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Abstract. The results of several genome-wide association studies (GWASs) in the field of Alzheimer’s disease (AD) have recently
been published. Although these studies reported in detail on single-nucleotide polymorphisms (SNPs) and the neighboring genes
with the strongest evidence of association with AD, little attention was paid to the rest of the genome. However, complementary
statistical and bio-informatics approaches now enable the extraction of pertinent information from other SNPs and/or genes
which are only nominally associated with the disease risk. Two different tools (the ALIGATOR and GenGen/KEGG software
packages) were used to analyze a large GWAS dataset containing 2,032 AD cases and 5,328 controls. Convergent outputs
from the two gene set enrichment approaches suggested an immune system dysfunction in AD. Furthermore, although these
statistical approaches did not adopt a priori hypotheses concerning a biological function’s putative role in the disease process,
genes associated with AD risk were overrepresented in the “Alzheimer’s disease” KEGG pathway. In conclusion, a systematic
search for biological pathways using GWAS data set seems to comfort the primary causes already suspected but may specifically
highlight the importance of the immune system in AD.
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INTRODUCTION

Although mutations in the amyloid-β protein precur-
sor (AβPP), presenilin-1, and presenilin-2 genes have
been shown to account for most cases of the early-onset,
autosomal dominant forms of AD, the latter account for
less than 1% of all AD cases [1]. The genetics of the
common form of AD appear to be far more complex
and the only unequivocally established genetic risk fac-
tor until now was the ε4 allele of the apolipoprotein E
(APOE) gene [2].

As is the case in most multifactorial diseases, re-
searchers investigating the genetics of AD have turned
to high-throughput or very high-throughput genotyp-
ing to analyze case-control studies of hundreds of thou-
sands of polymorphisms. However, the initial genome-
wide association studies (GWASs) of case-control col-
lections in AD each examined a relatively small num-
ber of cases. To circumvent this limitation, we and oth-
ers recently performed two large, independent GWASs
on over 14,000 individuals. Both studies yielded com-
pelling evidence to suggest that the clusterin (CLU),
complement component (3b/4b) receptor 1 (CR1), and
phosphatidylinositol-bindingclathrin assembly protein
(PICALM) genes are all associated with AD risk [3,4].
Nevertheless, if the estimate that 60–80% of AD risk
is due to genetic factors is correct, additional genetic
susceptibility loci remain to be identified [3–5].

It is important to bear in mind that conventional GWA
approaches are primarily based on the application of
a highly conservative Bonferroni correction, which ul-
timately selects only the most highly statistically sig-
nificant associations. Accordingly, it is legitimate to
consider that the “missing” genetic determinants were
probably rejected on purely statistical grounds, since
they only presented a nominal association with the dis-
ease risk. This limitation can be overcome by using
meta-analyses of GWASs to gain statistical power (as
already been successfully performed in obesity or hy-
pertension, for instance) [6–8]. Other recently devel-
oped, complementary statistical and bioinformatics ap-
proaches are also capable of extracting pertinent infor-
mation from SNPs and/or genes nominally associated
with disease risk [9–12].

We decided to perform this type of comprehensive
analysis on our GWAS dataset. Our main hypothesis
was that the genetic determinants of AD are concen-
trated within one or more specific biological pathways,
rather than being randomly distributed. Several meth-
ods exist for ranking gene pathways in terms of their in-
volvement in disease susceptibility. A number of com-

puter programs have been developed to test for over-
representation of gene ontology (GO) categories (e.g.,
biological processes) in lists of significant SNPs pro-
duced in GWASs. We used the ALIGATOR software
to analyze our single-SNP GWAS dataset. This method
takes account of multiple sources of potential bias, such
as linkage disequilibrium between SNPs, variable gene
size, overlapping genes. and non-independent GO cat-
egories [13].

However, ALIGATOR (like most techniques based
on GO category analysis) is limited by the fact that each
functional category is analyzed independently; there is
no unifying analysis at the pathway or system level.
Furthermore, less than 1% of the GO annotations have
been confirmed experimentally [14]. In order to take
account of these limitations, we also used the GenGen
software package to perform pathway-based analysis of
GWA data. This approach is based on use of the KEGG
database to detect the over-representation of genes from
a specific pathway. It also enables one to define the
position of the associated genes in a given pathway [9,
15,16].

MATERIALS AND METHODS

The GWAS [3]

Genomic DNA samples from 2,344 AD cases were
available for analysis, prior to genotype quality con-
trol steps. All AD cases were evaluated by neurologists
from Bordeaux, Dijon, Lille, Montpellier, Paris, and
Rouen and were identified as French Caucasian. A clin-
ical diagnosis of probable AD was established accord-
ing to the DSM-III-R and NINCDS-ADRDA criteria.
Genomic DNA samples of 7,076 controls were avail-
able from the 3C study, prior to genotype quality con-
trol steps. These controls were known to be dementia-
free after four years of follow-up. The 3C Study is a
population-based, prospective study of the relationship
between vascular factors and dementia. It has been car-
ried out in three French cities: Bordeaux (southwest
France), Montpellier (south France), and Dijon (cen-
tral eastern France). A sample of non-institutionalized,
over-65 subjects was randomly selected from the elec-
toral rolls of each city between January 1999 and March
2001 [17]. Written, informed consent was obtained
from study participants or, for those with substantial
cognitive impairment, from a caregiver, legal guardian,
or other proxy. The study protocols were reviewed and
approved by the appropriate institutional review boards.
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DNA samples were transferred to the French National
Genotyping Center (CNG) for genotyping. First-stage
samples that passed DNA quality control procedures
were genotyped with Illumina Human 610-Quad Bead-
Chips. Samples that had been successfully genotyped
for > 98% of the SNP markers were selected for inclu-
sion in the study. SNPs with a call rate < 98%, a minor
allele frequency (MAF) < 1% or exhibiting departure
from Hardy-Weinberg equilibrium in the control popu-
lation (p< 10−6) were excluded. On the basis of these
genetic data, we removed 134 AD cases and 980 control
samples because they were found to be first- or second-
degree relatives of other study participants or of non-
European descent. This process resulted in selection of
537,029 autosomal SNPs genotyped in 2,032 AD cases
(mean age: 73.7 ± 8.9; mean age at onset: 68.3 ± 9.0,
34% men), and 5,328 controls (mean age: 73.8 ± 5.4;
34% men).

The SNP-to-gene mapping file

For both ALIGATOR and GenGen analyses (see
URLs), gene and SNPs information data for chromo-
some 1–22 were extracted from NCBI ftp websites (re-
spectively reference assembly, build 36.3 and dbSNP,
build 130). Pseudogenes were systematically excluded
from analyses. A SNP located between the 5’ and 3’
ends of the first and last exons of a gene was always
assigned to the latter. A SNP located within 20kb of the
5’ and 3’ ends of the first and last exons of a gene was
assigned to the latter, in order to take account of pu-
tative regulatory (i.e., expression-modulating) regions.
However, if a given SNP was assigned to more than
one gene, all the entries were re-analyzed.

ALIGATOR analyses

The ALIGATOR software was developed to test
for over-representation of biological pathways (as in-
dexed by GO terms) in lists of significant SNPs from
GWASs. The software was implemented and used as
described [13]. To define the p values of SNP associ-
ations, we used logistic regression to evaluate case vs.
control differences. In order to take potential popula-
tion stratification into account, this process optional-
ly incorporated principal components that were signif-
icantly associated with disease status [3]. On the basis
of a file containing the full set of our GWAS results
(29,200 SNPs nominally associated with the AD risk
at p < 0.05), three p value categories were then exam-
ined (< 0.01, < 0.001, and < 0.0001) (Table 1). As

recommended by the tutorial on the ALIGATOR web-
site, we generated up to 50,000 replicate genelists. The
replicate genelists, generated from randomly-sampled
SNPs, are used to calculate the category-specific p-
value. We also tested different numbers of replicate
studies (1,000, 2,000, or 5,000). These replicate stud-
ies are used to assess significance of the numbers of
categories reaching various p-values, as well as study-
wide significance levels for individual categories which
are corrected for testing multiple non-independent GO
categories. This latter parameter slightly modified the
results. The data presented in the present report were
derived from 50,000 replicate genelists and 1,000 repli-
cate studies.

GWA KEGG pathway analyses

We used the GenGen package as described in the
online tutorial (see URLs). To adjust for differences in
gene size (i.e., different numbers of SNPs located with-
in or near to each gene) and for linkage disequilibrium
between SNPs within the same gene, a two-step cor-
rection procedure was performed. Firstly, the raw indi-
vidual genotype data were analyzed by logistic regres-
sion with PLINK software. Again, potential population
stratification is taken into account by optionally incor-
porating principal components that were significantly
associated with disease status. As recommended by the
software designer (see tutorial), we generated a GWA
association result file including SNPs, associated chi2
and P-values for at least 1,000 phenotype permutations.
At this stage, the file contained 28,866 SNPs nominal-
ly associated with AD at p < 0.05. Secondly, we ap-
plied the calculate gsea.pl program, which has been de-
signed to perform pathway-based GWA tests on high-
density SNP genotyping data with respect to the KEGG
databases (release 17 November 2009) [18]. This pro-
gram uses (i) the GWA association result file, (ii) a
SNP-to-gene mapping file, and (iii) a pathway anno-
tation file to perform pathway-based association tests.
The algorithm was adapted from that used in Gene Set
Enrichment Analysis software [19]. The method selects
the lowest p-value of all the SNPs near a gene but also
uses phenotype-based permutation to adjust the statis-
tical significance. Since pathways with only few genes
and those with too many can bring some false positives,
KEGG pathways containing from 10 to 200 genes were
analyzed (as defined by -setmin 10 and -setmin 200 in
the calculate gsea.pl program). Once the most strongly
associated pathways have been identified from amongst
a set of candidates, the nominal p-values are calculated
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Table 1
Number of GO pathways selected at different levels of significance using three different levels of associations for SNPs in the GWA data
set

No of No of No of assigned P < 0.0001 P < 0.01 P < 0.001
P value Top assigned genes No of P value1 No of P value1 No of P value1

Criterion SNPs genes with GO categories categories categories
For SNPs

0.0001 113 61 50 33 0.95 9 0.48 1 0.054
0.001 793 362 310 27 1.00 4 0.68 1 0.14
0.01 6423 2151 1766 30 1.00 3 0.70 1 0.20

1P values indicated whether signifcantly more GO pathways were identified than expected by chance.

from the permutation procedure and a false discovery
rate (FDR) procedure has been used to control the frac-
tion of expected false positive findings below a certain
threshold.

RESULTS

Table 1 describes the number of categories reaching
significance levels of 0.01, 0.001, and 0.0001 in ALI-
GATOR for over-representation in our GWAS dataset.
The ALIGATOR software allows estimation whether
this number of categories was obtained by chance or
may results from a real over-representation. In our
GWAS data set, no significant level of the excess of
over-represented categories was observed (Table 1).
However, many of the most significant individual GO
categories appeared to be involved in immune process-
es, whatever the cut-off value used to select significant
SNPs from the GWA dataset (< 0.01, < 0.001, or <
0.0001) (Table 2).

As mentioned above, the use of GO annotations
presents a number of limitations, particularly the lack
of a unified analysis at the pathway or system level.
To circumvent this limitation, we used the GenGen
software package and the associated KEGG database
to detect gene over-representation in a specific path-
way. As recommended by GenGen’s developers, we
first generated a GWA result file (including SNPs and
the corresponding chi2 and p values for at least 1,000
permutations) by using a co-dominant model adjusted
for principal components. These data were then cross-
checked against a KEGG pathway annotation file us-
ing the calculate gsea.pl program. We found that 4,776
SNPs nominally associated with the AD risk were as-
signed to 1,395 genes involved in 173 KEGG pathways.
Following application of the FDR procedure, we identi-
fied 5 physiological or disease-related KEGG pathways
displaying over-representationof genes associated with
the AD risk in our GWA dataset (Table 3).

Remarkably, the top-ranked gene set/pathway was
that referenced in KEGG as “Alzheimer’s disease”: 46
of its 163 genes presented nominal association with the
AD risk. This over-representation was significant (p =
0.001) after FDR correction (Table 4 and Fig. 1). We al-
so found specific over-representation of genes involved
in one or more of KEGG’s immune pathways. How-
ever, in contrast to the results obtained for the KEGG
“Alzheimer’s disease” gene set, we observed two po-
tential causes of artificial enrichment in the KEGG im-
mune gene sets. Firstly, given the design of our initial
analysis, it is possible that some SNPs can be assigned
to different genes (see the paragraph on SNP-to-gene
mapping in the Material and Methods section). This
assignation can be problematic when the SNP is lo-
cated within a cluster of genes involved in the same
biological pathway. Secondly, some SNPs may be in
linkage disequilibrium and thus will ultimately bear the
same information – whereas not assigned to the same
gene. In order to take into account these two sources of
bias in the selected KEGG immune gene pathways, we
repeated an analysis in which each SNP was assigned
to only one gene (arbitrarily the closest) and by select-
ing only one SNP in the event of an r2 value � 0.5
when comparing different SNPs. These processes led
to the exclusion of four SNPs. After having controlled
for these sources of biases, we were still able to iden-
tify two KEGG immune pathways displaying the over-
representation of genes associated with the AD risk in
our GWA dataset: (i) antigen processing and presenta-
tion (p = 0.04) and (ii) regulation of autophagy (p =
0.05) (Tables 5, 6 and 7).

DISCUSSION

The simple GWA approach used to test hundreds of
thousands of markers for association with a specific
phenotype has proved to be quite successful in charac-
terizing the major genetic determinants of certain dis-
eases. However, the loci discovered to date do not ac-
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Table 2
List of the most signifcantly overrepresented GO categories at different P value criterion for SNPs association with AD risk unsing ALIGATOR

P value Criterion GO ID Type Total genes Nb of genes Category-specific Study wide Function
For SNPs in category on list p-value p-value1

P < 0.01 48261 Biological process 5 3 0.00012 0.2 Negative regulation of receptor-
mediated endocytosis

32395 Molecular function 8 6 0.00052 0.532 MHC class II receptor activity
3918 Molecular function 4 3 0.00086 0.703 DNA topoisomerase

(ATP-hydrolyzing) activity
42613 Cellular component 12 7 0.00118 0.806 MHC class II protein complex
43190 Cellular component 9 4 0.0014 0.846 ATP-binding cassette (ABC) trans-

porter complex
31307 Cellular component 6 3 0.00154 0.871 Integral to mitochondrial outer

membrane
2504 Biological process 15 7 0.0017 0.893 Antigen processing and presentation

of peptide or polysaccharide antigen
via MHC class II

5132 Molecular function 8 3 0.00184 0.904 Interferon-alpha/beta receptor
binding

6268 Biological process 13 4 0.0019 0.914 DNA unwinding during replication
6955 Biological process 542 73 0.00212 0.947 Immune response

P < 0.001 33344 Biological process 13 4 0.00004 0.14 Cholesterol efflux
42613 Cellular component 12 4 0.00018 0.4 MHC class II protein complex
2504 Biological process 15 4 0.00022 0.49 Antigen processing and presentation

of peptide or polysaccharide antigen
via MHC class II

2455 Biological process 30 4 0.00096 2.05 Humoral immune response mediated
by circulating immunoglobulin

34379 Biological process 5 2 0.0012 2.53 Very-low-density lipoprotein particle
assembly

34377 Biological process 7 2 0.00158 3.33 Plasma lipoprotein particle assembly
65005 Biological process 8 2 0.00162 3.41 Protein-lipid complex assembly
32395 Molecular function 8 3 0.00162 3.41 MHC class II receptor activity
5319 Molecular function 55 7 0.00174 3.69 Lipid transporter activity

31490 Molecular function 6 2 0.0023 4.8 Chromatin DNA binding
P < 0.0001 2455 Biological process 30 3 0.00002 0.054 Humoral immune response mediated

by circulating immunoglobulin
19724 Biological process 48 3 0.00012 0.136 B cell mediated immunity
16064 Biological process 46 3 0.00012 0.136 Immunoglobulin mediated immune

response
51235 Biological process 47 3 0.00024 0.209 Maintenance of location
2449 Biological process 58 3 0.00034 0.267 Lymphocyte mediated immunity
2460 Biological process 64 3 0.00034 0.267 Adaptive immune response based on

somatic recombination of immune re-
ceptors built from immuno

2250 Biological process 64 3 0.00034 0.267 Adaptive immune response
2443 Biological process 64 3 0.00048 0.344 Leukocyte mediated immunity
6959 Biological process 64 3 0.00092 0.478 Humoral immune response

17038 Biological process 93 3 0.00108 0.519 Protein import
50778 Biological process 83 3 0.00116 0.539 Positive regulation of immune

response
1P values indicated whether the signifcantly GO pathways were potentially identified by chance.

count for the complete heritability for most of the stud-
ied phenotypes. It has been suggested that since (i)
GWASs are probably insufficiently powered to detect
small main effects (false negatives) and (ii) gene-gene
interactions are likely to play a role, the full potential of
highly complex GWAS datasets may not yet have real-
ized [6]. Gene set enrichment analyses can address this
complexity by considering multiple loci simultaneous-

ly and relating them to known functional annotations.
Hence, pathway analyses can lead to new discoveries
overlooked in simple, single-SNP tests and thus suc-
cessfully identify associations with pathways involved
in pathogenesis.

This context prompted us to perform gene set enrich-
ment analyses of a GWAS dataset featuring 2,032 AD
cases and 5,328 controls. Using the GenGen software
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Table 3
KEGG pathways signicantly overrepresented in our GWA data set

KEEG Ref. Total No No of No of selected Nominal FDR Ranked list of over-represented
of genes1 genes2 genes3 P-value P-value gene sets/pathways

hsa05010 163 148 46 0.001 0.001 Alzheimer’s disease
hsa04140 34 31 16 0.003 0.007 Regulation of autophagy
hsa04650 131 127 64 0.002 0.02 Natural killer cell mediated cytotoxicity
hsa04622 81 78 30 0.003 0.02 Antigen processing and presentation
hsa04612 71 64 29 0.001 0.03 RIG-I-like receptor signaling
1number of genes assigned to the pathway in the KEGG database.
2number of genes for which a SNP in the GWA database has been assigned.
3number of genes presenting a SNP nominally associated with AD risk and finally retained for estimation of overrepresen-
tation.

Fig. 1. A depiction of the “Alzheimer’s disease” pathway in the KEGG database. Proteins or complexes encoded by genes nominally associated
with the AD risk and selected for over-representation by the GenGen package are indicated in red.

package, we observed an over-representation of genes
associated with the AD risk in the KEGG “Alzheimer’s
disease” pathway. Since the gene set enrichment anal-
ysis does not make any a priori hypotheses about the

biological functions involved in the disease process,
our findings appear to be relevant and should advance
our current understanding of AD. For instance, genes
coding for α-secretase (ADAM10 [20]) or β-secretases
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Table 4
list of genes nominally associated with AD risk
and defined using the GenGen software as signif-
ciantly involved in the hsa05010 KEEG pathway
(Alzheimer’s disease)

GENE best associated SNP P-value

APOE rs2075650 3,6E-110
PLCB4 rs6086834 5,8E-04
PLCB1 rs6086570 9,1E-04
CDK5R1 rs756785 1,7E-03
MAPT rs1467967 1,9E-03
RYR3 rs16957135 2,6E-03
ADAM10 rs653765 2,7E-03
ITPR2 rs17477122 2,9E-03
CACNA1C rs4765898 4,0E-03
NDUFS6 rs750495 4,8E-03
MME rs2016848 5,5E-03
GRIN2B rs12818068 6,7E-03
ITPR1 rs2291597 7,0E-03
BACE2 rs6517656 7,1E-03
ITPR3 rs4713646 7,6E-03
BACE1 rs560564 8,3E-03
COX4I2 rs6060454 8,5E-03
COX7B2 rs9291291 8,5E-03
NOS2A rs3794764 9,3E-03
APP rs462281 1,0E-02
CALM1 rs1058903 1,1E-02
PPP3CA rs17030795 1,1E-02
CACNA1D rs3796349 1,2E-02
NDUFS2 rs10797094 1,2E-02
NOS1 rs12099598 1,2E-02
COX7A2L rs1981664 1,2E-02
CASP7 rs11196449 1,2E-02
LPL rs4466415 1,3E-02
PLCB3 rs915987 1,4E-02
SDHC rs4272646 1,6E-02
TNF rs3132452 1,7E-02
NDUFA9 rs4147683 1,8E-02
CACNA1S rs3767498 1,9E-02
GNAQ rs7033572 2,0E-02
CAPN1 rs17743381 2,2E-02
UQCRC2 rs11648723 2,3E-02
NDUFV3 rs4148972 2,3E-02
GRIN2C rs7219247 2,3E-02
ERN1 rs17688326 2,4E-02
NOS3 rs3918227 2,5E-02
COX6B2 rs11084396 2,5E-02
LRP1 rs1800159 2,6E-02
ATP5C1 rs1244447 2,7E-02
MAPK1 rs2298432 2,8E-02
UCRC rs16988025 2,9E-02
CAPN2 rs751128 3,0E-02

(BACE1 and BACE2 [21]) have SNPs nominally asso-
ciated with the AD risk in their vicinity (i.e., in the gene
itself or within 20kb of the 5’ and 3’ ends of the gene’s
first and last exons). This observation may indicate that
changes in the expression or function of proteins direct-
ly involved in AβPP metabolism may slightly modify
the risk of developing AD in sporadic, late-onset forms
of AD. This overrepresentation of genes associated with

AD risk in the “Alzheimer’s disease” KEGG pathway
seems also to point out Ca2+ signaling involvement
(Fig. 1) [22]. This observation is of particular interest,
since much biological evidence has suggested that im-
paired Ca2+ signaling is involved in the physiopathol-
ogy AD (by modulating AβPP metabolism [23] or in
modulating toxicity linked to amyloid-β (Aβ) peptide
exposure [24], for example).

In addition to these well-documented processes, our
study suggests that the regulation of autophagy and
antigen processing and presentation are also involved
in AD. Autophagy has already been suspected of play-
ing a role in AD [25]. Firstly, this biological process
seems to be induced but impaired in neurons in the AD
brain, since autophagic vacuoles accumulate dramati-
cally in dystrophic neuritis [26]. Secondly, it has been
suggested that autophagy can protect neurons from Aβ-
induced apoptosis [27]. In fact, it is not clear whether
autophagy has causative or a protective role or whether
induction is a consequence of the disease process [28].

Interestingly, endogenous presentation of an epitope
derived from proteins on MHC class II can be mediated
by autophagy [29]. We found that the KEGG “anti-
gen processing and presentation” pathway also dis-
plays over-representation of the genes associated with
the AD risk in our GWA dataset. One can postulate
that Aβ peptides are endocytosed by antigen-presenting
cells, processed into fragments that are bound to MHC
molecules and presented to T lymphocytes. Antigen
presentation can lead to B-cell stimulation and then pro-
duction of Aβ-specific auto-antibodies. In conclusion,
specific immune responses could appear to be capable
of inducing Aβ degradation and may constitute a natu-
ral line of defense against harmful accumulation of the
Aβ peptides. Of course, such mechanisms have been
reported in Aβ peptide-immunized AD patients: indi-
viduals have shown a dramatic reduction of amyloid
deposition when compared with non-immunized indi-
viduals [30]. However, natural antibodies against Aβ
peptides are present in the sera of AD patients and in
non demented individuals [31]. These auto-antibodies
inhibit Aβ peptide aggregation in vitro [32], and it has
been observed that in non-amyloid-immunized AD pa-
tients, auto-antibodies against Aβ peptides may help
reduce the plaque burden and increase the numbers of
phagocytic microglia [32]. Altogether, these data can
be interpreted as an Aβ peptide antibody-dependentac-
tivation of immune response. Furthermore, even if the
CLU and CR1 genes are not annotated in the KEGG
immune response pathways we picked-up, this hypoth-
esis would be in accordance to our initial results in-
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Table 5
immune KEGG pathways signicantly overrepresented in our GWA data set after correction for artificial cluster enrich-
ment and LD control

KEEG Ref. Total No No of No of selected Nominal FDR Ranked list of over-represented
of genes1 genes2 genes3 P-value P-value gene sets/pathways

hsa04612 81 70 22 0.002 0.04 Antigen processing and presentation
hsa04140 34 28 11 0.005 0.05 Regulation of autophagy
1number of genes assigned to the pathway in the KEGG database.
2number of genes for which a SNP in the GWA database has been assigned.
3number of genes presenting a SNP nominally associated with AD risk and finally retained for estimation of overrep-
resentation.

Table 6
list of genes nominally associated with AD risk
and defined (A) without and (B) with control-
ling for artificial gene cluster enrichment and
LD between SNPs as signifciantly involved in
the hsa04140 KEEG pathway (Regulation of
autophagy) using the GenGen software

A. GENE best associated SNP P-value

IFNA14 rs1330320 4,7E-04
IFNA10 rs4977686 2,0E-03
IFNA16 rs4977686 2,0E-03
IFNA4 rs4977686 2,0E-03
IFNA7 rs4977686 2,0E-03
ATG7 rs2454505 2,5E-03
IFNA8 rs1330322 4,0E-03
IFNA21 rs7037868 4,8E-03
IFNA17 rs12337907 5,8E-03
IFNA1 rs7864960 7,5E-03
IFNA6 rs10119678 1,1E-02
PRKAA2 rs2179761 1,3E-02
PIK3R4 rs11713445 1,3E-02
IFNA13 rs1224392 1,4E-02
IFNA2 rs1224392 1,4E-02
IFNA5 rs28383775 1,4E-02

B. GENE best associated SNP P-value
IFNA14 rs1330320 4,7E-04
IFNA7 rs4977686 2,0E-03
ATG7 rs2454505 2,5E-03
IFNA8 rs1330322 4,0E-03
IFNA21 rs7037868 4,8E-03
IFNA16 rs12337907 5,8E-03
IFNA1 rs7864960 7,5E-03
PRKAA2 rs2179761 1,3E-02
PIK3R4 rs11713445 1,3E-02
IFNA13 rs1224392 1,4E-02
IFNA5 rs28383775 1,4E-02

volving CLU and CR1 as major genetic determinants
of AD in influencing susceptibility to late onset forms
of the disease through a role in Aβ clearance [3]. Fur-
thermore it is worth noting that CR1 might act as either
activator or inhibitor of B cell and T cell functions [33].
Interestingly CR1 is mainly expressed in the choroid
plexus in the brain [34] and the choroid plexus could
represent a site for lymphocyte entry in the CSF and
brain, and for presentation of antigens [35].

Despite these interesting results, our study suffered

from the usual limitations of gene set enrichment anal-
yses [11]. The latter tend to highlight genes that con-
tain many SNPs or indeed any pathway that contains
several large genes. Conversely, these analyses tend to
overlook pathways that only contain small genes. To
compensate for this problem, we used two approach-
es based on permutation testing, needed to account for
this size bias. Furthermore, the quality of the biologi-
cal databases used in gene set enrichment approaches
strongly influences the relevance of the resulting out-
puts. We addressed this specific point by using two
different databases: GO and KEGG. The GO database
mainly relies on computer prediction but also includes
human annotation. It provides a broad spectrum of gene
sets for testing enrichment. However, as previously
mentioned, GO annotation analyses are limited (i) by
the fact that each functional category is analyzed in-
dependently (in the absence of a unifying analysis at
the pathway or system level) and (ii) because less than
1% of the GO annotations have been confirmed exper-
imentally [14]. This is why we also used the KEGG
pathway database; in contrast to GO, it is manually
compiled on the basis of biological evidence [17]. In-
terestingly, both approaches highlighted the innate im-
mune system (even though the over-representation of
the immune GO categories in the ALIGATOR analyses
was not significant). Furthermore, the fact that we ob-
served significant enrichment of genes featured in the
“Alzheimer’s disease” gene set supports the pertinence
of our results.

Lastly, gene set enrichment approaches have (in part)
been developed to detect potential genetic determinants
that are rejected on purely statistical grounds as a re-
sult of only nominal associations with the disease risk.
However, it is likely that false positive associations are
also included in these analyses and may lead to biased
gene set enrichment by chance. Even though this spe-
cific point is difficult to assess, we crosschecked our
data with the results obtained in another recent large
AD GWAS [4]. However, the available online data were
limited, since these only included SNPs associated at
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Table 7
list of genes nominally associated with AD risk and
defined (A) without and (B) with controlling for
artificial gene cluster enrichment and LD between
SNPs as signifciantly involved in the hsa04612
KEEG pathway (Antigen processing and presen-
tation) using the GenGen software

A. GENE best associated SNP P-value

IFNA14 rs1330320 4,65E-04
HLA-DRB1 rs9270856 4,77E-04
HLA-DRA rs3135344 5,44E-04
HLA-DPA1 rs2105929 8,08E-04
HLA-DOA rs9277015 1,26E-03
IFNA10 rs4977686 1,97E-03
IFNA16 rs4977686 1,97E-03
IFNA4 rs4977686 1,97E-03
IFNA7 rs4977686 1,97E-03
HLA-E rs1264456 3,50E-03
HLA-DOB rs7767167 3,78E-03
IFNA8 rs1330322 3,97E-03
LTA rs35969216 4,42E-03
IFNA21 rs7037868 4,77E-03
IFNA17 rs12337907 5,78E-03
TAP1 rs4148870 5,85E-03
TAP2 rs4148870 5,85E-03
NFYB rs10778309 6,80E-03
IFNA1 rs7864960 7,52E-03
HLA-DQB1 rs7755224 8,53E-03
HLA-F rs1610603 8,88E-03
CANX rs7734102 8,94E-03
HLA-DQA1 rs9272105 8,98E-03
IFNA6 rs10119678 1,08E-02
HLA-B rs2523619 1,19E-02
CIITA rs4072865 1,21E-02
IFNA13 rs1224392 1,37E-02
IFNA2 rs1224392 1,37E-02
IFNA5 rs28383775 1,38E-02
CREB1 rs2551645 1,76E-02
HLA-DMA rs714289 1,82E-02
HLA-DMB rs714289 1,82E-02
CTSB rs1736090 1,90E-02
HSPA6 rs1801274 2,10E-02
KIR3DL3 rs12151161 2,18E-02

B. GENE best associated SNP P-value

IFNA14 rs1330320 4,7E-04
HLA-DRB1 rs9270856 4,8E-04
HLA-DRA rs3135344 5,4E-04
HLA-DPA1 rs2105929 8,1E-04
HLA-DOA rs6933546 1,7E-03
IFNA7 rs4977686 2,0E-03
HLA-E rs1264456 3,5E-03
HLA-DOB rs7767167 3,8E-03
IFNA21 rs7037868 4,8E-03
IFNA8 rs7025006 5,6E-03
IFNA16 rs12337907 5,8E-03
NFYB rs10778309 6,8E-03
IFNA1 rs7864960 7,5E-03
HLA-DQB1 rs7755224 8,5E-03
CANX rs7734102 8,9E-03
HLA-DQA1 rs9272105 9,0E-03
HLA-B rs2523619 1,2E-02
TAP2 rs2071544 1,3E-02

Table 7, continued

IFNA13 rs1224392 1,4E-02
CREB1 rs2551645 1,8E-02
HLA-DMB rs714289 1,8E-02
CTSB rs1736090 1,9E-02

the p < 0.001 level. Nevertheless, we found that
5 genes in the KEGG “Alzheimer’s disease” gene set
(APOE, GNAQ, BACE2, RYR3, and ITPR2) and 5
genes in the KEGG “antigen processing and presenta-
tion” pathway (HLA-DRB1, HLA-DRA, HLA-DOB,
HLA-DQA1, and TAP2) were associated with the AD
risk in both GWASs. Interestingly, the 6p21.3 region
gene region (containing the MHC) has been already de-
scribed as being associated with the AD risk in both by
genome-wide linkage analyses and conventional candi-
date gene approaches [36,37]. Furthermore, it has been
reported that the HLA-DRA gene is under-expressed in
the AD brain, compared with controls [38]. Taken as a
whole, these data support the association of the MHC
region with the AD risk and the involvement of an in-
flammatory process in AD. Importantly, we are aware
that clusters of genes with similar functions can create
spurious evidence that multiple genes in a pathway are
associated with the disease. However, we attempted to
limit this potential bias in two ways: (i) we repeated the
analyses by assigning each SNP to only one gene and
(ii) we controlled for linkage disequilibrium in this re-
gion. These precautions suggest that the HLA-DRB1,
HLA-DRA, HLA-DOB, HLA-DQA1, and TAP2 sig-
nals are more or less independent.

In conclusion, the validity and the strength of the
present results are strongly dependent on the inherent
limitations of gene set enrichment approaches. Fur-
thermore, in vitro and in vivo experiments will be nec-
essary to clearly understand how these genes could take
place in the AD physiopathological process. Finally,
it is important to bear in mind that these results will
remain hypothetical until they are validated in other
large GWASs. At this stage, a meta-analyses of GWASs
would be particularly powerful. However, gene set en-
richment analyses of our large GWAS appear to con-
firm the prime suspects in AD: AβPP metabolism and
Ca2+ signaling. In addition, our data specifically high-
light the importance of the innate immune system in
the pathophysiology of this disease.
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