Journal of Alzheimer’s Disease 20 (2010) S369-S379 S369
DOI 10.3233/JAD-2010-100543
10S Press

Review

Mitochondria and the Link Between
Neuroinflammation and Neurodegeneration

Massimiliano Di Filippo®?, Davide Chiasserini®P?, Alessandro Tozzi®P, Barbara Picconi® and
Paolo Calabresi®"*

aClinica Neurologica, Universita di Perugia, Perugia, Italy

P|RCCSFondazione S. Lucia, Rome, Italy

Accepted 15 April 2010

Abstract. The innate immune response is thought to exert a dichotomous role in the brain. Indeed, although molecules of the
innate immune response can promote repair mechanisms, during neuroinflammatory processes many harmful mediators are also
released. Signs of neuroinflammation and neurodegeneration represent a ubiquitous pathological finding during the course of
several different neurological diseases. Interestingly, it has been proposed that mitochondria may exert a crucial role in the
pathogenesis of both inflammatory and neurodegenerative central nervous system disorders. In this review, we describe the
mechanisms by which neuroinflammation and mitochondrial impairment may synergistically trigger a vicious cycle ultimately
leading to neuronal death. In particular, we describe the close relationship existing among neuroinflammation, neurodegeneration,
and mitochondrial impairment in three different widely-diffused neurological diseases in which these pathogenetic events coexist,

namely multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease.
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INTRODUCTION

For many years the central nervous system (CNS)
has been considered to be immune privileged. This
view has been challenged by recent studies carried out
in infectious and autoimmune models, and it is now
well accepted that the nervous and immune systems are
engaged in an intense cross-talk [1-5].

In particular, an active immune surveillance of the
CNS occurs. Systemic inflammation and tissue dam-
age may lead to activation of microglia, the main ‘arm’
of the innate CNS immune system [2,6] and to the sub-
sequent release of inflammatory mediators and upregu-
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lation of immune receptors on other CNS cells. These
events may eventually lead to tissue damage and to the
release of proteins that are drained into local lymph
nodes where B- and T-cell responses are initiated [2,7].
After priming, B- and T-cells cross the blood-brain bar-
rier and migrate to the site of antigen exposure where
they encounter their antigen on appropriate major his-
tocompatibility (MHC) molecules and develop effector
functions, acting synergistically in order to remove the
antigenic source from the CNS through both the release
of inflammatory mediators and the direct targeting of
presenting cells [2].

The innate immune response is thought to exert a
dichotomous role in the brain [8]. Indeed, although
molecules of the innate immune response can promote
repair and remyelination and trigger the production of
neurotrophic factors in response to injury [8], many po-
tentially harmful mediators such as cytokines, reactive

ISSN 1387-2877/10/$27.50 © 2010 — 10S Press and the authors. All rights reserved



S370 M. Di Filippo et al. / Mitochondria and Neuroinflammation

oxygen species (ROS), and nitric oxide (NO) are also
released [2,8].

Acute neuroinflammation usually occurs in infec-
tious diseases, where the influx of immune cells in-
to the CNS is aimed at removing potentially harmful
pathogens and during the course of chronic autoim-
mune disorders of the brain, such as multiple sclerosis
(MS) [9].

Besides the described conditions, in which neuroin-
flammation seems to represent a primary pathogenet-
ic event, it has been demonstrated that inflammato-
ry changes may exert a crucial role also in primarily
neurodegenerative CNS disorders such as Alzheimer’s
disease (AD) [10] and basal ganglia disorders like
Parkinson’s disease (PD) [11] and Huntington’s disease
(HD) [12].

The close link that has been demonstrated to occur
between inflammation and neurodegeneration in the
pathogenesis of this heterogeneous group of neurolog-
ical diseases led to the hypothesis that immune mecha-
nisms may control and even promote neuronal degener-
ation and that common immunological pathways may
result in neurotoxicity and subsequent neuronal death
both in inflammatory and non-inflammatory CNS dis-
eases [12,13]. For the same reasons the classical di-
chotomy between inflammatory and degenerative dis-
eases of the CNS has recently been challenged and
it is now believed that different neurological diseases
probably share the molecular and synaptic mechanisms
leading to symptoms progression and disability.

Interestingly, the similarities existing between in-
flammatory and neurodegenerative CNS disorders are
not limited to the potential pathogenetic role of inflam-
matory processes. It is now well accepted that mito-
chondria are crucial players in the pathogenetic sce-
nario of both inflammatory diseases, such as MS [14—
16] and primary neurodegenerative disorders such as
PD [17-20], AD [21,22], and HD [23].

The evidence of mitochondrial dysfunctions in both
neuroinflammatory and neurodegenerative CNS disor-
ders may lead to the hypothesis that the alteration of
mitochondrial activity could somehow represent the
link between neuroinflammation and neuronal degen-
eration.

In this review, we will describe the mechanisms by
which neuroinflammation and mitochondrial impair-
ment may synergistically trigger a vicious cycle ulti-
mately leading to neuronal death. In particular, we will
describe the close relationship existing among neuroin-
flammation, neurodegeneration, and mitochondrial im-
pairment in three different widely-diffused neurologi-

cal diseases in which these pathogenetic events coexist.
The potential role of mitochondria as a link between
neuronal inflammation and degeneration will be dis-
cussed in the context of MS, a prototypic neuroinflam-
matory CNS disease, and with regard to PD and AD,
two primary neurodegenerative disorders.

MICROGLIA, INFLAMMATION, AND
MITOCHONDRIAL IMPAIRMENT

Microglial cells, the main cell type of the innate
immune system in the brain are present throughout the
CNS, with the white matter generally containing fewer
microglial cells than the grey matter [6].

In the adult healthy brain, the majority of microglial
cells are postulated to be in the ‘resting’ state. Under
these physiological conditions, microglial cells display
a small cell soma and a characteristic ramified mor-
phology with numerous branching processes that work
as dynamic structures extending and retracting in order
to monitor their microenvironment [24,25].

In response to different pathological insults and
blood-brain barrier disruption, resting microglia rapid-
ly becomes activated and reorganize its architectural
structure [24,25] in order to change from a monitoring
role to one of protection and repair [26].

The acute response of microglial cells to neuroin-
flammatory stimuli involves changes in cell phenotype
and gene expression, including the de novo expres-
sion of the inducible isoform of nitric oxide synthase
(iNOS) and cytokines such as tumor necrosis factor «
(TNFa) and interleukin-13 (IL-15). This acute mi-
croglial neuroinflammatory response involves the re-
lease of several inflammatory mediators such as cy-
tokines and chemokines and is capable to trigger ox-
idative and nitrosative stress [27]. In this scenario, the
mitochondria represent a particularly vulnerable target
of oxidative and nitrosative stress and harmful proin-
flammatory mediators released by microglial cells.

Microglia-induced oxidative and nitrosative stress and
mitochondrial impairment

Activated microglia can produce and release both
ROS and nitrogen species (RNS) due to cataly-
sis by nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, a multi-subunit enzyme complex
that is activated during host defense [28]. Recent evi-
dence from both neuronal and non-neuronal cells sug-
gests that ROS and RNS function as important mes-
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senger molecules that are normal components of signal
transduction cascades during physiological processes.
However, although during neuroinflammation the pri-
mary aim of these highly reactive free radicals is to
kill surrounding pathogens, these molecules can also
oxidize and damage proteins, nucleic acids, polysac-
charides, and lipids and lead to mitochondrial damage.
Interestingly, ROS and RNS can cause damage to es-
sential components of the mitochondria such as mito-
chondrial DNA [29]. This latter evidence led to the hy-
pothesis that ROS, generated from oxidative phospho-
rylation, may cause mutations in the mtDNA, which in
turn leads to mitochondrial oxidative phosphorylation
dysfunction and to an increased production of ROS,
potentially triggering a vicious cycle [30,31]. Indeed,
the mitochondrial respiratory chain, which is respon-
sible for most of the cellular oxygen reduction and
energy production, is also responsible for generating
most of the cellular ROS, including superoxide (O3),
hydrogen peroxide (H>O-), and the hydroxyl radical
(OH). Interestingly, O5 can interact with nitric ox-
ide (NO) to form peroxynitrite (ONOO ™), an anion
with strong oxidant properties. NO is a highly reac-
tive molecule with important physiological roles in bi-
ological systems and a key role during inflammatory
processes [32]. The nitric oxide synthase (NOS) fam-
ily of enzymes is responsible for the synthesis of NO,
catalyzing the conversion of L-arginine to L-citrulline
plus NO, and consists of three isoforms, neuronal NOS
(nNOS) and endothelial NOS (eNOS) — which are con-
stitutively expressed —and iNOS that can be induced in
astrocytes or microglial cells in particular conditions,
such as during inflammation [32]. The involvement
of nitrosative stress in the pathogenesis of neurodegen-
erative and neuroinflammatory disorders is generally
accepted. In these pathological conditions, NO pro-
duced in excess by the inflammation-related induction
of iINOS may cause further mitochondrial impairment
via different mechanisms, such as by the inhibition of
cytochrome oxidase in competition with oxygen [33]
and by the reversible and irreversible damage to the
neuronal mitochondrial respiratory chain [34].

Microglia-released cytokines and mitochondrial
function: the example of TNFa

As described above, activated microglia can also re-
lease proinflammatory cytokines such as TNF-«, a po-
tent proinflammatory cytokine, that was isolated more
than 10 years ago and that is now recognized to exert
a key role as inflammatory responses modulator [35]

and during the cross talk between the immune and
the nervous systems [36]. Evidence to date suggests
a role of this pro-inflammatory cytokine in influenc-
ing mitochondrial function. It has been shown that
TNF-« affects neuritic transport of mitochondria in
motor neurons, inducing mitochondrial redistribution
toward the cell soma [37] and that combined treat-
ment with TNF« and interferon-+ significantly alters
morphological features and functionality of mitochon-
dria in cells expressing mutant superoxide dismutase
(mutSOD1) [38]. The same combination of cytokines
(TNFa and interferon-+), has been demonstrated to in-
crease iNOS expression and to cause elevated NO pro-
duction in primary cultures of rat oligodendrocytes as-
sociated with NO-mediated damage to mitochondrial
DNA [39]. TNFa can also cause mitochondrial im-
pairment indirectly via the autocrine stimulation of mi-
croglial glutamate release and the subsequent trigger-
ing of excitotoxic mechanisms [40]. Interestingly, it
has been also demonstrated that members of the TNF
family such as the TNF-related apoptosis-inducing lig-
and (TRAIL), might be able to interfere with the molec-
ular mechanisms underlying the mitochondrial control
of apoptosis [41] with the potential to contribute to
neuronal damage during CNS inflammation [42]. In
fact, mitochondria are known to provide a major switch
for the initiation of apoptosis. Several death receptor-
independent stimuli can trigger the translocation of pro-
apoptotic molecules such as Bax to the mitochondria
that in turn causes the opening of a non-specific mito-
chondrial inner membrane channel, the mitochondrial
permeability transition pore (mtPTP), and the perme-
abilization of the mitochondrial outer membrane [43].
The subsequent dissipation of the mitochondrial inner
membrane potential (A¥m) causes the release of sev-
eral molecules involved in caspase activation and in
caspase-independent cell death [44]. Nevertheless, al-
though several cytokines, including TNFq, are known
to influence apoptosis in non-neuronal cells, the con-
tribution of cytokines-induced apoptosis to neuronal
death in the adult CNS still remains controversial [45].

MITOCHONDRIAL TOXINSINDUCED
NEUROINFLAMMATION

In physiological conditions mitochondria generate
cellular energy in the form of ATP by the process of ox-
idative phosphorylation. The electron transport chain,
located within the mitochondrial inner membrane, con-
tains several components such as NADH dehydroge-



S372 M. Di Filippo et al. / Mitochondria and Neuroinflammation

nase (respiratory complex 1) and succinate dehydroge-
nase (respiratory complex Il) and is involved in ox-
idative phosphorylation by oxidizing organic acids and
fatty acids with atomic oxygen to generate water [46].
Mitochondrial toxins selectively targeting the respira-
tory complexes | and Il cause oxidative phosphoryla-
tion deficits and consequently an impairment of ATP
production, oxidative stress, and energy deficits that
ultimately cause neuronal death [18,47]. For this rea-
son, pharmacological inhibitors of mitochondrial res-
piratory complexes are currently used to induce ex-
perimental models of diseases in which mitochondria
play a pathogenetic role, such as PD and HD [18,
47]. Interestingly, it has been demonstrated that mi-
tochondrial toxins also cause different degrees of neu-
roinflammation, suggesting that a primary damage to
the mitochondrial respiratory chain represents, per se,
a trigger for microglial activation and neuroinflam-
matory processes. In particular, several different in-
hibitors of nicotinamide adenine dinucleotide (NADH)
ubiquinone oxidoreductase (complex 1), the first en-
zyme of the mitochondrial respiratory chain [48], have
been shown to induce inflammatory reactions within
the CNS. A commonly used inhibitor of mitochondri-
al complex | is rotenone, a naturally occurring com-
pound derived from the roots of certain tropical plant
species. Rotenone is highly lipophilic, freely crosses
cellular membranes, and impairs oxidative phosphory-
lation by selectively inhibiting complex I [49]. In the
nucleus striatum, the electrophysiological correlate of
rotenone-induced neuronal dysfunction is represented
by a dose-dependent and irreversible loss of the cor-
ticostriatal field potential amplitude, related to the de-
velopment of a membrane depolarization/inward cur-
rent in striatal spiny neurons [50]. It has been demon-
strated that microglial NADPH oxidase plays an impor-
tant role in mediating rotenone-induced degeneration
of dopaminergic neurons [51] and that rotenone ad-
ministration causes microglial activation both in rodent
models [52] and in human microglial cell lines [53].
Moreover, it has been reported that nontoxic or mini-
mally toxic concentrations of rotenone (0.5 nm) and the
inflammogen lipopolysaccharide (LPS) synergistically
induce neurotoxicity when the two agents are applied
either simultaneously or in tandem [54].

Two other complex | inhibitors that have been
widely used to model PD in animals, namely 6-
hydroxydopamine (6-OHDA) and methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), have been demon-
strated to induce neuroinflammatory changes in the
brain. 6-OHDA, the first agent used to model PD, can-

not cross the blood brain barrier and is usually admin-
istered by local stereotaxic injection directly into the
substantia nigra (SN) or in the striatum in order to study
the structural and electrophysiological consequences of
the selective loss of the nigrostriatal pathway [55,56].
In the brains of 6-OHDA-lesioned rats, a significant
increase in the number of activated microglial cells has
been shown [57]. Similarly, activated microglia as well
as infiltration of T-lymphocytes has been demonstrated
in the brains of both monkeys and mice after systemic
injection of MPTP [57-59], a protoxin that, once in the
brain, is oxidized into its active metabolite, 1-methyl-
4-phenylpiridinium (MPP ) by monoamine oxidase B
(MAOB). MPP is taken up by the plasma-membrane
dopamine transporter and is concentrated in mitochon-
dria where it inhibits complex | causing neurotoxicity.
Interestingly, microglial NADPH seems to play an im-
portant role also in MPTP-induced neurotoxicity [60].

Another mitochondrial complex inhibitor, 3-nitro-
propionic acid (3-NP), a suicide inhibitor of respirato-
ry complex I, has been widely used both in vitro [61,
62] and in vivo [63,64] to model pathological changes
associated with HD, a basal ganglia neurodegenerative
disorder in which both mitochondrial impairment and
neuroinflammation seem to play a pathogenetic role.
Similarly to what it had been demonstrated for com-
plex I inhibitors, it has been shown that 3-NP causes
the activation of both a human microglia cell line and
rodents microglial cells [65].

THE VICIOUSCYCLE TRIGGERED BY
MITOCHONDRIAL IMPAIRMENT AND
NEUROINFLAMMATION: A HYPOTHESIS

As described above, microglia are a critical point of
convergence for many different pathological triggers
and are able to elicit an adaptive immune response. It
is believed that an acute neuroinflammatory response
may be beneficial to the CNS, since it may prevent fur-
ther damage to the neurons and even promote repair
mechanisms [26]. In contrast, chronic neuroinflam-
mation could represent a self-perpetuating detrimental
response persisting long after the initial insult [26].

Indeed as described above, once activated, microglial
cells can release potentially harmful factors, such as
ROS, RNS, and proinflammatory cytokines that may
stimulate the activation of additional microglial cells
and cause damage to essential components of the mi-
tochondria, such as mtDNA and enzymes of the mi-
tochondrial respiratory chain. Conversely and at the
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same time, a primary mitochondrial dysfunction, such
as that triggered by the administration of mitochondrial
toxins, is able to induce microglial activation. Interest-
ingly, both these events (microglial activation and mito-
chondrial impairment) have been demonstrated to trig-
ger, per se, the molecular pathways leading to neuronal
degeneration [27,66].

For this reason, it is possible to hypothesize that, in-
dependently from the primary pathogenetic event (ei-
ther inflammatory or mitochondrial in nature), the com-
plex and probably synergistic interaction between neu-
roinflammatory processes and mitochondria may result
in the generation of a self-renewing vicious cycle ulti-
mately leading to neuronal death. In this context, the
mitochondria may be seen as a crucial link between
neuroinflammation and neurodegeneration. This lat-
ter hypothesis would explain the fact that signs of mi-
tochondrial impairment seem to be a constant finding
in both inflammatory and neurodegenerative CNS dis-
eases and that in different human pathological con-
ditions neurodegeneration and neuroinflammation are
closely intertwined processes. The possibility of a vi-
cious cycle triggered by either inflammation or by pri-
mary mitochondrial impairment has not been proved
to date and it still represents a hypothesis that requires
further experimental efforts to be demonstrated.

MITOCHONDRIA: THE ULTIMATE TARGET
LEADING TO NEURODEGENERATION IN
MULTIPLE SCLERQOSIS?

MS is one of the most common chronic and disabling
disorders of the CNS and is considered to be primarily
an inflammatory disorder. MS usually begins in young
adulthood and, in 80-90 % of the cases, starts with a
relapsing-remitting course [9]. In the initial, relapsing-
remitting phases of the disease, inflammation is usually
transient. However, over the course of the disease, MS-
associated pathological changes become dominated by
widespread microglial activation and chronic neuroax-
onal degeneration, the clinical correlate of which is
progressive accumulation of disability and brain atro-
phy [9,67].

Accordingly, over time, the number of relapses de-
creases, but a high proportion of patients develop the
so-called secondary progressive phase of MS, in which
neurological deficits progress independently of relaps-
es [9].

There is substantial evidence that immune dysreg-
ulation plays an important role in the disease process

in MS, at least in its initial phases. In particular, the
prevailing hypothesis is that autoreactive T cells of the
CD4™ T helper (Th)1 population orchestrate the MS in-
flammatory pathogenetic process [2]. According to the
primary inflammatory nature of this CNS disease, MS
demyelinated areas are characterized by inflammatory
infiltrates that contain blood-derived myelin-specific T
cells, B cells, and a multitude of non-specific, effector
mononuclear cells [68], and it has been demonstrat-
ed that inflammatory cytokines (such as IL13, TNF-
«) and other inflammation-related molecules (such as
iNOS) are expressed in active MS plaques [68,69].

Unfortunately, the precise mechanisms underlying
neuroaxonal damage and disease progression in MS are
still far from being elucidated [70]. A potential patho-
genetic role of mitochondrial dysfunction in mediat-
ing the MS-related neuroaxonal damage has been pro-
posed, based on the evidence that alterations in mito-
chondrial DNA, mitochondrial structural changes, and
abnormal mitochondrial enzyme activities have been
reported in patients with MS and in experimental mod-
els of the disease [71]. In particular, in MS motor cor-
tex, several nuclear-encoded mitochondrial genes, and
the functional activities of mitochondrial respiratory
chain complexes | and Il have been found to be de-
creased [14]. Moreover, it has been recently shown that
functionally important defects of mitochondrial respi-
ratory chain complex IV including its catalytic com-
ponent (COX-I) are present in a particular subtype of
active MS lesions [15].

It has also been shown that a complex IV defect is
present in amyloid-( protein precursor positive injured
demyelinated axons [16], suggesting a potentially cru-
cial role of mitochondrial dysfunction in driving the
process of axonal degeneration in MS. In consideration
of the fact that microglia/macrophages are known to
be a source of ROS and that complex IV is susceptible
to ROS-mediated damage, the authors also determined
the density of microglia and macrophages in active and
inactive areas of chronic MS lesions and made corre-
lations with complex IV activity [16]. Surprisingly,
they found that a significant inverse correlation was
present between the density of microglia/macrophages
and global (axonal and glial) complex IV activity in
demyelinated areas relative to normal appearing white
matter, leading to the hypothesis that the complex 1V
defect associated with axonal injury was mediated by
soluble products of innate immunity [16].

These data suggest that neuroaxonal damage in MS
may be caused by the inflammation-induced myelin
damage through a mitochondrial-centered mechanism.
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A crucial question that still needs an answer is “how a
process triggered by inflammation and myelin damage
can lead to degeneration of axons and neurons and to
the consequent development of the progressive forms
of MS?”.

It has been demonstrated that following the loss of
myelin induced by the immune attack, axons undergo
compensatory changes in order to restore impulse con-
duction, such as redistribution of Na™ channels [72].
In physiological conditions, axonal Na™ entry is rebal-
anced by removal through internodal Na /K™ ATPase,
which uses ATP produced by axonal mitochondria to
pump Na™ out in exchange for K+. It has been postulat-
ed that, during MS, the redistribution of Na™ channels
along demyelinated axons may result in increased Na+
influx during impulse transmission and increased ATP
demand for operating Na/TK* ATPase pumps [72].
The consequent increase in energy demand and re-
duced axonal ATP contents would induce a chronic
state of virtual hypoxia in chronically demyelinated
axons [73]. In response to such a state several detri-
mental molecular events are triggered, such as overac-
tivation of ionotropic glutamate receptors, reversal of
the Na*/Ca?* exchanger activity, activation of voltage-
gated Ca* channels, increase in axonal Ca* concen-
trations, and activation of Ca2*-dependent degradative
pathways [73]. In this scenario of increased energy
request, in which the balance of energy supply versus
demand is altered, the mitochondria is thought to play a
crucial role. In particular, since many of the detrimental
effects primarily triggered by inflammatory demyeli-
nation seem to converge to the mitochondria it is pos-
sible to hypothesize that these subcellular organelles
may eventually be irreversibly damaged. In this condi-
tion, mitochondrial activity could be also compromised
by inherent defects in the electron transport chain as
well as by soluble products released by microglial cells
such as NO and peroxynitrite, causing further axonal
metabolic impairment and thus triggering irreversible
neuroaxonal degeneration.

MITOCHONDRIAL IMPAIRMENT,
NEUROINFLAMMATION, AND
NEURODEGENERATION IN PARKINSON’S
DISEASE: WHICH COMESFIRST?

PD is a progressive neurodegenerative disorder that
commonly presents with impairment of motor dexterity
and evolves into a classic symptom triad of bradykine-
sia, rigidity, and rest tremor [74].

The pathological hallmark of PD is represented by
the selective and region-specific loss of the dopaminer-
gic, neuromelanin-containing neurons of the pars com-
pacta of the SN [74]. However, during PD, dopaminer-
gic neurons are not the only cells to degenerate and cell
loss has also been demonstrated in the locus coeruleus,
dorsal nuclei of the vagus, raphe nuclei, nucleus basalis
of Meynert, and catecholaminergic brain stem struc-
tures [74]. The progressive loss of midbrain dopamin-
ergic neurons and of their projecting fibers leads to low-
er levels of dopamine in the nucleus striatum and to
consequent development of synaptic and neuronal net-
work abnormalities that probably underlie symptoms
onset [75,76].

The mechanisms triggering neuronal death in PD as
well as the causes underlying the specific vulnerability
of selected brain structures are still unknown. The cur-
rent hypothesis is that PD derives from a complex in-
teraction of genetic factors, environmental agents, and
neuronal aging [77]. Preclinical and clinical evidence
suggests that mitochondrial dysfunctions play an im-
portant role in PD pathogenesis. The idea of mito-
chondrial dysfunction as a pathogenic mechanism in
PD initially emerged following the accidental expo-
sure of drug abusers to MPTP, resulting in an acute
and irreversible parkinsonian syndrome [78]. After
this first description, several other reports have shown
that exposure to toxins acting by inhibiting mitochon-
drial function is associated with the development of a
parkinson-like syndrome both in human subjects [79,
80] and in experimental animals [18]. Accordingly,
mitochondria have been successfully used as subcel-
lular targets to obtain relevant experimental models of
this neurodegenerative disease [81]. Further support to
the hypothesis that mitochondria could potentially play
a significant pathogenetic role in PD derived from the
postmortem description of complex I deficiency in the
SN of patients with PD [82] and from the evidence of
oxidative stress and damage markers in PD brains [83].
Recently, the identification of single genes linked to
heritable forms of parkinsonism heavily influenced the
research on PD etiopathogenesis, which was previously
largely considered nongenetic due to the high propor-
tion of sporadic cases. Interestingly, several genes that
have been associated with the development of inheri-
table forms of PD such as PARKIN, PINK1, and DJ1,
have been found to be associated with the mitochon-
dria, further supporting the potentially crucial role of
these organelles in PD [17].

A potentially central role in PD pathogenesis has al-
S0 been demonstrated for inflammatory processes. In-
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deed, it has been repeatedly shown that in both patients
and experimental models of PD, neuroinflammation is
an ubiquitous finding [11]. In particular, postmortem
studies have demonstrated the presence of a conspic-
uous glial reaction together with signs of astrocytic
reaction and infiltration of cytotoxic T lymphocytes
(CD8-+) in the SN of PD patients [11]. In PD brains,
and in particular in the SN, the presence of neuroinflam-
matory processes is further supported by the evidence
that several inflammation-associated molecules, such
as TNFq, IL-13, and iNOS are overexpressed [11].
The results obtained in postmortem studies have been
confirmed by in vivo studies carried out in biological
fluids (serum or cerebrospinal fluid) of patients suffer-
ing from PD, demonstrating the presence of increased
concentrations of proinflammatory cytokines (TNFc,
IL-13, interleukin-6) during PD [11].

According to the described evidence it seems clear
that in the SN of PD patients signs of mitochondrial dys-
function and neuroinflammation coexist. However, it
has not been still demonstrated which one, of these two
potentially pathogenetic processes, comes first. Mi-
tochondrial impairment, due to genetic factors and/or
environmental exposure to toxins could be the primary
event triggering the pathological process. In this case,
it is possible to hypothesize that microglia may become
chronically activated in response to primary mitochon-
drial impairment and/or dopaminergic neuronal death,
fueling avicious cycle of microglial activation followed
by further neuronal damage [84]. Indeed, there is ev-
idence supporting the hypothesis that activated glial
cells are able to damage dopaminergic neurons [85,86].
Another hypothesis is that inflammation may be a pri-
mary factor in PD. Accordingly, it has been shown that
a single systemic (i.e., not intranigral) administration
of the inflammogen LPS is able to activate brain mi-
croglia and to induce delayed and progressive loss of
dopaminergic neurons in the SN [87]. Finally, it is not
possible to exclude that both neuroinflammation and
mitochondrial impairment may simply represent inci-
dental epiphenomena of nigral neurons degeneration or
equally important factors synergistically triggering the
pathological cascade.

Further preclinical and clinical research efforts seem
to be required to detect the primary event(s) triggering
neuronal degeneration in PD and to unravel the mech-
anisms that finally lead to nigral neuronal death.

ALZHEIMER’ SDISEASE, MITOCHONDRIAL
DYSFUNCTION, AND
NEUROINFLAMMATION

AD, the most common neurodegenerative disorder
worldwide, is clinically characterized by progressive
cognitive decline associated with impairment in activ-
ities of daily living and progressive behavioral distur-
bances throughout the disease course [88]. The earli-
est symptoms of AD often appear as subtle short term
memory impairments with deficits in remembering mi-
nor events of everyday life. As the disease progresses,
both declarative and nondeclarative memory become
profoundly impaired, the capacity for reasoning, ab-
straction, and language are progressively lost and a pro-
found dementia develops affecting multiple cognitive
and behavioral spheres [88].

AD brains show two characteristic pathological fea-
tures, extracellular deposits of amyloid-g (A3) pep-
tides, so-called neuritic or senile plaques, and intra-
cellular neurofibrillary tangles of hyperphosphorylat-
ed tau [22]. According to the amyloid hypothesis,
abnormal processing, and accelerated deposition of
oligomeric forms of A are central mechanisms under-
lying pathological processes in AD [22], and it has been
hypothesized that an imbalance between AS peptides
production and clearance could be the initiating factor
in AD pathogenesis [22].

Interestingly, also in AD brains, immunohistochem-
ical, biochemical, and molecular studies have demon-
strated the coexistence of inflammatory processes and
signs of mitochondrial impairment [22]. Evidence of
an inflammatory response in AD includes changes in
microglia morphology and astrogliosis (manifested by
an increase in the number, size, and motility of astro-
cytes) surrounding the senile plaques and the presence
in postmortem AD brains and in the cerebrospinal fluid
and peripheral blood of AD patients of elevated lev-
els of expression of molecules associated with immune
cells activation such as the cytokines IL-1, IL-6, and
TNF-« [10,12,89,90].

Microglia surrounding plaques show a positive stain-
ing for activation markers and proinflammatory medi-
ators, including MHC class I, TNF-«, and IL-13 [10,
12,89,90]. Interestingly, it has been demonstrated that,
in addition to its direct toxic effects, A is able to pro-
mote neuronal dysfunction and degeneration by the ac-
tivation of microglial cells and the subsequent induc-
tion of inflammatory enzymes such as iNOS and COX-
2 and release of inflammatory mediators [10]. At the
same time, proinflammatory cytokines and mediators
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that are overexpressed in AD brains, such as TNFa,
are able to promote A3 peptide accumulation [91] po-
tentially triggering a vicious cycle leading to enhanced
inflammation and disease progression.

Extensive literature also exists supporting a role for
mitochondrial dysfunction and oxidative damage in AD
pathogenesis [22,92,93]. In particular, mitochondrial
abnormalities have been found both in neurons and as-
trocytes of AD brains [92,93]. Moreover, defects in
mtDNA and signs of oxidative stress are found in the
brains of AD patients and in those of AD transgenic
mice [92,93]. Several lines of evidence suggest that the
amyloid-( protein precursor (ASPP) and Ag are fac-
tors contributing to mitochondrial dysfunction in AD.
In particular, AGPP and A( seem to accumulate in mi-
tochondrial membranes, causing mitochondrial struc-
tural and functional damage [94].

In conclusion, there is increasing evidence suggest-
ing that both inflammatory changes and mitochondri-
al dysfunction may also exert a significant role in ag-
ing and AD pathogenesis, and it is interesting to note
that, during AD, these main pathological events seem
to be strictly linked to A3 peptide deposition in a patho-
genetic “‘ménage a trois’. In fact, A3 peptides are able
to cause both microglial activation and mitochondrial
dysfunction, and a current hypothesis is that accumula-
tion of misfolded proteins may result in oxidative and
inflammatory damage, which in turn leads to energy
failure, synaptic and neuronal dysfunction, and degen-
eration in AD brains [22].

CONCLUSIONS AND FUTURE
PERSPECTIVES

Signs of neuroinflammation, mitochondrial impair-
ment, and neurodegeneration seem to be all represented
in the brains of patients suffering from different neuro-
logical diseases. In particular, it appears that, indepen-
dently from the primary pathogenetic insult, the forma-
tion of a self-fuelling vicious cycle may represent the
final event ultimately leading to disease progression in
both neurodegenerative and inflammatory CNS disor-
ders. A more accurate characterization of the mecha-
nisms underlying the complex cross talk-between mi-
croglial cells and neurons could lead, in the future, to
the development of neuroprotective pharmacological
strategies aimed at interrupting the pathogenetic cas-
cade and at limiting the progression of these disabling
neurological diseases.
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