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Hypothesis
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Abstract. Cumulative evidence suggests that metabolic syndrome (MetS) may be important in the development of mild cognitive
impairment, vascular dementia, and Alzheimer’s disease (AD). As such, these patients might be described as having “metabolic-
cognitive syndrome” – MetS plus cognitive impairment of degenerative or vascular origin. While peripheral insulin resistance
appears to be of primary pathophysiological importance in MetS, the definitions of MetS and its components do not include any
reference to insulin resistance or hyperinsulinemia. In the present article, we discuss the role of these factors in the development
of cognitive decline and dementia, including underlying mechanisms that influence amyloid-β (Aβ) peptide metabolism and
tau protein hyperphosphorylation, the principal neuropathological hallmarks of AD. In AD, an age-related desynchronization
of biological systems results, involving stress components, cortisol and noradrenaline, reactive oxygen species, and membrane
damage as major candidates that precipitates an insulin resistant brain state (IRBS) with decreased glucose/energy metabolism and
the increased formation of hyperphosphorylated tau protein and Aβ. Unfortunately, it is very difficult to include the measurement
of peripheral insulin resistance in the current MetS criteria or the identification of IRBS for the metabolic-cognitive syndrome.
However, since inflammation has been suggested among the MetS components, we propose IRBS as an additional feature of the
metabolic-cognitive syndrome to also identify a molecular profile in patients at high risk of developing predementia or dementia
syndromes.
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INTRODUCTION

Metabolic syndrome (MetS) is a multifactorial dis-
order represented by the co-occurrence of several con-
ditions related to central obesity that also includes im-
paired glucose metabolism, lower high density lipopro-
tein levels, elevated triglyceride levels, and high blood
pressure and that depicts a risk status for both type
2 diabetes mellitus (T2DM) and coronary artery dis-
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ease [1,2]. However, one of the more controversial
topics regarding MetS is whether it poses cardiovascu-
lar risk beyond what is already conferred by the vas-
cular risk factors that comprise it [3,4]. Furthermore,
MetS did not consistently predict total and cardiovas-
cular mortality in older men, especially at age 70 [5],
whereas it has been shown to be independently associ-
ated with predementia and dementia syndromes. The
time of measurement of MetS and some MetS compo-
nents seems to be of crucial importance. In fact, hy-
pertension [6] and elevated body mass index in middle
age may be associated with higher dementia risk [7,
8], while the association between MetS and accelerat-
ed cognitive decline disappeared at the age of 85 and
older [9]. MetS appears to increase the risk for age-
related cognitive decline [9–15] and vascular demen-
tia (VaD) [16–19], while contrasting findings exist for
mild cognitive impairment (MCI) [20–22], its progres-
sion to dementia, and Alzheimer’s disease (AD) [16,18,
19,23–25]. These suggestions permitted us to hypoth-
esize the presence of a “metabolic-cognitive syndrome
(MCS)” in patients with MetS plus cognitive impair-
ment of degenerative or vascular origin that could help
us better understand clinical and neuropathological fea-
tures of these cognitive disorders. The identification of
a clinical profile of this MCS could also be central in
detecting a molecular profile of higher risk to develop
predementia or dementia syndrome.

INSULIN RESISTANCE, METABOLIC
SYNDROME, AND COGNITIVE DECLINE

Except for the World Health Organization crite-
ria [2], the European Group for study of Insulin Re-
sistance criteria [26], and the American Association
of Clinical Endocrinologists criteria [27], the princi-
pal definitions of MetS do not include any reference
to insulin resistance or hyperinsulinemia despite clear
evidence that these factors play a causal role in its oc-
currence in most patients, even if the presence of in-
sulin resistance cannot be taken for granted in patients
with MetS. The occurrence of diabetes and dementia is
very high in older patients, suggesting a possible link
between the two, overall because diabetic patients have
a higher chance of developing dementia [29]. T2DM
has also been found consistently to be related to vas-
cular dementia but its relation to AD is less clear, al-
though half of the studies found an increased risk in
diabetic patients [29,30]. In type 1 diabetes mellitus
(T1DM), only a mild decrease of speed of informa-

tion processing and psychomotor efficiency has been
shown in nondemented subjects [31], while inT2DM,
memory and executive functions have been found to be
impaired [32]. One clue as to why T1DM and T2DM
may differ in the progression of cognitive impairment
is a potential interaction between diabetes and age [33].
In fact, T2DM is more prevalent with increasing age,
and clinically relevant decreases in cognitive function
are more likely to occur in elderly T2DM patients [34].
Another possible explanation for the differential effects
on cognitive function is insulin resistance, a feature
more prevalent in T2DM than in T1DM [33].

In fact, some authors hypothesized that insulin resis-
tant brain state (IRBS) contributes to cognitive impair-
ment and neurodegeneration. Several aspects of brain
metabolism clearly responded to insulin action, and al-
though insulin and insulin-like growth factor 1 (IGF-
1) are supplied by circulation, a smaller proportion
of insulin is produced in the brain itself [35]. More-
over, insulin receptors (IRs) have been found in dif-
ferent brain areas with variable densities, in particular,
in the olfactory bulb, hypothalamus, cerebral cortex,
and hippocampus [36]. Therefore, impairments of in-
sulin and IGF-1 signaling leads to decreased energy
metabolism and increased oxidative stress manifested
by reduced glucose uptake and ATP production [37].
Reduced ATP adversely affects cellular homeostasis,
membrane permeability, and fundamental processes re-
quired for synaptic maintenance and remodeling,which
are needed for learning and establishing new memo-
ry [38]. In addition to a metabolic function, insulin
and IGF-1 modulate neuronal growth, survival, dif-
ferentiation, migration, gene expression, protein syn-
thesis, cytoskeletal assembly, synapse formation, and
plasticity. In addition, they regulate growth, survival,
and myelin production/maintenance in oligodendro-
cytes [39]. On the other hand, hyperglycemia, dia-
betes mellitus, and insulin resistance increased the
risk of developing cerebrovascular disease, micro-
and macrovascular complications of varying severi-
ty [33], as well as increased carotid intima-media thick-
ness [40–42], or greater grade of infarcted areas dur-
ing a cerebrovascular event [43]. Increased concentra-
tions of anti-fibrinolytic and other procoagulant factors
have been found in diabetes mellitus as well as alter-
ations in nitric oxide metabolism. Plasminogen activa-
tor inhibitor-1 and antithrombin III, which inhibit fib-
rinolysis, as well as the tissue plasminogen activator
antigen, a marker of impaired fibrinolysis, were consis-
tently found to be elevated in insulin resistance pheno-
types [44,45]. Procoagulant factors, such as factor VII
and VIII, and the von-Willebrand factor also rise with
the degree of insulin resistance [46,47].
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Fig. 1. Overview of the principal underlying mechanisms linking insulin resistance to Alzheimer’s disease (AD). Aβ = amyloid-β; IDE =
insulin degrading enzyme; PI3-K = phosphatidylinositol-3 kinase; Akt/PKB = protein kinase B; GSK-3β = glycogen synthase kinase-3β;
PP2A = protein phosphatase 2.

INSULIN RESISTANCE BRAIN STATE AND
TAU PROTEIN

Insulin and IGF-1 after binding to IRs mediate sig-
nal transduction by activation of phosphatidylinositol-
3 kinase (PI3-K) that stimulates glucose transport
and inhibits apoptosis by activating protein kinase
B (Akt/PKB) [38]. Insulin resistance signaling im-
pairment induces PI3-K dysfunction leading to re-
duced Akt/PKB activity, decreased glucose/energy
metabolism, and ATP production, compromising all
ATP-dependent processes, which may include al-
so insulin degrading enzyme (IDE) activity regula-
tion [48]. Additionally, PI3-K dysfunction leads to re-
duced glycogen synthase kinase 3 α/β (GSK-3α/β)
phosphorylation, and by GSK-3α/β activation, to phos-
phorylation of tau protein and intraneuronal amyloid-
β (Aβ) accumulation (Fig. 1). The understanding
of this mechanism allowed new perspectives into re-
search of disease-modifying drugs, such as GSK3 in-
hibitors [49]. Glucose metabolism also participates
in posttranslational protein modification involving the
hexosamine biosynthetic pathway, which leads to the
generation of O-N-acetylglycosamine (O-GlcNAc). O-
GlcNAcylation of proteins is proposed to compete with
protein phosphorylation, and if intraneuronal glucose
metabolism decreases because of insulin resistance,

O-GlcNAcylation is decreased and consequently in-
creased protein phosphorylation, including tau pro-
tein [50].

There is now solid evidence that insulin and IGF-1
signaling cascades are involved in expression and phos-
phorylation regulation of tau protein and also in cy-
toskeletal functions via phosphorylation [51]. Recently,
in a mice experimental model, two distinct mechanisms
were hypothesized to explain the role of impaired in-
sulin signaling in tau hyperphosphorylation [52]. One,
inherent to insulin depletion,probably causes inhibition
of the PI3K/Akt pathway, in particular by inhibition of
protein phosphatase 2 (PP2A) activity and increasing
activation of GSK-3β [53]. In addition, inhibition of
insulin/IGF-1 signaling blocks the Wnt pathway [54],
which negatively regulates GSK-3β via a PI3K/Akt-
independent mechanism. In AD, both PI3K/Akt and
Wnt signaling have been linked to key molecular ab-
normalities [55]. The other mechanism was conse-
quent to hypothermia. In fact, deficits in peripheral glu-
cose/energy metabolism lead to relative hypothermia,
with direct inhibition of PP2A activity, finally result-
ing in hyperphosphorylation of tau [52], which can-
not be transported into axons, and that then accumu-
lates and aggregates in neuronal perikarya [56]. This
contributes to neurodegeneration by enhancing oxida-
tive stress and triggering pathophysiological cascades
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that lead to increased apoptosis destabilizing the mi-
crotubule network and other cellular functions [57].

INSULIN RESISTANT BRAIN STATE AND
AMYLOID-β

Insulin also influences Aβ peptide metabolism by
accelerating its trafficking to the plasma membrane
from the trans-Golgi network, where it is generated.
Insulin also increases extracellular levels of amyloid-
β protein precursor (AβPP) by promoting its secre-
tion and inhibiting its degradation by IDE and, final-
ly, disrupting physiological processing of AβPP [38]
(Fig. 1). Conversely, alterations in insulin signaling
may be secondary and not primary factors in relation
to AD. In particular, extracellular soluble oligomers
of Aβ peptides [also termed Aβ-derived diffusible lig-
ands (ADDLs)] [58] can bind to synapses and decrease
membrane IRs through an insulin signaling-dependent
mechanism [59,60]. Intracellular Aβ inhibits insulin
signaling in neurons by interfering with the associa-
tion between phosphoinositide-dependent kinase 1 and
Akt1 and precluding Akt1 activation [59,60]. There-
fore, since AβPP competes with insulin for receptor
binding, inefficient degradation of soluble AβPP could
represent an important mediator of brain insulin resis-
tance in AD through a competitive mechanism with
IDE [61,62]. If AβPP interferes with IDE function,
the outcome should be to increase rather than decrease
insulin levels and their actions in the central nervous
system (CNS). Nonetheless, in AD, the opposite is true,
i.e., increased levels of AβPP are associated with re-
duced levels of CNS insulin and IGF-1 [63]. This sug-
gests that a dual mechanism of cognitive impairment
and neurodegeneration mediated by insulin resistance
is possible and that it may be distinguished the brain
insulin deficiency action from peripheral insulin resis-
tance. In the absence of peripheral insulin resistance,
AD most likely represents a brain-specific form of di-
abetes mellitus, i.e., type 3 diabetes mellitus (T3DM)
due to the combined effects of brain insulin deficiency
and insulin resistance. Because etiological factors re-
sponsible for T3DM have not been clearly proven in the
case of sporadic AD [64], some authors proposed the
term IRBS instead of “T2DM confined to the brain” or
T3DM to avoid misunderstandings. With aging, desyn-
chronization of biological processes, together with
the activity of susceptibility genes (e.g., apolipopro-
tein E), hypothalamic-pituitary-adrenal (HPA) axis im-
pairment (i.e., cortisol and noradrenalin) and oxida-

tive injury may induce an IRBS [48]. From a diag-
nostic point of view, after a 1-minute cold pressure
test, both cortisol and noradrenaline increased in spo-
radic AD patients, indicating HPA-axis hyperactivity
and an increased sympathetic tone significantly high-
er than in age-matched controls [65]. The induction
of an IRBS may be of predominating significance for
the generation of sporadic AD in absence of MetS. On
the contrary, besides the mechanism speculated above,
among individuals with peripheral insulin resistance,
there is another pathological process relative to excess
generation of cytotoxic lipids, including ceramides,
that cross the blood-brain barrier and cause IRBS,
neuro-inflammation, oxidative stress, DNA damage,
and lipid peroxidation [38]. Ceramides are lipid sig-
naling molecules with wide-ranging modulatory ef-
fects, including cell proliferation, motility, plasticity,
inflammation, apoptosis, and insulin resistance [66]. In
particular, ceramides cause insulin resistance by acti-
vating pro-inflammatory cytokines and also inhibiting
insulin-stimulated signaling through PI3-K/Akt in the
brain [38]. Finally, impaired insulin signaling increas-
es oxidative stress by expression of pro-oxidant genes
belonging to nitrous oxide systems, incorporation of 8-
hydroxy-2’-deoxyguanosine, which destabilizes DNA,
lipid peroxidation with 4-hydroxynonenal accumula-
tion, and activation of pro-apoptosis genes. In fact, the
progressive worsening of insulin/IGF resistance with
regard to stage of AD is correlated with all these cel-
lular alterations but in a different manner according to
whether the insulin resistance disease is in or outside
the CNS.

CONCLUSIONS

A growing body of evidence from epidemiological
and basic research has proposed a model of cognitive
impairment of vascular or degenerative origin linked
to MetS and metabolic disorders. This MCS may have
as central feature, the IRBS, notwithstanding the ab-
sence in current operational clinical criteria for MetS
of insulin resistance or hyperinsulinemia. However, al-
though the hypothesis that the IRBS and MetS may be
important for AD pathogenesis, they are distinct en-
tities and may not be related to each other. Elucida-
tion of the interactions among various metabolic disor-
ders and identification of convergent pathophysiology
underlying comorbidities will likely provide important
clues to dementia-related mechanisms. In fact, there
is very strong evidence that obesity, hyperinsulinemia,
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and T2DM are related to dementia and AD. The po-
tential mechanisms linking the continuum of obesity,
hyperinsulinemia, and T2DM are multiple, overlap-
ping, and highly correlated. Conversely, obesity is also
strongly associated with hypertension via hypothalam-
ic activation of the sympathetic nervous system by lep-
tin [67]. Clearly, it is very difficult to include the mea-
surement of peripheral insulin resistance in the current
research-applied MetS criteria or the identification of
IRBS for the MCS. However, as inflammation has been
suggested for inclusion among the MetS components
in the few last years [68], we proposed the IRBS as
an additional feature of the MCS to identify in these
patients a molecular profile of higher risk to develop
predementia or dementia syndromes.
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