAD
in the last decade (22 out of 55 populations pub-
lished to-date; for details see AlzGene), few studies
utilized more comprehensive haplotype approaches [7,
8, 16-19]. Keavney and colleagues identified seven
haplotypes in a Caucasian British population derived
from data from ten polymorphisms spanning 26 kb of
ACE. From these haplotypes, they constructed a clado-
gram that contained three main branches (clades A,
B, and C), which accounted for 90% of the observed
haplotypes. Clade A has since been associated with
low plasma ACE levels and increased risk of LOAD
[16], clades B and C with higher ACE levels [19-21],
and clade C with increased risk for LOAD in fami-
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Table 1
Details of samples used in this study

LOAD CTRL  Total

Mean age % Female J%EA+
LOAD CTRL LOAD CTRL LOAD CTRL

Ethnicity Sample Series
Caucasian ART Belfast 238
European Bonn 175
Nottingham/Manchester 381
Oxford 173
Southampton 230
MRC UK 816
Sweden Sweden 156
Caucasian Mayo Clinic  Autopsy-confirmed 592
North American Jacksonville 608
Rochester 561
Caucasian All Total 3,930

236 474 783 76.1 0.66 0.65 0.58  0.28
198 373 759 709  0.76 0.49 0.55 027
102 483  71.0 726  0.54 0.34 0.62 023
205 378 727 713 0.56 0.57 0.64 025
145 375  80.6 75.8 0.58 0.49 0.47*% 0.26
959 1,775 815 76.6  0.72 0.64 0.63 024

59 215 774 739 0.70 0.41 0.68  0.31

374 966  81.2 75.7 0.60 0.43 0.60 023
602 1,210 78.1 780  0.62 0.60 0.62 026

1,402 1,963  79.5 784  0.62 0.54 0.56  0.25
4282 8212 786 769  0.64 0.56 0.61 0.25

* APOE &4 status was unknown for 50% of LOAD samples from Southampton.
The number of LOAD patients (LOAD) and controls (CTRL), mean age-at-diagnosis, percentage that are female and percentage that possess at
least one copy of the APOE &4 allele are given for each individual and pooled series. Mean age is given as age-at-diagnosis/entry.

lies [18]. Kehoe and colleagues also analyzed seven
variants within ACE (rs4363, rs4362, rs4343, rs4331,
154309, 154291, rs1800764) that formed ten haplotypes
with an LD structure that enabled the selection of three
‘tagging’ variants (rs4291, rs4343 and rs1800764) [8].
The most frequent haplotype (H1) contained the pre-
viously reported AD-associated (‘risk’) ACE indel I
allele [22], while the H2 haplotype contained the (‘pro-
tective’) D allele [8]. Some indication that the indel
was not the only functional ACE variant involved in
LOAD pathogenesis came from H5 (also containing
the I allele) which was also associated with a reduced
risk of LOAD [8].

In line with the previous haplotype and cladistic
approaches described, we have used the three tagging
variants rs4291, rs4343, and rs1800764 to investigate
the association of ACE with LOAD in our large multi-
center cohort comprising ten case-control series, nine
of which do not overlap with those previously pub-
lished. This represents the largest study to-date to
investigate the effects of ACE haplotypes in LOAD.

MATERIALS AND METHODS
European patient samples

Informed consent was obtained from all subjects
included in this study, which was approved by the local
Ethics Committee. This European Caucasian cohort
combined three case control sample collections; 1) the
Alzheimer’s Research Trust (ART) Collaborative Sam-
ple Collection (1,197 LOAD patients and 886 controls)
supplied from six ART network centers across the UK
2) the Medical Research Council (MRC) Collabora-

tive Sample Collection collected from both community
and hospital settings in the UK (816 LOAD patients
and 959 controls); and 3) a Swedish sample collec-
tion (156 LOAD patients and 59 controls). It must be
noted that nine of the ten case-control series used in this
cohort do not overlap with those previously published
in case-control association studies of ACE variants.
The remaining series (Oxford) has previously been
reported with respect to the ACE indel (rs1799752)
but not for the three tagging SNPs investigated here.
A summary of patient details from each centre is shown
in Table 1.

US patient samples

A total of 4,139 Caucasian samples were obtained
with written consent from the Mayo Clinic, USA.
These samples included 592 autopsy-confirmed AD
patients and 374 autopsy-confirmed controls (AUT),
1,169 clinically diagnosed LOAD patients, and 976
controls from Mayo Clinic Jacksonville (JS) and Mayo
Clinic, Rochester (RS). None of the samples used in
this cohort overlap with those previously published in
case-control association studies of ACE variants. Fur-
ther information regarding these samples can be found
in Table 1.

LOAD diagnosis

The majority of samples were diagnosed possible or
probable AD (n=3,215) or control (n=3,968) using
NINCDS-ADRDA criteria [23]. The remaining sam-
ples were histopathologically confirmed as definite
AD (n=1,091) or control (n=476) using NINCDS-



590 O. Belbin et al. / ACE and Late-Onset Alzheimer’s Disease Risk

ADRDA (AUT) or CERAD criteria (ART) [24]. All
patients with evidence of an autosomal dominant AD
trait, where a first-degree relative had been diagnosed
with AD or where there was evidence for other causes
of dementia were excluded.

Genotyping

Genotyping data from the ART samples was
obtained using fluorescently-labeled (VIC or FAM)
allele-specific TagMan probes that were designed
by ABI; all assays performed by Geneservice
(Cambridge, UK). In addition to assay controls incor-
porated by Geneservice, 15% of the samples assayed
were sequenced for genotype at source, 10% of sam-
ples were assayed in duplicate for quality assurance.
Data were only accepted when there was 100% con-
cordance between duplicates. All genotype plots were
subjected to quality control upon receipt and assays
were only accepted when call rates were above 95%.
A detailed description of the ascertainment and assess-
ment of the MRC sample collection has been reported
previously [25]. The data from the Swedish sam-
ples was generated using the Dynamic Allele-Specific
Hybridization (DASH) method as described elsewhere
[8]. The Mayo Clinic samples were genotyped using
TagMan® SNP Genotyping Assays in an ABIPRISM®
7900HT Sequence Detection System with 384-Well
Block Module from Applied Biosystems. All variants
passed the p>0.01 cut-off for deviation from Hardy-
Weinberg equilibrium as suggested by Wigginton et al.
when investigating >100 samples [26].

Single variant analysis

Odds ratios and 95% CI were calculated by binary
logistic regression (allelic dose model) using the —
logistic command in PLINK software [27]. The covari-
ates age-at-onset (where unknown, age-at-death minus
the 8 year average disease duration was used), car-
riage of the APOE &4 allele and gender were added
into the model using the — covar command. The total
dataset was also tested for association by binary logis-
tic regression under dominant and recessive models
adjusted for covariates using StatsDirect v2.5.8. For
meta-analyses, summary ORs, 95% CI and Breslow-
Day tests were calculated under the DerSimonian and
Laird (1986) random-effects model using StatsDirect
v2.5.8 software.

Haplotype association

Haplotype frequencies were estimated using the
expectation-maximization approach implemented in
the haplo.em function of Haplo.stats v1.2.2 [28] using
R programming software. Global haplotype associa-
tion and individual haplotype score tests adjusted for
APOE &4 dose, gender and age-at-diagnosis were per-
formed using the haplo.score function of Haplo.stats
v1.2.2.

RESULTS

We tested three ACE variants for association with
LOAD in our seven European and three North Amer-
ican case-control series (series details are shown in
Table 1). Genotype and allele counts for each series
are shown in Table 2. We first tested for association
with LOAD in each case-control series by logistic
regression using an additive/allelic dosage model cor-
recting for gender, age-at-diagnosis and possession of
at least one copy of the APOE &4 allele as covari-
ates (Table 2). None of the variants were associated
with LOAD risk in any series (all p>0.09). We also
tested for association the three variants in all ten series
pooled (rn=8,212), but again found no association (all
p>0.18). Since some genetic variants may exert dom-
inant or recessive effects we also performed logistic
regression for the total dataset using these models but
found no association with LOAD risk (all p>0.36).
We also tested for association of all three variants
with LOAD in individuals not possessing the APOE
&4 allele in all series (1,495 LOAD, 3,175 controls),
but found no association (all p > 0.13; data not shown).
In order to determine whether the lack of observa-
tion could be attributed to population heterogeneity,
we performed meta-analyses of each variant testing
for association in the combined data from all ten series
using a DerSimonion-Laird random effects model to
estimate a pooled odds ratio and testing for heterogene-
ity between series using the Breslow-Day test (Fig. 1).
We found no evidence for population heterogeneity
(all p>0.38) or for association of rs4343 (OR =1.00,
p=0.90), rs4291 (OR=0.97, p=0.47), or rs1800764
(OR=0.99, p=0.72) with LOAD risk.

In an attempt to replicate previous findings that the
two most common haplotypes (H1 and H2) are signif-
icantly associated with opposing risk for LOAD [8],
we constructed haplotypes using the three tagging vari-
ants. As shown in Table 3, the haplotype frequencies
were comparable across all series and are consistent
with previous studies [8]. In order to limit the number
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Association of ACE variants rs4291, rs4343, and rs1800764 with LOAD

Series MAF LOAD CON Logistic regression
LOAD: CON Maj Het Min Maj Het Min OR (95% CI) )4
154343 (G: A)
Belfast (474) 0.51:0.56 60 113 65 50 109 77 0.82 (0.63-1.07) 0.14
Bonn (373) 0.52:0.48 42 84 49 56 93 49 1.17 (0.85-1.62) 0.33
Notts./Manch. (483) 0.49:0.51 92 197 87 28 42 31 0.90 (0.64-1.25) 0.52
Oxford (378) 0.47:0.48 50 84 38 57 98 50 0.88 (0.64-1.21) 0.43
Southampton (375) 0.45:045 68 116 46 45 67 32 1.01 (0.72-1.42) 0.93
MRC (1,775) 0.50:0.49 205 358 200 233 444 216 1.05 (0.90-1.22) 0.51
Sweden (226) 0.48:0.49 40 81 35 19 22 18 1.22 (0.75-1.97) 0.42
AUT (966) 0.47:0.46 166 283 129 112 167 85 1.02 (0.84-1.25) 0.88
JS (1,210) 0.48:0.49 159 302 132 172 295 125 1.05 (0.95-1.16) 0.30
RS (1,963) 0.48:0.46 144 259 145 336 693 344 1.04 (0.87-1.24) 0.67
All Additive (8,212) 0.49:0.49 1026 1877 926 1108 2030 1027 0.99 (0.93-1.05) 0.75
All Dominant 1.02 (0.91-1.14) 0.75
All Recessive 1.02 (0.90-1.14) 0.80
14291 (A:T)
Belfast (474) 0.37:0.32 96 110 32 114 91 28 1.28 (0.96-1.70) 0.09
Bonn (373) 0.35:0.36 71 81 19 83 87 27 0.84 (0.60-1.20) 0.35
Notts./Manch. (483) 0.37:0.31 159 158 60 48 44 10 1.31 (0.92-1.87) 0.13
Oxford (378) 0.35:0.39 71 75 22 75 97 29 0.94 (0.67-1.31) 0.88
Southampton (375) 0.37:0.42 92 106 32 50 65 28 0.74 (0.52-1.05) 0.09
MRC (1,775) 0.37:0.36 323 341 117 364 416 118 1.00 (0.85-1.16) 0.91
Sweden (226) 0.37:0.40 59 78 19 26 19 14 0.77 (0.47-1.23) 0.27
AUT (966) 0.37:0.38 242 256 85 143 171 57 0.93 (0.76-1.14) 0.50
JS (1,210) 0.37:0.39 236 292 78 217 294 88 0.96 (0.80-1.16) 0.58
RS (1,963) 0.35:0.35 241 246 70 586 628 178 0.94 (0.80-1.10) 0.42
All Additive (8,212) 0.36:0.37 1590 1743 534 1706 1912 571 0.99 (0.92-1.05) 0.67
All Dominant 0.95 (0.86-1.06) 0.36
All Recessive 0.97 (0.84-1.12) 0.68
rs1800764 (T: C)
Belfast (474) 0.41:0.40 82 117 39 92 98 45 1.03 (0.76-1.35) 0.84
Bonn (373) 0.43:0.44 53 92 29 66 91 41 0.86 (0.61-1.20) 0.37
Notts./Manch. (483) 0.43:0.42 124 183 70 32 52 16 1.08 (0.76-1.53) 0.66
Oxford (378) 0.44:0.46 55 84 34 59 104 42 0.96 (0.69-1.33) 0.96
Southampton (375) 0.47:0.52 60 124 46 39 62 44 0.85 (0.61-1.20) 0.37
MRC (1,775) 0.44:043 262 378 170 316 451 176 1.07 (0.93-1.25) 0.34
Sweden (226) 0.43:045 46 84 25 22 19 16 0.77 (0.48-1.26) 0.30
AUT (966) 0.47:0.48 169 276 137 104 180 87 1.02 (0.80-1.14) 0.78
JS (1,210) 0.45:0.47 179 308 113 167 296 130 0.95 (0.80-1.14) 0.57
RS (1,963) 0.43:043 183 261 109 462 655 272 1.00 (0.86-1.15) 0.96
All Additive (8,212) 0.44:0.44 1213 1907 772 1359 2008 869 1.00 (0.94-1.07) 0.95
All Dominant 1.02 (0.92-1.14) 0.69
All Recessive 0.97 (0.86-1.10) 0.64

Designated major : minor alleles for each variant are shown in parentheses after the variant name in the first column. The number of samples in
each series is shown in parentheses after the series name. The minor allele frequency (MAF) and genotype counts in LOAD and controls (CON)
for major allele homozygotes (Maj), heterozygotes (Het) and minor allele homozygotes (Min) are provided for each series. Odds ratios (ORs),
95% confidence intervals (CI) and p-values (p) were calculated for each series using a binary logistic regression additive model. The total pooled
data (All) was also tested for association using dominant and recessive models. All logistic regression models included age-at-onset, gender and

APOE &4 allele as covariates.

of tests used, global association of the six haplotypes in
each series were tested and individual haplotypes only
tested for association for populations with a global p-
value <0.05. A significant global haplotypic p-value
was observed in the MRC sample only (p=0.007),
largely to the protective association of H3 (OR =0.72,
p=0.02) and the trend towards a risky association of
H4 (OR=1.38, p=0.09) and H7 (OR =2.07, p = 0.08),

associations that were not previously observed by
Kehoe and colleagues [8]. The global haplotypic p-
value for our complete dataset (n=7,557) was not
significant (p=0.51), and the individual haplotypic
ORs observed in our complete dataset for the two most
common haplotypes gave weaker ORs compared to
those observed by Kehoe et al. in their complete dataset
(H1: OR=1.0 vs 1.2, H2: OR=0.96 vs 0.80 [8]).
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Table 3
Association of ACE haplotypes with LOAD
Series Haplotype* Frequency OR 95% CI p-value
LOAD CTRL
ART HI1-AAT 973 (0.46) 810 (0.47) 0.96 0.83-1.10
global p-value=0.27 H2-GTC 722 (0.34) 596 (0.34) 1.04 0.90-1.21
H3-GAT 236 (0.11) 157 (0.09) 1.25 0.99-1.59
H4-GAC 236 (0.11) 270 (0.16) 0.78 0.57-1.07
H7-AAC 44 (0.02) 35(0.02) 0.89 0.52-1.52
H5-ATC 30 (0.01) 29 (0.02) 0.76 0.41-1.41
MRC HI1-AAT 671 (0.47) 760 (0.47) 1.00 0.85-1.18 0.99
global p-value =0.007 H2-GTC 500 (0.35) 551 (0.34) 1.05 0.88-1.25 0.59
H3-GAT 129 (0.09) 174 (0.11) 0.72 0.54-0.96 0.02
H4-GAC 87 (0.06) 83 (0.05) 1.38 0.95-1.99 0.09
H7-AAC 20 (0.01) 24 (0.02) 2.07 0.92-4.63 0.08
H5-ATC 23 (0.02) 19 (0.01) 0.88 0.40-1.93 0.75
Sweden HI-AAT 144 (0.47) 54 (0.47) 1.37 0.57-3.28
global p-value =0.86 H2-GTC 115 (0.37) 45 (0.39) 0.70 0.18-2.76
H3-GAT 32 (0.10) 9 (0.08) 1.18 0.72-1.95
H4-GAC 13 (0.04) 4(0.03) 1.02 0.15-7.01
H7-AAC 6 (0.02) 2(0.02) 0.81 0.50-1.31
H5-ATC 0 (0.00) 0 (0.00) NA NA
Mayo Clinic HI1-AAT 1478 (0.45) 2043 (0.45) 1.01 0.91-1.12
global p-value=0.31 H2-GTC 1140 (0.34) 1593 (0.35) 0.92 0.83-1.02
H3-GAT 350 (0.11) 439 (0.10) 1.05 0.88-1.24
H4-GAC 212 (0.06) 272 (0.06) 1.03 0.83-1.28
H7-AAC 79 (0.02) 83 (0.02) 1.45 1.00-2.09
H5-ATC 46 (0.01) 61 (0.01) 1.38 0.85-2.21
All HI-AAT 3267 (0.46) 3667 (0.46) 1.00 0.93-1.07
global p-value=0.51 H2-GTC 2477 (0.34) 2785 (0.35) 0.97 0.90-1.04
H3-GAT 746 (0.11) 779 (0.10) 1.03 0.92-1.17
H4-GAC 420 (0.06) 472 (0.06) 1.03 0.88-1.20
H7-AAC 152 (0.02) 139 (0.02) 1.28 0.97-1.68
H5-ATC 96 (0.01) 114 (0.01) 1.05 0.75-1.47

* Order of variants in haplotype is as follows rs4343, 1s4291, rs1800764.

Haplotypes are numbered according to their frequency in the Kehoe et al. study [8] (only haplotypes with a frequency >1% in this study are
shown). Haplotype frequencies are shown for the total dataset and in each of the individual series. A haplotype score test was used to calculate
a “global p-value”: for the association of the haplotypes in the total dataset and in each of the individual series. ORs, 95% confidence intervals
and p-values are shown for the individual haplotypes in the MRC series only due to the significant global p-value.

NA = Not applicable. Since H5 was not observed, we were unable to test for association of H5 with LOAD in the Swedish series.

Therefore, these data do not replicate the previ-
ously reported association of the Alu indel [12], which
tags HI1.

DISCUSSION

We have conducted a large case-control study of
three haplotype tagging variants in the LOAD candi-
date gene, ACE, that has previously been associated
with LOAD risk [8, 29-34]. Meta-analyses of ten case-
control series totaling 3,930 LOAD and 4,282 controls
showed no population heterogeneity (all p>0.38)
or evidence for association of rs4343 (OR=1.00,
p=0.90), rs4291 (OR=0.97, p=0.47) or rs1800764
(OR =0.99, p=0.72) with LOAD risk.

We also tested for association of six ACE haplotypes
with LOAD, but found no evidence for association

in the total dataset (global p=0.51). However, we
did observe a significant global haplotypic p-value
of 0.007 in one of the series (the MRC population:
1,430 LOAD patients and 1,611 controls) from the UK,
which was largely due to a novel protective associa-
tion of H3, the haplotype containing the major allele
(G-A-T) at all three variants (9% LOAD, 11% Con-
trols, OR=0.72, p=0.02). However, this association
was not observed in any of the other case-control
populations (all p>0.07) or in the pooled dataset
(p=0.58). Indeed the directionality of ORs observed in
all other populations was opposite to that seen for H3
(OR =1.03-1.25), but none produced significant find-
ings. The modest p-value (p =0.03) for association of
H3 with LOAD, which would not survive Bonferroni
correction for the six haplotypes studied (p <0.008)
along with the lack of association of H3 in the other
nine populations studied here or in previously pub-
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lished studies suggests that the significance of this
association should be treated with caution.

The lack of association in any of our ten series for the
two ACE variants that have been significantly associ-
ated with LOAD following AlzGene meta-analyses is
perhaps not surprising. None of the eight Caucasian
populations used previously to study rs4291 and
included in AlzGene showed significant association
for AD, and only one [35] of the seven Caucasian pop-
ulations used to study rs1800764 showed significant
association (OR=0.86, 95% CI 0.74-0.99). Despite
this, AlzGene reported significant association for both
rs4291 (OR =0.87, 95% CI 0.80-0.95) and rs1800764
(OR =0.84,95% CI1 0.77-0.92) prior to this study. This
is largely due to the fact that there was a consistently
similar directionality of the ORs in the majority of
the Caucasian populations previously used to study
rs4291 and rs1800764, and the resulting increase in
sample size achieved by analyzing the studies together
provides sufficient power to detect association. When
the present data is eventually incorporated into Alz-
gene, these overall associations will likely diminish
further towards the null. However, the fact that we also
observed same direction ORs in seven out of ten series
forrs4291 and six out of ten series for rs1800764, raises
the possibility that a true association of modest effect
size (OR ~ 0.90) is present, but which requires even
larger studies to gain sufficient power for detection.

It is possible that the initial association may have,
by chance, been the result of an over-estimation of the
effect size of these variants that has since diminished in
subsequent follow-up case-control studies. For exam-
ple, in the case of rs4291, the initial study reported ORs
ranging from 0.76-0.84 in four Caucasian populations
each consisting of ~400 subjects [8]. In comparison,
the four subsequent Caucasian studies (all of equal or
larger size than the initial study populations) reported
ORs ranging from 0.76-1.00 [31, 32, 36, 37], and here
we report ORs ranging from 0.80-1.28 in ten popula-
tions of equal or larger size than the initial study thus
further diminishing the effect size. The same appears
true for rs 1800764 where the initial study reported ORs
ranging from 0.74-0.84 [8], compared to ORs ranging
from 0.80-1.09 in subsequent follow-up studies [31,
38, 39] and in the ORs 0.83-1.07 reported here. This
further supports the need for multiple, large follow-
up studies and meta-analyses of all data to reduce the
likelihood of an over-estimation of the effect size.

Failure to detect association could also be explained
by these variants merely tagging one or more truly
functional variants. In such instances, the correspond-
ing degree of linkage disequilibrium between these

variants could differ between series leading to weaker
and/or opposing effects. However, given the Caucasian
background of all these series and the lack of significant
population heterogeneity or association with LOAD
risk for any variant in any individual population, this
possibility seems unlikely.

If ACE variants modify LOAD risk this effect
may be dependent on interactions with other envi-
ronmental/phenotypic background. For example, ACE
mediates hypertensive effects by its function on
angiotensin I to convert it to the vasoactive angiotensin
II [4]. Thus the co-occurrence of hypertension in sub-
groups of AD patients and controls and this being
treated to varying extents by drugs that target the
pathway in which ACE is functional is likely to be
a confounding variable in studies for ACE. Indeed,
studies of AD brain tissue have shown that while
ACE genotypes did not influence levels or activity
of brain ACE [40], rs4343 and rs1800764 have been
associated with soluble AR levels [41], and expo-
sure of neuronal SH-SY5Y cell lines to oligomeric
AB1.42 for 24h resulted in significant increases in
ACE protein level and activity [41]. These collec-
tively suggest that, along with previous evidence of
elevated ACE activity in AD brain [40, 42], there could
be phenotypic-specific post-translational changes to
ACE that contribute to AD pathogenesis. Further
information supporting this are the findings of Ellul
and colleagues [43]. They noted in a longitudinally
assessed clinical cohort, that drugs affecting the Renin
Angiotensin System, in which ACE is very important,
can slow the rates of deterioration of AD and could
serve as a confounder in clinical outcome measurement
in clinical trials. The possibility of phenotype-specific
pharmacogenetic considerations are also reinforced by
findings from a recent GWAS [44] of two young-
onset hypertension populations totaling 1,023 subjects
that reported eight ACE variants were significantly
associated with ACE activity and rs4343 showing the
strongest association (p=3.0 x 1072%). In the same
study an association between blood type and ACE
activity in an independent young-onset hypertension
family study (n=428) was reported and showed a
potential differential blood pressure response to anti-
hypertensive treatment (ACE inhibitors) in subjects
dependent on ACE genotype. This latter observation is
particularly important in view of findings from a num-
ber of observational studies where anti-hypertensive
treatments such as inhibitors of ACE activity (i.e.,
ACE-inhibitors) or of angiotensin II function (i.e.,
angiotensin II receptor antagonists — ARAs) appeared
to be protective against the development of and/or
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progression of LOAD and mild cognitive impairment
(MCI) [45-51].

These data do not replicate previously reported
haplotype associations with LOAD risk in a large
case-control series of 3,930 LOAD patients and 4,282
controls. However, it is clear that when considered
alongside data from other disciplines, these findings
contribute just one important part of what appears to
be a highly complex interaction between ACE genet-
ics, phenotype and pharmacological effects in AD and
which traditional case-control studies are not equipped
to unpick. Larger studies which would include richer
phenotypic data that would allow for more accu-
rate adjustment for confounders and where possible
incorporation of additional measurements specific to
candidate gene function (e.g., qPCR, protein based
measurements, etc.), would likely increase the chances
of unpicking the real genetic involvement of many
current candidate genes.
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