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Abstract. Alzheimer’s disease (AD), the most common form of dementia in the elderly, can have a late-onset sporadic or an
early-onset familial origin. In both cases, the neuropathological hallmarks are the same: senile plaques and neurofibrillary tangles.
Despite AD having a proteinopathic nature, there is strong evidence for an organelle dysfunction-related neuropathology, namely
dysfunctional mitochondria. In this regard, dysfunctional mitochondria and associated exacerbated generation of reactive oxygen
species are among the earliest events in the progression of the disease. Since the maintenance of a healthy mitochondrial pool is
essential given the central role of this organelle in several determinant cellular processes, mitochondrial dysfunction in AD would
be predicted to have profound pluripotent deleterious consequences. Mechanistically, recent reports suggest that mitochondrial
fission/fusion and mitophagy are altered in AD and in in vitro models of disease, and since both processes are reported to be
protective, this review will discuss the role of mitochondrial fission/fusion and mitophagy in the pathogenesis of AD.
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INTRODUCTION

Alzheimer’s disease (AD), the most common form of
dementia, impacts more than 35 million people world-
wide and represents over 50% of autopsy cases and pa-
tients with clinical records. The incidence of the dis-
ease doubles every 5 years after 65 years of age, with
the diagnosis of 1,275 new cases per year per 100,000
persons older than 65 years of age [1]. Clinically, AD
is characterized by progressive memory loss, impair-
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ments in behavior, language, and visuospatial skills,
and culminates in the premature death of the individual
typically within 3–9 years after diagnosis. The etiology
of AD is not fully understood; it has either a sporadic
origin with a late onset, in which the main risk fac-
tor is aging, or an early-onset familial form with a ge-
netic origin involving mutations in the amyloid-β pro-
tein precursor (AβPP) and presenilin 1 and 2 (PS1 and
PS2) genes [2]. Neuropathologically, AD is character-
ized by a selective neuronal and synaptic loss and the
accumulation of extracellular aberrant protein aggre-
gates of amyloid-β (Aβ), usually referred to as senile
plaques, and intracellular aggregates of hyperphospho-
rylated tau protein, usually referred to as neurofibrillary
tangles [3]. Aβ peptides are 36 to 43 amino acids in
length. Aβ40 is the more abundant monomeric form,
but Aβ42 has a greater tendency to aggregate, being
the most toxic form of the peptide. Aβ aggregates to
form soluble oligomeric species (composed of 2 to 6
peptides) and insoluble fibrils (β-pleated sheets) [1]. It
is noteworthy that currently it is believed that the sol-
uble/oligomeric Aβ is the most toxic entity [4,5]. The
number of neurofibrillary tangles reflects the severity
of AD. In this form, hyperphosphorylated tau is insol-
uble and aggregates to form paired helical filamentous
structures that are thought to impair axonal transport.
Intermediate abnormal tau aggregates are cytotoxic [1].
The molecular mechanisms underlying the pathogen-
esis of AD remain largely unclear, however, several
hypotheses are currently being investigated to uncover
early events in the development of the disease. The
hope is that the discovery of such early events of dis-
ease will provide a clinical opportunity for an efficient
therapeutic intervention. The different hypotheses in-
clude, but are certainly not limited to: the mitochon-
drial cascade hypothesis [6–8], oxidative stress [9],
cerebrovascular damage [10,11], tau hyperphosphory-
lation [12–14], and the dominating amyloid cascade
hypothesis [15–17]. This article will position mito-
chondria center stage and suggest a mitocentric view
of AD pathogenesis with other aspects as secondary
byproducts of abnormal mitochondrial function. In-
deed, the mitochondrial cascade hypothesis implicates
these organelles in the formation of Aβ aggregates and
hyperphosphorylated tau. According to Swerdlow and
Khan [6,7], the authors of this hypothesis, Aβ is un-
likely to be the cause of mitochondrial dysfunction in
sporadic AD, but rather a downstream product of mito-
chondrial functional decline with aging. This is further
supported by observations that found AβPP and the γ-
secretase enzymatic complex present in mitochondria.

Similarly, tau phosphorylation is increased by cellular
energetic deficits via mechanisms involving the failure
of glycogen synthase kinase 3β inhibition (for further
reading, see [7]).

Several key physiological functions are attributed
to mitochondria, including cellular energetic mainte-
nance, intracellular Ca2+ homeostasis, and cell life
and death decisions [18,19]. Since neurons have a re-
duced glycolytic capacity, they are highly dependent
on mitochondrial energy production [20]. Unfortunate-
ly, the generation of energy by mitochondria gener-
ates toxic byproducts such as reactive oxygen species
(ROS) – highly reactive, reduced species of oxygen
that are responsible for the oxidative damage of lipids,
proteins, and nucleic acids including the mitochondrial
components themselves, predisposing to apoptotic cell
death [21,22]. Such oxidative injury to mitochondria
and other cellular structures accumulates with time,
leading to several deleterious effects related with aging
and age-related neurodegenerative disorders, as postu-
lated by the free radical theory of aging [21–23]. Giv-
en the sensitivity of neurons to changes in mitochon-
drial function [24], it is not surprising that dysfunc-
tional mitochondria are implicated in neuronal func-
tion and survival and in neuronal diseases associated
with mutations in mitochondrial genes [25]. Indeed,
mitochondrial dysfunction and oxidative injury have a
recognized role in the pathophysiology of AD [7,26,
27], suggesting they might have an early role in the de-
velopment of the disease [27–32]. However, the mech-
anisms underlying mitochondrial dysfunction in AD
and how mitochondrial dysfunction contributes to dis-
ease pathogenesis remains unclear. Nonetheless, sig-
nificant recent findings demonstrate the involvement of
mitochondrial fusion/fission and mitophagy in the dis-
ease process. Mitochondrial fission and fusion process-
es, besides maintaining a normal mitochondrial dis-
tribution and morphology, provide a mechanism for
the segregation of mitochondrial-damaged constituents
waiting to undergo mitophagic elimination [33–35].
This review will discuss the role of mitochondrial fis-
sion/fusion events and their relation with the elimina-
tion of damaged mitochondria by mitophagy, empha-
sizing the importance of these processes in AD.

MITOCHONDRIAL DYSFUNCTION IN
ALZHEIMER’S DISEASE

The mitochondrial electron respiratory chain is re-
sponsible, ultimately, for reducing molecular oxygen to
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water creating a proton gradient across the membrane
and electron transport through the respiratory complex-
es; however, during this efficient process there is a leak
of some electrons, which prematurely reduce oxygen
to generate ROS [36]. ROS have a dual role in the cell
depending on their rate of production. Low or mod-
erate levels of ROS can act as signaling molecules in
several physiological processes, however, an overpro-
duction of these reactive species, as occurs in many
pathological situations such as AD, leads to the dam-
age of cellular macromolecules and organelles includ-
ing mitochondria [37–41]. It was recently demon-
strated that an imbalance in the oxidative status of the
triple transgenic mouse model of AD occurs during the
Aβ oligomerization period, i.e., before the appearance
of Aβ plaques and neurofibrillary tangles, corroborat-
ing the notion that oxidative stress is an early event
in AD pathology [28,42]. Also, others have shown
that mitochondrial dysfunction, translated as bioener-
getic deficits, precedes the appearance of pathology in
mouse models of AD [43]. Likewise, it has been pre-
viously shown that in the brains of AD patients a de-
crease in cytochrome oxidase (COX) activity, an in-
crease in free radical generation, and a reduction in en-
ergy metabolism occur prior to senile plaque formation
suggesting that mitochondrial function impairment and
oxidative damage are early events in the progression of
AD [27–32,44]. Oxidative damage occurs when ROS
oxidize biomolecules, such as proteins, lipids, or nu-
cleic acids, inducing alterations in their native features
which result in the loss of function or gain of delete-
rious function. Somewhat surprisingly, fewer amyloid
plaques are observed in the brains of COX-deficient AD
mice when compared with the COX-competent trans-
genic mice. The reduction in amyloid plaques in the
COX-deficient AD mice is accompanied by a reduc-
tion in Aβ42 level, β-secretase activity, and oxidative
damage [45], with the conclusion that partial defects
in COX do not increase oxidative damage nor predis-
pose to the formation of Aβ deposits [45]. Despite
these seemingly contradictory findings, several studies
point out a number of probable mechanisms to explain
how Aβ induces decreased COX activity. Indeed, it
has been shown that Aβ is imported into mitochondria
by the translocase of the outer membrane (TOM) com-
plex [46], complexes heme groups (critical redox cen-
ters found in subunit I of COX) [47,48], and interacts
with Aβ-binding alcohol dehydrogenase (ABAD) [49,
50]. Additionally, AβPP has a sequence signal that
targets it to mitochondria, blocking the mitochondrial
import channels (TOM40 and TIM23) and thus pre-

venting the import of nuclear-encoded complex IV sub-
units [51]. In line with these data that interconnect
mitochondrial respiratory deficits and Aβ neuropathol-
ogy, it has been recently reported that there is a de-
creased density (number of mitochondria/µm3 of cyto-
plasm) of succinic dehydrogenase-positive mitochon-
dria (mitochondrial respiratory complex II) in the CA1
hippocampal region of 3xTg-AD mice [52]. However,
it has come to light that Aβ is not the only player which
exacerbates mitochondrial dysfunction; indeed it was
discovered that Aβ and tau exert synergistic effects in
the impairment of oxidative phosphorylation system in
3xTg-AD mice [53].

Mitochondria are also intracellular buffers of cyto-
plasmic Ca2+ thus having a key role in normal neu-
rotransmission, short- and long-term plasticity, excito-
toxicity and regulation of gene transcription, processes
highly dependent on Ca2+ levels [18,54–60]. Notably,
Ca2+ homeostasis is compromised in the presence of
Aβ such that Aβ decreases the capacity of mitochon-
dria to accumulate and retain Ca2+ promoting the in-
duction of the permeability transition pore (PTP) [61–
63]. Moreover, intra-mitochondrial Aβ directly inter-
acts with cyclophilin D (CypD), providing a molecular
basis for the Aβ-induced PTP opening [64].

The instability and irreparability of the brain mito-
chondrial genome allows for the gradual accumulation
of mtDNA mutations, especially those induced by ox-
idative modification, notably oxidative-induced alter-
ation of purines and pyrimidines [1]. Such mtDNA
alterations have been linked to an increased incidence
of AD [65,66]. In fact, there are many more sporadic
mutations in the mtDNA control region in AD patients
compared with control cases and several mutations in
the mtDNA control region (e.g., T414G, T414C, and
T477C) that are unique to AD [66]. The mtDNA con-
trol region, the only major noncoding area of the mtD-
NA, is typically 1122bp in length and regulates and
initiates mtDNA replication and transcription [67].

All the mitochondrial function impairments outlined
above exacerbate ROS production, creating a positive
feedback cycle, pushing cells to an apoptotic “death
spiral”. Indeed, high levels of ROS promote the in-
duction of the PTP, a nonselective, high conductance
channel, that, when open, allows the release of apop-
totic factors such as cytochrome c and the apoptosis-
inducing factor (AIF) [68]. A recent study provided ev-
idence of a molecular interaction between AβPP, heat
shock proteins and Bcl-2, diminishing their capacity
to protect against insults, which is likely to lead to a
diverse array of mitochondrial disturbances including
apoptosis [69].
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Mitochondrial disturbances are undoubtedly asso-
ciated with the pathogenesis of AD. Since these or-
ganelles occupy a strategic position in several cellular
processes, it is imperative to maintain a healthy mito-
chondrial pool within cells, which would be accom-
plished by the elimination of damaged mitochondria by
mitophagy, preserving intact mitochondria. The next
sections of this review will be devoted to discussing
whether mitochondrial fission/fusion is a process that
tags damaged mitochondria to mitophagic elimination
and if these processes are efficient in this disease con-
text.

MITOCHONDRIAL FISSION/FUSION

Mitochondria are dynamic organelles that have the
ability to divide and fuse with each other. The processes
of fission and fusion allow the intermixing of metabo-
lites and mtDNA, the proliferation and distribution of
mitochondria, and cellular adaptation to energy de-
mands. This dynamic feature of mitochondria is espe-
cially important in polarized cells like neurons, which
have a high dependence on energy to maintain their
basic physiological functions, such as neurotransmis-
sion through the generation of action potentials across
the membrane [70]. Mitochondrial fission allows mito-
chondrial renewal, redistribution, and proliferation in-
to synapses, whereas mitochondrial fusion facilitates
mitochondrial movement and distribution across ax-
ons into the synapses [33,71,72]. Mitochondrial fu-
sion is suggested as a protective mechanism since it
helps maintain sufficient bioenergetic levels in case of
injury to individual mitochondria [33,73]; additional-
ly, the fission process is also implicated in the main-
tenance of a healthy mitochondrial cellular pool, since
it allows for the segregation of damaged and inactive
mitochondria, a feature observed by a decrease in the
levels of optic atrophy 1 (OPA1) protein, thus tagging
them for autophagic elimination by a mechanism not
fully understood (Fig. 1) [35,74].

A group of GTPases mediates both processes of mi-
tochondrial fission and fusion, however, the mecha-
nisms by which they govern those processes remain to
be completely elucidated. Fission-related proteins are
dynamin-like protein 1 (DLP1, also referred as Drp1)
and Fis1 [2,75]. DLP1 is a member of the conserved
dynamin large GTPase superfamily that controls mem-
brane fission, existing constitutively in a cytosolic pool
and being recruited to the mitochondrial membrane
where it is often detected as a pattern of punctated

spots. The putative mechanistic action of DLP1 on
mitochondrial membrane relies on the formation of a
ring-like complex structure within the mitochondrial
surface that constricts the organelle upon the hydrolysis
of GTP, initiating fission [76]. Fis1 is a mitochondrial
outer membrane protein suggested to act as a recep-
tor for DLP1 [77]. As result of mitochondrial fission,
two spherical mitochondria arise [25,70]. Regarding
the proteins involved in the process of mitochondrial
fusion, three large GTPase proteins assume different
functions and ultrastructural locations. For the fusion
of the outer membrane to occur, two mitofusins – Mfn1
and Mfn2 – interact by their coiled-coil domains, form-
ing homo- and hetero-oligomeric complexes, thus con-
necting the mitochondrial outer membranes of close
mitochondria [78–80]. However, the inner mitochon-
drial membrane also needs to be fused, and OPA1, be-
ing an inner membrane protein that faces the intermem-
brane space, is implicated in this event, requiring Mfn1,
but not Mfn2, to mediate this process [78,81].

Mitochondria divide and fuse in response to sev-
eral stimuli [25,70], however, the precise mecha-
nisms controlling these events are largely unclear.
Some studies have examined post-translational mod-
ifications of mitochondrial dynamics-related proteins
such as DLP1 and OPA1. DLP1 is known to under-
go post-translational modifications such as phospho-
rylation [82–84], ubiquitinylation [85], s-nitrosylation
([86], and sumoylation [87]. Whereas phosphory-
lation at Ser616 [82–84], sumoylation [87], and s-
nitrosylation are known to potentiate mitochondrial fis-
sion, ubiquitinylation [85] decreases the rate of mito-
chondrial fission. For mitochondrial fusion to occur,
the proteolytic cleavage of OPA1 into long and short
isoforms is critical [88]. The machinery that cleaves
OPA1 is not completely clear, nevertheless, several pro-
teases of the inner mitochondrial membrane have been
associated with its processing [80,81,88–90]. How-
ever, low mitochondrial ATP levels, the dissipation
of the membrane potential across the inner membrane
(∆ψm), or apoptotic stimuli [89] induce OPA1 cleav-
age, resulting in the loss of long isoforms, impairing
mitochondrial fusion [80,91–93].

MITOPHAGY

Macroautophagy is a lysosomal-dependent, self-
digestive, evolutionarily-conserved cellular process in-
volved in the degradation of misfolded proteins and
damaged organelles, which is also activated in situ-
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Fig. 1. Core molecular machinery involved in the formation of the autophagosome during the autophagic process. Autophagy occurs at
basal levels but can also be upregulated by a number of stress signals such as starvation. Moreover, autophagy is negatively modulated by
3-methyladenine, through the inhibition of phosphatidylinositol 3-kinase (PI3K–Vps34/Beclin1/Vps15), and positively modulated by rapamycin,
through its inhibitory action on mammalian target of rapamycin (mTOR). Both PI3K and mTOR are involved in the induction/nucleation phase
of the formation of the autophagic vacuole (AV). At this stage an isolation membrane called phagophore is formed. PI3K activity renders
the activation of two different protein conjugation systems: Atg5/Atg12/Atg16 and Atg8, the yeast homologue of the mammalian LC3. The
conjugation of Atg12 to Atg5 and Atg16 is possible upon the activation of the E1-like enzyme Atg7 and the E2-like enzyme Atg10. The
conjugation of LC3 to phosphatidylethanolamine (PE) is made possible by the sequential action of the protease Atg4, the E1-like enzyme Atg7 and
the E2-like enzyme Atg3. mTOR activity leads to the phosphorylation of Atg13, disabling its conjugation to ULK1, the mammalian homologue
of the yeast Atg1, inhibiting autophagy. When mTOR is inactive, Atg13 conjugates to ULK1. The conjugation of these proteins to the lipidic
membranes enables their elongation, leading ultimately to the fusion of the edges of the forming vesicle. The fusion of the AV with the lysosome
is enabled by the action of the soluble NSF attachment protein receptor (SNARE) and Rab protein, particularly, Rab7, forming the autolysosome, a
degradation-competent structure. A more specific mechanism was suggested to explain the selective degradation of mitochondria, which involves
the conjugation of Atg11, an adaptor protein involved in selective types of autophagy, with LC3, followed by the anchoring of Atg32, proved
as a protein specifically involved in mitophagy, to Atg11. Which signals trigger the mitophagic process is still controversial, but mitochondrial
fission has been suggested to play role in this process (for more detail see text).

ations of starvation to provide energy to cells. Al-
though this review is not intended to give a detailed
analysis on the autophagic pathway, it will provide
a brief overview of its core machinery. During au-
tophagy, several cytosolic components are engulfed in
double-membrane structures termed autophagic vac-
uoles (AVs) or autophagosomes [94,95]. Although,
in mammals, the origin of these membranes is not
completely understood, in yeast, the proposed site for

AVs formation is the phagophore assembly site (PAS).
Most of the proteins involved in the assembly of the
phagophore and its elongation to form an AV are locat-
ed at the PAS [96,97]. It has been suggested that a pos-
sible source of autophagosomal membranes is the trans-
Golgi network [98]. The formation of AVs involves a
very specific molecular machinery in which only some
proteins are shared with the endocytic pathway, such
as the Class III phosphatidylinositol 3-kinase. How-
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ever, during the maturation of AVs they can fuse with
endosomes before fusing with the lysosomes [96,98].
The formation of AVs undergoes a multistep process of
maturation, such as regulation/nucleation, in which a
signal triggers the formation of an isolation membrane
called a phagophore. The autophagosome is complete-
ly formed when the membrane edges of the phagophore
fuse, followed by the last events of the maturation pro-
cess, which are the dissolution of the inner membrane,
fusion with lysosomes, cargo degradation, and release
of macromolecules (Fig. 1) [94,95]. During the vesicle
nucleation process, two kinases are involved: 1) the
Ser/Thr protein kinase mammalian target of rapamycin
(mTOR), with an inhibitory action on autophagy, its
activity being negatively modulated by rapamycin; and
2) the Class III phosphatidylinositol 3-kinase (Class III
PI3K) complex, composed of three highly conserved
proteins, the protein kinase vacuolar protein sorting
15 (Vps15), the phosphatidylinositol 3-kinase Vps34,
and a modulatory component named Beclin 1/Atg6,
with a positive modulatory action on autophagy, where
activity is negatively modulated by 3-methyladenine
(Fig. 1) [99,100]. Both these molecules act upstream
of autophagy-related (Atg) proteins [96,99,101]. The
activity of mTOR is positively modulated by the Class
I PI3K/Akt pathway [99]. The inhibitory action of
mTOR on autophagy is due to the phosphorylation of
the regulatory subunit Atg13, disabling its conjugation
with Atg1, the yeast homologue of the mammalian unc-
51-like kinase 1 (ULK1) (Fig. 1) [102]. Despite this
knowledge, very little is known about this branch of the
autophagic signaling pathway. Indeed, recently, more
proteins were found to belong to this enzymatic com-
plex (for further reading, see [103–106]). The role of
Class III PI3K in the assembly of AVs is also poorly
understood, one suggestion being that the formation
of phosphatidylinositol 3-phosphate by Class III PI3K
activity enables Atg proteins to bind to the membrane,
since these proteins bind to this phospholipid [96,100].
There are two evolutionarily conserved ubiquitin-like
conjugation systems of Atg proteins, essential for the
vesicle elongation and vesicle completion processes in
both yeast and mammals (Fig. 1) [107]. Atg5/Atg12
and Atg16 are one of the conjugation systems and the
other is composed by lipidated LC3, the mammalian
homologue of yeast Atg8 (Fig. 1) (for further readings,
see [108]). Despite the relevance of these proteins in the
autophagic process, recent work performed by Nishida
and co-workers [109] demonstrated the existence of an
alternative process, independent of Atg5, in which the
lipidation of LC3 to form LC3-II does not occur. Ad-

ditionally, the same authors found that this alternative
process of autophagy is regulated by several autophag-
ic proteins including ULK1 and Beclin1 [109]. This
aside, ultimately, the AV fuses with the lysosome to
form the autolysosome, exposing the content of the AV
to the action of hydrolases. The fusion process of the
AVs to the lysosomes can be inhibited with bafilomycin
A1 [110] and requires two families of proteins, the sol-
uble NSF attachment protein receptors (SNAREs) and
Rab proteins, specifically, Rab7 (Fig. 1) [111,112].

The term mitophagy was coined by Lemasters to
describe the selective degradation of mitochondria by
autophagy [113]. Since then, the search for molec-
ular specificities in the process of mitophagic elimi-
nation has gained attention [114]. The most exciting
reports recently brought together data that suggest a
molecular mechanism that tags mitochondria for mi-
tophagy. A screening of several mitophagy-deficient
yeast mutants revealed Atg32 as a new protein that is
specifically implicated in the selective degradation of
mitochondria by mitophagy [115]. Atg32 is an inte-
gral membrane protein localized in the mitochondrial
outer membrane, docking Atg11, an adaptor protein
involved in selective types of autophagy, which sub-
sequently binds Atg8/LC3, recruiting mitochondria to
AVs (Fig. 1) [115–117]. However several questions re-
main to be answered such as: What is the mammalian
homologue of Atg32? What kind of signals trigger this
molecular machinery? In the latter, it has been suggest-
ed that Atg32 intramitochondrial motif may be a sensor
of mitochondrial dysfunction [117]. In yeast, a number
of mitochondrial perturbations were shown to trigger
mitophagy such as impairment of the oxidative phos-
phorylation system [118], loss of cation homeostasis
by the alteration of K+/H+ exchanger activity [119],
and increased ROS levels, as suggested by the impair-
ment of the reduced glutathione pool [120]. Lemasters
group demonstrated in mammalian cells that the in-
duction of autophagy was preceded by the depolariza-
tion of mitochondria and PTP opening [113,121,122].
Coenzyme Q10 (CoQ10) deficiency in human fibrob-
lasts was shown to be associated with decreased effi-
ciency in the electron transport chain, decreased ∆ψm,
increased ROS production, and susceptibility to PTP
opening, and these features strongly correlate with in-
creased expression of autophagy-related genes, lysoso-
mal markers, and mitophagy [123]. This observation
is not surprising since CoQ10, the most predominant
form of CoQ in humans, is part of the electron transport
chain, accepting electrons from respiratory complexes
I and II and has a described antioxidant action [30].
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As already discussed, in mammalian cells, depolarized
mitochondria fail to undergo fusion and fission events,
which target them for mitophagic clearance [35]. In-
deed, inhibition of autophagy results in decreased ∆ψm

and fusion arrestment in rat myoblasts and human fi-
broblasts [124].

Altogether, these observations suggest that fis-
sion/fusion events exert a protective effect against mito-
chondrial dysfunction through the segregation of dam-
aged components into a mitochondrion that undergoes
mitophagy.

MITOCHONDRIAL FISSION/FUSION AND
MITOPHAGY IN ALZHEIMER’S DISEASE: IS
THERE A CONNECTION?

AD brains show ultrastructural alterations in mito-
chondrial morphology such as reduced size and bro-
ken internal membrane cristae [125,126]. Moreover, it
is recognized that mitophagy exerts protective effects
in a number of deleterious situations, such as CoQ10

deficiency [123], hypoxia [127], and rotenone expo-
sure [128]. Little is known about mitophagy in AD
brains; however, it is known that autophagy loses ef-
ficiency with the progression of the disease, mainly
through a decrease in the efficiency of the lysosomal
system [129–133]. As discussed previously, mTOR
activity can be positively modulated by the Class I
PI3K/Akt pathway. This pathway, which affects the
autophagic pathway, has also been shown to be af-
fected in AD. While some studies show that Aβ re-
duces Akt activity and that elevating its activity rescues
cell death [134], others show that Aβ upregulates Akt
phosphorylation [135]. More recently, in a Drosophi-
la genetic model of AD that overexpresses Aβ, it was
demonstrated that Aβ stimulates Class I PI3K activ-
ity [136]. Importantly, an increase in Akt activity is
found in the temporal cortex of postmortem AD brains
suggesting an upregulation of the Class I PI3K/Akt
pathway in patients [137–140] and increased phospho-
rylation of the Akt substrate mTOR [137,141,142]. Ev-
idence showing mitophagy in AD is very scarce; how-
ever, Moreira and coworkers [143,144] showed that
there is increased mitochondrial autophagy in AD. Nev-
ertheless several questions are still unanswered: 1) Are
sequestered mitochondria in AVs being efficiently de-
livered to lysosomal degradation?; 2) Is increased mi-
tophagy being protective?; 3) Does the process begin
at the early stages of disease, or does it start too late
to render protection to the cells?; 4) What tags dam-

aged mitochondria for degradation, or is mitophagy not
selective to damaged mitochondria?

The first and the latter questions are already being
examined and answered. Based on previously dis-
cussed subjects, it is expected that despite increased
mitochondria sequestration in AVs, they are probably
not being efficiently degraded. Also since there are
indications that mitochondrial fission and selective fu-
sion direct the elimination of damaged mitochondria
(Fig. 1) [35], it is expected that the same happens
in AD. Indeed, Wang and coworkers determined the
state of mitochondrial fission/fusion events in fibrob-
lasts from sporadic AD patients [145,146] and M17
neuroblastoma cells overexpressing the Swedish vari-
ant of AβPP (AβPPswe) [147]. The imbalance in-
duced by Aβ in mitochondrial fission/fusion proteins
occurs either by post-translational modification, such
as S-nitrosylation [86], or by alteration of their expres-
sion [145–147]. Whereas it is reported in fibroblasts
from sporadic AD patients that DLP1 protein levels are
decreased, thus impairing fission, which is translated
into the development of elongated mitochondria [145,
146], at the same time it is described in M17 neuroblas-
toma cells overexpressing AβPPswe that besides de-
creased levels of DLP1, OPA1 proteins levels are de-
creased and Fis1 levels increased [147]. AβPP over-
expression further induces a severe mitochondrial frag-
mentation phenotype in both M17 and primary hip-
pocampal neurons, concomitantly with a reduction in
the number of mitochondria [147]. Altogether these
data suggest that mitochondrial fission is upregulated,
probably in an attempt to segregate damaged mitochon-
dria to degradation by mitophagy, which is in agree-
ment with the observation of reduced mitochondrial
number [125]. However, the destination of these fis-
sioned mitochondria to mitophagy needs to be further
clarified and more importantly, the hypothesis that mi-
tophagy is not efficient due to an impairment of the
lysosomal system remains to be addressed.

CONCLUSION

Mitochondrial dysfunction is now consensually ac-
cepted as being a feature in AD brain, however, whether
it is an early causal event or a consequence of oth-
er neuropathological events remains under intense de-
bate. Maintaining a large number of healthy mito-
chondria in cells is critical to cellular survival since
these organelles occupy a strategic position in several
key cellular processes. This is particularly important
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in cells with high energetic demands such as neurons.
It has been observed that mitochondria are highly dy-
namic organelles, dividing and fusing with each other.
Both fission and fusion processes have been established
as beneficial, responding to reestablish energetic lev-
els in case of an injury to individual mitochondria or
by segregating damaged mitochondrial components to
a single mitochondrion that is tagged to undergo mi-
tophagy. The role of mitophagy in AD is not currently
understood, and it is unclear whether mitochondria are
eventually degraded or if the process fails to efficient-
ly eliminate mitochondria. Further knowledge about
these mitochondrial events in AD will hopefully pro-
vide a window for therapeutic intervention targeting
improvements in mitochondrial function.
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