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Abstract. A number of recent discoveries indicate that abnormal Ca2+ signaling, oxidative stress, and mitochondrial dysfunction
are involved in the neuronal damage in Alzheimer’s disease. However, the literature on the interactions between these factors
is controversial especially in the interpretation of the cause-effect relationship between mitochondrial damage induced by Ca2+

overload and the production of reactive oxygen species (ROS). In this review, we survey the experimental observations on the
Ca2+-induced mitochondrial ROS production, explain the sources of controversy in interpreting these results, and discuss the
different molecular mechanisms underlying the effect of Ca2+ on the ROS emission by brain mitochondria.
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INTRODUCTION

Mitochondrial dysfunction has been recognized to
play an important role in the pathogenesis of neurode-
generative disease. In the case of Alzheimer’s disease
(AD), oxidative stress together with mitochondrial dys-
function appear at the early stage of the pathology [1–
4] (for review, see [5]), but the underlying mechanism
is unknown. Abnormal metabolism of reactive oxygen
species (ROS) as an aggravating or primary factor in
numerous pathologies, neurodegenerative diseases in-
cluding AD, and senescence is firmly established,wide-
ly recognized, and extensively reviewed elsewhere [6–
14].
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Oxidative damage is readily detected in AD post-
mortem tissue [15]; it is the earliest event [3] that could
be detected in the brain prior to amyloid-β (Aβ) plaque
formation [3] and onset of symptoms of AD [3,16,17].
Oxidative damage to lipids also occurs before Aβ depo-
sition in AD transgenic mice [18]. The Aβ deposits in
transgenic mouse models are associated with evidence
of oxidative stress as assessed by elevated expression
of Cu/Zn superoxide dismutase and heme oxygenase-1,
and increased markers of lipid peroxidation [19–21]. It
has also been reported that fibrillar deposits of Aβ pro-
tein are associated with oxidative damage [22] and Aβ
binding alcohol dehydrogenase (ABAD) has been sug-
gested as a molecular mechanism of Aβ mitochondrial
toxicity [23]. Oxidative damage may elevate Aβ1−42

levels by stimulating β-secretase [24]. For the pathol-
ogy of sporadic AD, a mitochondrial cascade concept
was proposed suggesting that mitochondrial dysfunc-
tion is the primary event causing Aβ deposition [25].
Indications of oxidative damage in AD were found not
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only in brain regions but also in peripheral tissues [26–
29].

Considering that ROS-induced oxidative stress is a
critical factor in injury and that mitochondria are most
likely the major source of these ROS, it is clear that
studies of ROS metabolism in AD brain mitochondria
could provide critical knowledge needed for success-
ful pharmacological intervention strategies to reduce
neural cell death.

Elevated intracellular Ca2+ and abnormal Ca2+ sig-
naling have long being recognized as marker features in
AD which led to the formulation of the “Ca2+ hypothe-
sis” of brain aging and AD by Khachaturian [30]. This
hypothesis postulated that abnormal Ca2+ homeostasis
mediates or directly causes most manifestations of Aβ
peptide-inducedneuronal damage in AD. Recently, this
idea has experienced a powerful boost by a string of
findings [31,32] (reviewed in [33,34]) that demonstrate
the molecular mechanisms of Aβ-mediated disruption
of Ca2+ homeostasis. To date, a number of studies
have amply documented various feedback loops linking
mitochondrial dysfunctions, oxidative stress, amyloid-
β protein precursor processing, Aβ toxic effects, and
Ca2+ homeostasis in AD. It is beyond our scope to
review all this literature here. Neither does it seem
necessary as it has been extensively, comprehensively,
and recently reviewed elsewhere (e.g., see [35–37]).
Instead, we focus on an important aspect of this re-
search field; the relation between mitochondrial ROS
production and Ca2+ overload.

Ca2+ is a key element in physiological signal trans-
ductions and also equally important in pathological pro-
cesses [38–40]. The primary beneficial role of Ca2+ in
mitochondria by far is the promotion of ATP synthesis,
which results from stimulation of the Krebs cycle en-
zymes and oxidative phosphorylation [41–43]. This ef-
fect is achieved by physiological Ca2+ signals and en-
ables the adjustment of ATP production to cellular de-
mand. The mechanisms of the harmful effect of Ca2+

on mitochondria is less well characterized, but is gener-
ally assumed to involve high Ca2+ loads and excessive
ROS generation (for review, see [44,45]). However, da-
ta available from in vitro studies are very contradictory
as to the effect of Ca2+ on mitochondrial ROS gener-
ation ranging from a significant decrease [46–48] to a
substantial stimulation [49–52]. For the understanding
of the pathology in neurodegenerative conditions, it is
crucial to have a clear conception of the factors and con-
ditions which determine the mitochondrial ROS gener-
ation in response to a Ca2+ challenge. In this review we
discuss and summarize the possible mechanisms which
could contribute to a Ca2+-dependent ROS generation
in brain mitochondria.

BRIEF OVERVIEW OF MITOCHONDRIAL
ROS GENERATING AND ELIMINATING
SYSTEMS

Several decades of research have firmly established
that ROS production is inherent to mitochondrial oxida-
tive metabolism and revealed numerous sources of ROS
in mitochondria (Fig. 1). This literature has been exten-
sively reviewed by us and others elsewhere (e.g., [13,
53–63]).

Mitochondria oxidize various substrates generated
inside and outside mitochondria. In the brain, the Krebs
cycle mainly generates NADH and FADH2, which in
turn are oxidized in reactions catalyzed by several en-
zyme complexes located in the inner membrane of
mitochondria. The flux of electrons from substrates
through various redox carriers and centers in these en-
zymes is ultimately terminated in a 4-electron reduction
of molecular oxygen to water, catalyzed by cytochrome
c oxidase. However, some proportion of electrons is
diverted from the flow and participates in a single-
electron reduction of oxygen, thereby converting it into
superoxide, a primary ROS, which quickly dismutates
to form H2O2. The latter is membrane permeable and
diffuses out of mitochondria. The highest ROS pro-
ducing capacity in brain mitochondria has been demon-
strated for complex I and complex III of the respira-
tory chain [64–67] and the enzyme dihydrolipoamide
dehydrogenase [68–70]. In intact mitochondria, the
activities of various ROS sources are linked to each
other through the common pools of intermediates such
as NADH and CoQ, thus it is not possible to determine
under physiological conditions, when the complexes
are not inhibited, which one of the possible sites is
the major ROS generator. Vast amount of studies have
documented that inhibitors of complex I and complex
III induce robust ROS release from isolated brain mito-
chondria [71–75]. However, only complex I inhibition
appears to be physiologically important in light of the
observation made on in situ synaptic mitochondria, that
∼16% inhibition of complex I is already accompanied
by an enhanced ROS formation, whereas complex III
needs to be inhibited by > 70% for an increase in ROS
generation [76]. This amount of complex III inhibition
is unlikely to be an underlying in vivo mechanism of
pathological ROS generation.

ROS production capacity of mitochondria is con-
trolled by factors affecting and reflecting the metabol-
ic state of intact mitochondria. It has been found that
the chemical nature of the substrates fuelling the res-
piratory chain, the amplitude of the membrane poten-
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Fig. 1. Mitochondrial ROS production and scavenging. Abbreviations: mGPDH, mitochondrial alpha-glycerophosphate dehydrogenase located
at the outer surface of inner mitochondrial membrane which is pictured as a solid line; C1, CIII, COX, respiratory chain complexe I and III, and
cytochrome oxidase, respectively; α-KGDHC, alpha-ketoglutarate dehydrogenase complex; ACO, aconitase, PDHC, pyruvate dehydrogenase
complex; MAO, monoamine oxidases located in the outer membrane of mitochondria; GR, glutathione reductase; GPX1, glutathione perodixase
I, RDS, other enzymes of mitochondrial ROS defense system including (not pictured) manganese SOD, peroxiredoxins 3 and 5, glutaredoxin
2, thioredoxin 2 and thioredoxin reductase, glutathione S-transferase, catalase, Cu,Zn superoxide dismutase, and phospholipid hydroperoxide
glutathione peroxidase 4 (see [68] for a review); GSH and GSSG, reduced and oxidized glutathione; CYPD, cyclophilin D. PTP, mitochondrial
permeability transition pore. Stars indicate reactive oxygen species (ROS); enzymes labeled with stars are ROS sources.

tial in mitochondria (∆Ψm), the pH of the matrix, and
the oxygen tension in their surrounding [55,68] are the
most important factors controlling the ROS production
in mitochondria. Out of these, the importance of sub-
strates and ∆Ψm are discussed below in association
with the effect of Ca2+ on ROS generation.

The ‘ROS defense system’ (RDS) comprises several
enzymes specialized for removal of superoxide, H2O2,
and organic hydroperoxides. Most of these enzymes
are ubiquitously present in all mammalian mitochon-
dria; the expression level of these enzymes exhibits tis-
sue and species specificity. A unique feature of RDS
is that almost all of its enzymes rely on NADPH as a
source of reducing equivalents needed for their activity.
The NADPH reduction is carried out by three intramito-
chondrial enzymes; isocitrate dehydrogenase (NADPH
linked), malic enzyme, and transhydrogenase [77]. To
note, the intramitochondrial pools of NADPH and re-
duced glutathione (GSH) are rather large (ca. 3–5 mM
NADPH [78,79] and 2–14 mM GSH [80–83]), there-
fore, transient changes in the activity of enzymes would
not immediately affect the RDS and its ability to extin-
guish short bursts in ROS concentration. However, a
prolonged activity of RDS, its ‘endurance’, ultimately
depends on the supply of NADPH and GSH, thus de-
pending on the ability of enzymes to regenerate these
compounds.

It is clear that elevated mitochondrial ROS emission
may be determined by both a true increase in ROS gen-
eration from a mitochondrial site and a failure of mito-
chondrial RDS. However, for the purpose of designing
an intervention to prevent oxidative stress and tissue
damage by mitochondrial ROS, in-depth knowledge of
the mechanism of ROS emission is crucial. To the best
of our knowledge, this issue has not yet been addressed
in details for AD brain mitochondria.

VARIABLE EFFECTS OF Ca2+ ON
MITOCHONDRIAL ROS GENERATION

In general, an effect of Ca2+ on mitochondrial ROS
formation requires the influx of Ca2+ into the matrix.
In brain mitochondria, the primary mechanism of Ca 2+

uptake is via a highly selective ion channel, termed uni-
porter, driven by the electrochemical gradient across
the mitochondrial inner membrane. This channel ex-
hibits remarkable low affinity for Ca2+ [84]. While
the kinetic and pharmacological nature of this chan-
nel is well-characterized, the molecular entity of the
channel remains to be identified. The electrophoretic
Ca2+ entry involves a net charge movement, therefore
lowering ∆Ψm. For liver and heart mitochondria, an
additional “rapid mode” uptake has been described [85,
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86] allowing fast changes in matrix Ca2+ concentration
and rapid stimulation of Ca2+-dependent processes. In
cardiac mitochondria, a ryanodine receptor has been
identified, which might also mediate Ca2+ entry into
the matrix [87].

Rapid efflux of Ca2+ from the matrix requires
Na+/Ca2+ exchange coupled to H+/Na+ exchange via
the inner membrane of mitochondria (see [88]). A pos-
sible efflux pathway for Ca2+ is the mitochondrial per-
meability transition pore (PTP), which is a large con-
ductance channel formed by proteins in the inner and
outer membrane of mitochondria allowing the release
of solutes < 1.5 kDa including GSH and pyridine nu-
cleotides from the matrix and leading to loss of ∆Ψm,
osmotic swelling, and rupture of the outer mitochon-
drial membrane [89–92].

There is a general conception that Ca2+ overload
leads to stimulated ROS generation in mitochondria.
However, data are available in the literature both
demonstrating this and indicating the opposite. Mito-
chondrial Ca2+ accumulation has been shown to pro-
mote [50,51,93,94], to be without an effect on [95–97],
or to decrease ROS generation [46–48]. These stud-
ies, even only those performed with brain mitochon-
dria, are difficult to compare due to the great variance
in the conditions at which the Ca2+ challenge is im-
posed and mitochondrial ROS generation is measured.
In order to understand the mechanism by which Ca 2+

stimulates or decreases ROS generation, it is crucial
to consider key factors which possibly determine the
response of mitochondria to a Ca2+ challenge. Since
isolated mitochondria are used in the vast majority of
these studies, the choice of the substrate(s) fuelling
the respiratory chain is an obvious variable; whether
electrons are donated to complex I or to coenzyme Q
(CoQ). An important factor is the metabolic state of mi-
tochondria before and under the Ca2+-load which de-
termines whether Ca2+-induced changes in ROS gen-
eration would be dependent on ∆Ψm. A sharp dis-
tinction is made by the fact whether mitochondria un-
dergo Ca2+-dependent PTP opening or could handle
the Ca2+-load without a major inner membrane perme-
ability increase. These conditions should be carefully
scrutinized for the interpretation of the effect of Ca2+

on mitochondrial ROS emission.

SUBSTRATE-DEPENDENCE OF THE EFFECT
OF Ca 2+ ON ROS GENERATION

Mitochondrial respiration in vitro can be sup-
ported either by substrates linked to NAD+ reduc-

tion (glutamate, malate, α-ketoglutarate, pyruvate)
donating the electrons to FMN cofactor of com-
plex I, or by FAD-linked substrates (succinate, α-
glycerophosphate), which reduce the more distal CoQ
pool in the respiratory chain. In the case of NAD+-
linked substrates, complex I generates superoxide with
electrons from the fully reduced FMN [60,98]. The re-
duction state of FMN is set by the NADH/NAD+ ratio,
therefore anything that increases this ratio, either inhi-
bition of the respiratory chain or a low ATP demand,
will increase ROS generation [60,99,100].

In the presence of FAD-reducing substrates and
when ∆Ψm is high, electrons can flow back to com-
plex I (reverse electron transport; RET) and reduce
NAD+ to NADH [101,102]. Superoxide is generated
with high rate under this condition [71,99,103], possi-
bly at the same site; the FMN coenzyme of complex
I [60]. RET is favored in mitochondria supported by
FADH2-dependent substrates, such as succinate or α-
glycerophosphate but only when ubiquinone is highly
reduced at a high ∆Ψm. This is typically a condition
easily created in vitro with isolated mitochondria, but
in vivo the dominance of electron input from NAD+-
linked substrates makes this process unlikely, though
not impossible. It has been postulated [13] that during
hypoxia succinate concentration could rise to a suffi-
ciently high level to generate high ∆Ψm and ROS gen-
eration at complex I during reoxygenation. Supportive
for this is the finding [104] that succinate stimulates
ROS formation even in the presence of NAD+-linked
substrates without preventing their oxidation. It has
been shown that 5 min of ischemia decreased the con-
centrations of glycolytic intermediates and mitochon-
drial NAD-linked oxidative substrates, but increased
succinate concentration by ∼300% to the millimolar
range in rat brain [105,106]. Another interesting find-
ing is that hypoxia significantly (> 60%) activated suc-
cinate and glutamate oxidation by isolated rat brain
mitochondria [107,108].

However, since RET is highly sensitive to ∆Ψm and
a small decrease in ∆Ψm inhibits succinate-dependent
ROS generation [109], it is unlikely that Ca2+ up-
take, which decreases ∆Ψm, could stimulate ROS gen-
eration via RET. On the contrary, ROS release from
succinate-supported brain mitochondria is immediate-
ly and almost completely inhibited by a Ca2+ over-
load [48]. Similarly, ROS release from well-coupled
brain mitochondria respiring on α-glycerophosphate is
reduced by high Ca2+ loads (L. Tretter, unpublished
observation) consistent with the ∆Ψm-dependent char-
acter of the RET-related ROS generation in these [110]
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and other mitochondria [111]. It is of note that
Ca2+-induced decrease in RET-related ROS genera-
tion, which is due to a drop in ∆Ψm, is observed only
when conditions are unfavorable for PTP opening (in
the presence of ADP or ATP or other PTP inhibitors).
Without that, Ca2+-induced PTP dominates the re-
sponse of mitochondria and determines the changes in
ROS generation.

It has to be noted here that submicromolar concentra-
tions of Ca2+ stimulate ROS production by mitochon-
drial α-glycerophosphate dehydrogenase [112] likely
due to stimulation of the enzyme described earlier in
liver mitochondria [113], which might be significant in
vivo in deenergized mitochondria, which are unable to
take up Ca2+ and to control the cytosolic Ca2+ con-
centration.

In mitochondria supported by NAD+-linked sub-
strates in vitro or respiring on endogenous substrates
in vivo, NADH/NAD+ ratio is critical for ROS gen-
eration not only by complex I but also by the Krebs
cycle enzyme, α-KGDHC. A common feature of neu-
rodegeneration in various diseases is a decline in the
activity of mitochondrial enzymes, of which reduc-
tion in α-KGDHC activity in AD is well document-
ed [114–116] (for review see [117]). Aβ, which is de-
posited in the mitochondria of AD patients and trans-
genic mice before substantial accumulation extracellu-
larly [23,118], has been shown in isolated brain mi-
tochondria to inhibit α-KGDHC [119]. α-KGDHC
is a key enzyme in the Krebs cycle providing NADH
for complex I in the respiratory chain. This enzyme
is sensitive to inhibition by different ROS including
H2O2 [120–122], peroxynitrite [123], or intrinsic rad-
ical species [124]. More intriguing with relation to
ROS generation is the ability of α-KGDHC to generate
ROS during its normal catalytic function attributable
to the dihydrolipoamide dehydrogenase component of
the enzyme [69,70,125] (for review, see [126]). The
latter enzyme is the common component of pyruvate,
α-KGDHC, and branched-chain ketoacid dehydroge-
nase complexes, and also participates in glycine cleav-
age system [127]. ROS generation by α-KGDHC is
regulated by the NADH/NAD+ ratio; an increase in
this ratio, while inhibiting the physiological catalytic
activity, promotes ROS generation by the enzyme [70].
Ca2+ is a well known regulator of α-KGDHC by acti-
vating the enzyme in low µM concentrations [42,128].
It was demonstrated with isolated α-KGDHC that par-
allel with the activation of the enzyme, α-KGDHC
produces higher amount of H2O2 in the presence of
Ca2+ [70]. It is not possible yet to unambiguously de-

termine to what extent α-KGDHC contributes to mito-
chondrial ROS production in situ, let alone in vivo, but
some in vitro data allow the cautious assumption that
it might be significant under certain physiological or
pathological conditions. Isolated brain mitochondrial
produce the highest amount of ROS when supplied with
α-ketoglutarate as compared to other substrates [69].
Recently it has been reported that specific inhibitors
of α-KGDHC administered together with glutamate in
cultured neurons, inhibited the glutamate-induced ROS
production by about 20% suggesting that α-KGDHC
might be a source of ROS under glutamate stimula-
tion [129]; the latter is known to involve accumulation
of Ca2+ in mitochondria, to enhance ROS generation,
and to induce cell death [130–137] (for a recent review,
see [39]).

Given the activation of this enzyme by Ca2+ [42,
128], one might expect an enhanced ROS production
by α-KGDHC under high Ca2+ loads. However, stim-
ulation of the enzyme is only observed with � 20 µM
Ca2+ concentration [42,128] and it was demonstrat-
ed with brain mitochondria that the effect of Ca2+ is
biphasic, activating the enzyme in low µM concentra-
tion but inducing progressive inhibition in � 100 µM
concentrations [138]. In agreement with this, we found
a stimulated ROS generation by isolated α-KGDHC
only in Ca2+ concentrations up to 20 µM [70]. On
the other hand, when respiration and oxidative phos-
phorylation is inhibited by high Ca2+ (see below), the
NADH/NAD+ ratio increases, favoring an accelerated
ROS generation by the enzyme. Due to the common
pyridine nucleotide pool, it is not possible to establish
the relative contribution of complex I and that of α-
KGDHC to the increased mitochondrial ROS emission
promoted by an increased NADH/NAD+ ratio.

DEPENDENCE ON ∆Ψ OF THE EFFECT OF
Ca 2+ ON ROS GENERATION

Given the fact that under certain conditions mito-
chondrial ROS generation is dependent on ∆Ψ, it has to
be considered whether depolarization associated with
Ca2+ uptake could be a factor in the effect of Ca2+ on
ROS formation.

The first evidence for the ∆Ψ-dependent nature of
ROS generation is that in isolated succinate-supported
heart mitochondria, uncouplers decreased the rate of
ROS emission [109,139]. Importantly, this effect was
evident only in a narrow ∆Ψ range and only in well-
coupled, highly polarized mitochondria, where de-
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crease in ∆Ψ by only 10 mV resulted in 80% decrease
in the rate of ROS generation [109]. The ‘turbo’ mode
of isolated mitochondria exhibiting high ∆Ψ and high
rate of ROS formation is achieved only when bovine
serum albumine (BSA) is present during the isolation
or incubation to eliminate the uncoupling effect of con-
taminating free fatty acids, succinate is used as a res-
piratory substrate, and the experiments are performed
in the absence of ADP [140]. The high protonmo-
tive force in these mitochondria drives the back flow
of electrons via complex I and RET is responsible for
the high rate of ROS generation characteristic for these
mitochondria (see above). With a few mV decrease
in ∆Ψ, the protonmotive force is no longer sufficient
to maintain RET explaining the decrease in the rate of
ROS generation. The ∆Ψ-dependence of ROS gener-
ation with NAD+-linked substrates is also evident in
the −150 and −180 mV ∆Ψ range [48,141] though the
depolarization-induced decrease in ROS generation is
less dramatic [46,142].

Ca2+ load depolarizes mitochondria due to the elec-
trophoretic Ca2+ uptake [38], which may be transient
or sustained depending on the amount of the Ca2+

load [143]. The substantial decrease in ROS emission
by Ca2+ from succinate-supported mitochondria [46,
48,95] is evidently due to the elimination of RET.
Reduction in the ROS release by Ca2+ was also ob-
served in mitochondria respiring on NAD+-linked sub-
strates [46,48,95,143]. The mechanism by which depo-
larization reduces mitochondrial H2O2 formation prob-
ably involves the oxidation of redox centers, which
mediate the generation of superoxide. Again, for this
effect of Ca2+, incubation conditions of mitochondria
have to be favorable for high ∆Ψ and unfavorable for
PTP induction (for example, presence of ATP but not
ADP alone, to inhibit PTP induction or presence of
ADP plus oligomycin to prevent PTP and ATP syn-
thesis). Under these conditions Ca2+ load that causes
sustained depolarization of the highly polarized mito-
chondria will decrease ROS emission [48,143].

An opposite effect of Ca2+, e.g., stimulation of ROS
release that is unrelated to PTP induction, is observed
in mitochondria studied in the presence of ADP. Under
physiological conditions, ADP (and ATP) is continu-
ously present in the mitochondrial matrix controlling
the rate of respiration and ATP synthesis, so it is highly
adequate to include adenine nucleotides in the incuba-
tion medium for isolated mitochondria. ADP, on one
hand, is an inhibitor of PTP induction [144–147], and,
on the other, stimulates respiration and ATP synthesis,
therefore decreases ∆Ψ (state 3). In these mitochon-

dria, ∆Ψ is below the range in which ROS genera-
tion is dependent on ∆Ψ, therefore Ca2+-induced PTP-
independent depolarization is no longer expected to de-
crease ROS formation. In this case, the response of mi-
tochondria depends on the amount of Ca2+ load; high
Ca2+ concentrations, in our case 100-300 µM, cause
sustained depolarization but no alteration in ROS re-
lease from mitochondria [143],clearly showing the lack
of effect of high Ca2+ load per se on the mitochondrial
ROS producing machinery. However, in lower, but still
pathological concentrations (10–100 µM), Ca2+ depo-
larizes mitochondria only transiently; thereafter ∆Ψ
recovers to a higher (more negative) value than that be-
fore the Ca2+ challenge. This ‘after-hyperpolarization’
parallels a significant increase in the ROS release from
mitochondria [143]. The mechanism of the relative hy-
perpolarization following depolarization by moderate
Ca2+ load is yet to be clarified but could be related to
inhibition of the adenylate translocase [148] or F0F1-
ATPase by Ca2+ [149,150]. Nonetheless, the stimulat-
ed ROS generation under this condition is most likely
due to a shift of ∆Ψ towards higher values, into the
range where ROS generation is sensitive to changes in
∆Ψ. This phenomenon highlights another important
variable that determines the changes of ROS emission
from mitochondria in response to a Ca2+ challenge; the
amount of Ca2+ load.

In summary, in mitochondria actively synthesizing
ATP (in the presence of ADP), therefore being depolar-
ized, the effect of Ca2+ is dependent on the amount of
Ca2+ load. In the lower range of Ca2+ load, transient
Ca2+-induced depolarization is followed by a recovery
to a relative hyperpolarized state and, due to the lat-
ter, ROS generation is stimulated, whereas large Ca2+

concentrations dissipate ∆Ψ without the tendency of
recovery and fail to influence ROS emission from mito-
chondria. In highly polarized mitochondria not synthe-
sizing ATP (in the presence of ATP and/or oligomycin)
but exhibiting high rate of basal ROS generation, the
drop in ∆Ψ due to Ca2+ uptake is not followed by re-
covery to a hyperpolarized state at any Ca2+ concentra-
tion and is associated with a decreased ROS generation.
In these effects of Ca2+, clearly the ∆Ψ-dependent
feature of ROS generation is reflected.

PERMEABILITY TRANSITION, Ca2+, AND
ROS GENERATION

Several reports demonstrate that the opening of PTP
correlates with an increase in ROS production in vitro
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Fig. 2. Enhancement of ROS production in mitochondria that underwent Ca2+-induced permeability transition. Abbreviations are the same as
in Fig. 1. Overloading of mitochondria with Ca2+ results in PTP opening, which in turn, results in leakage of pyridine nucleotides (NAD+,
NADP) and Krebs cycle substrates such as oxaloacetate, alpha-ketoglutarate, and malate from the mitochondrial matrix. This renders both the
Krebs cycle and RDS inoperable and results in sever oxidation of mitochondrial glutathione. Leakage of NAD+ also stimulates ROS production
by α-KGDHC and PDHC. In addition to that, elevated Ca2+ inhibits GPX1, and directly stimulates ROS production by MAO and mGPDH.
Elevated intramitochondrial ROS may further damage aconitase and complex I thereby turning them into ROS sources. Both the inability of
permeabilized mitochondria to efficiently scavenge ROS (due to the damage of the RDS) and the elevated primary ROS production contribute to
the enhanced ROS emission from mitochondria.

in isolated mitochondria [151,152] and in situ in rat
CA1 pyramidal neurons in organotypical slices [153].
However, to the best of our knowledge, no study has
yet been published detailing the molecular mechanism
of this phenomenon. This is a controversial issue as
PTP induction by Ca2+ is not associated with an in-
creased ROS production in other studies. We even have
observed a slight decrease in ROS emission from mito-
chondria experiencing a Ca2+-induced permeability in-
crease of the inner membrane, which is consistent with
a net loss of pyridine nucleotides from the matrix of
Ca2+-loaded mitochondria exhibiting PTP [47]. Nev-
ertheless, we can make an educated guess about how
Ca2+ overloading of mitochondria and/or PTP open-
ing could significantly induce their ROS production
(Fig. 2).

As illustrated in Figs 1 and 2, brain mitochon-
dria contain several potential ROS sources such as
monoamine oxidase (MAO), complex I, α-KGDHC,
PDHC, and α-glycerophosphate dehydrogenase, and
also quite efficient ROS defense system. The latter is
“fed” by NADPH that is used by glutathione reduc-
tase (GR) to regenerate oxidized glutathione (GSSG)
to GSH, which is further used by glutathione perox-
idase 1 (GPx1) to detoxify H2O2 and by thioredoxin

reductase that regenerates oxidized thioredoxin, perox-
iredoxins, and glutaredoxin. For generation of NADPH
in brain mitochondria, malic enzyme and NADP-linked
isocitrate dehydrogenase (reviewed in [55,68]) use the
metabolites generated in the Krebs cycle. However, the
Krebs cycle cannot operate in permeabilized mitochon-
dria, because its metabolites and perhaps more impor-
tant, pyridine nucleotides are released from the matrix
of mitochondria through the PTP. Indeed, loss of mi-
tochondrial matrix pyridine nucleotides is a prominent
consequence of the PTP opening as demonstrated both
in vitro in isolated mitochondria and in vivo in perfused
rat heart [154]. Moreover, net loss of NAD+ was also
observed in cell cytosol due likely to the activation of
NAD+-glycohydrolase, which is associated primarily
with the cytosolic surface of mitochondria [154].

In addition to that, a mitochondrion undergoing PTP
opening is de-energized, cannot accumulate Ca2+, and
therefore is incapable of controlling the Ca2+ concen-
tration in its vicinity. This would further increase con-
stitutive ROS production because at least two of the
mitochondrial ROS sources are stimulated by elevated
Ca2+; α-glycerophosphate dehydrogenase [112] and
MAO-A as demonstrated in primary hippocampal cell
cultures and in HT-22 cells [155].



S420 V. Adam-Vizi and A.A. Starkov / Mitochondrial ROS and Ca2+

On the other hand, the constitutive scavenging of
ROS is expected to be diminished in permeabilized mi-
tochondria because of the loss of GSH from the matrix
space. Although the intramitochondrial GSH pool is
about the same as in cytosol, ca. 2–14 mM [80–83] so
no dilution would occur, it would no longer be regen-
erated inside mitochondria due to the loss of NADPH.
The net loss of GSH/GSSG was demonstrated in mito-
chondria isolated from brain subjected to ischemia and
reperfusion in vivo [156], a treatment that is firmly as-
sociated with the PTP opening. To make things worse,
Ca2+ overloading can directly diminish mitochondri-
al H2O2 scavenging capacity by inhibiting glutathione
reductase/peroxidase system [157].

Summarizing, it seems quite feasible that in vivo,
PTP opening could stimulate mitochondrial ROS pro-
duction both due to a net increase in ROS emission
and a failure in ROS scavenging. In line with this con-
clusion, a recent study by Wang and colleagues [158]
has demonstrated that PTP opening in mitochondria
in intact cells generates superoxide. This study is re-
markable and innovative in many aspects; in particular,
it is fascinating that the authors apparently have man-
aged to prove two fundamentally important phenome-
na, namely the possibility and physiological relevance
of spontaneous PTP opening at the level of individu-
al mitochondria in a living cell and the association of
PTP opening with a burst of superoxide production. In
these experiments, a circularly permuted yellow flu-
orescent protein (cpYFP) sensitive to superoxide was
modified with a mitochondria-targeting sequence and
transfected into cultured adult cardiomyocytes, where
it localized to mitochondria. The authors observed ran-
dom spontaneous bursts of cpYFP fluorescence aris-
ing from a single or a pair of functionally intact mi-
tochondria. These flashes were observed in a number
of cell types including hippocampal neurons and pri-
mary cultures of cardiomyocytes isolated from cpYFP
transgenic mice. Most remarkable, these flashes were
associated with a temporary drop in ∆Ψm and leakage
of matrix-entrapped indicator from mitochondria, were
inhibited by well-known PTP inhibitors such as cy-
closporin A and bongkrekic acid, and were diminished
by knockdown of cyclophilin D, a PTP enhancer. Thus,
the authors concluded that the observed phenomenonof
spontaneous cpYFP fluorescence was in fact, a result of
sporadic PTP opening and closure that was associated
with bursts in superoxide production [158].

A growing body of evidence indicates that PTP is
involved in the pathology of AD. It has been demon-
strated that Aβ peptides exacerbated the PTP inducing

effect of Ca2+ in both liver and brain mitochondria;
brain mitochondria being more resistant to the poten-
tiation by Aβ of Ca2+-induced PTP [159,160]. It is
remarkable that Aβ has been shown to induce swelling
and cytochrome c release from isolated brain mito-
chondria sensitive to PTP inhibition by cyclosporine
A [161]. It is interesting that in vitro, the PTP induction
by Aβ25−35 does not require massive amounts of ex-
ogenous Ca2+; the amount present in mitochondria en-
dogenously is sufficient to facilitate Aβ25−35-induced
swelling and accumulation of lipid peroxides [162].
More recently, it was found that Aβ25−35 and Aβ1−42

oligomers, but not fibrils, caused massive influx of
Ca2+ into cerebellar granular cells and in situ mito-
chondrial Ca2+ overload resulting in an increased in-
tracellular ROS production, cyclosporine A-inhibitable
permeabilization of mitochondria and cytochrome c re-
lease [163]. This is remarkable as soluble oligomers
are thought to mostly contribute to the AD pathological
changes in the brain [164]. Perhaps, the strongest evi-
dence that in vivo mitochondrial PTP is directly linked
to neuronal damage in AD pathogenesis has been ob-
tained recently by Du et al. [165]. These authors took
advantage of mouse genetically ablated of cyclophilin
D (CYPD), a mitochondrial protein that regulates the
Ca2+ threshold of PTP opening. CYPD deficient mito-
chondria open PTP at higher Ca2+ load than wild type
mitochondria. [165] have demonstrated that CYPD de-
ficient cortical mitochondria are resistant to Aβ and
Ca2+-induced swelling and PTP opening, exhibit high-
er Ca2+ buffering capacity, and produce less ROS. The
neurons from CYPD knockout mice are also less prone
to die when challenged with Aβ or oxidative stress.
Furthermore, CYPD deficiency greatly improves cog-
nitive functions in an AD mouse model/CYPD knock-
out cross [165].

OTHER FACTORS

In addition to PTP opening, there are other well doc-
umented malfunctions of the mitochondrial machinery
caused by over-accumulation of Ca2+ that result in
metabolic insufficiency of mitochondria and, therefore,
can stimulate mitochondrial ROS production. Inhibi-
tion of mitochondrial enzymes, respiration, and oxida-
tive phosphorylation by high Ca2+ is well document-
ed [138,166–168]; among them are several major dehy-
drogenases of the Krebs cycle, including PDHC [166]
and α-KGDHC [138]. Accumulated Ca2+ may also
decrease the intramitochondrial pool of ADP, thus re-
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ducing the exchangeable pool and the amount of ADP
available to the F1-ATPase [167]. Accumulation of
∼40 nmol Ca2+ by mitochondria strongly inhibited the
ATP/ADP translocase activity [148]. Progressive ac-
cumulation of large amounts of Ca2+ and Pi results
in Ca2+-Pi precipitate formation in the mitochondrial
matrix [169,170]; mitochondria from neural tissues can
accumulate so much Ca2+ (2000–4000 nmol/mg pro-
tein [171] that the precipitate may literally fill up the
mitochondrial matrix water space, thus creating diffu-
sion limitations for substrate delivery to primary dehy-
drogenases. All and any of these events are expected to
significantly limit the ability of mitochondria to scav-
enge ROS and/or to increase net mitochondrial ROS
emission [55,68].

CONCLUSION

Convincing evidence is lacking to support the general
notion often stated in the literature that Ca2+ accumu-
lation by in situ mitochondria results directly in oxida-
tive stress. There is no known target or mechanism that
would uniformly determine the effect of Ca2+ on ROS
emission from mitochondria. ROS generation in re-
sponse to a Ca2+ challenge depends on many variables.
In mitochondria not experiencing PTP, the metabolic
state is crucial by setting the membrane potential either
to a high range of values (no ATP synthesis), where
Ca2+ uptake results in a decreased ROS generation, or
to a depolarized range (ATP synthesis) in which ROS
generation is stimulated or not influenced by Ca2+ de-
pending on the amount of the Ca2+-load. ‘Pathological
Ca2+ load’ covers wide range of Ca2+ concentrations,
but effects exerted by Ca2+ in different concentrations
within this range are not uniform either. Conditions
favoring PTP induction or opposite, delaying Ca2+-
induced pore formation are also crucial for alterations
in the mitochondrial ROS emission by Ca2+; however,
the mechanism underlying the PTP-related changes in
ROS release from mitochondria is yet to be elucidated.

Finally, it is important to emphasize that while iso-
lated mitochondria are extremely useful for studies on
Ca2+-induced changes in ROS generation allowing to
choose the most/least favorable conditions for the dis-
section of a particular aspect of the Ca2+ action, the
extrapolation of results to the in vivo function needs
extreme caution since the intracellular environment for
in situ mitochondria are far more complex and the res-
piratory sate is highly dynamic.
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