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INTRODUCTION

Reactive oxygen species (ROS) damage in the
Alzheimer’s disease (AD) brain is widely reported at
the levels of nucleic acids [1], protein [2], and lipids [3].
ROS damage is also associated with heart disease, can-
cer, and aging. Consequently, numerous clinical trials
of the lipid soluble antioxidant, vitamin E, have been
conducted for prevention [4] and treatment [5] of age-
related morbidity and mortality. The meta-analysis by
Miller and colleagues [5] clearly shows that among 19
clinical trials, only the smaller trials show either an in-
crease or a decrease in all-cause mortality and that the
overall effect is near zero. By organizing these stud-
ies into a dose-response curve, a significant increase in
all-cause mortality was observed for vitamin E doses
above 400 IU/day. In an earlier trial of vitamin E treat-
ment for AD at the high dose of 2000 IU/day, there
was no effect of vitamin E on Mini-Mental Examina-
tion Status (MMSE) scores of moderately severe AD
patients, despite delays in nursing home placement [6].
In a trial of mild cognitive impairment (MCI) patients,
Petersen and collaborators [7] found that even early vi-
tamin E treatment failed to improve cognition. These
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results prompted Lloret et al. [8] to introduce the nov-
el concept of stratifying AD patients into vitamin E
respondents and non-respondents, based on measures
of plasma oxidized glutathione (GSSG), the oxidized
form of the common antioxidant glutathione (GSH).
At the borderline detrimental dose of 800 IU/day [5],
about half of the patients failed to respond to vitamin E
with lower plasma GSSG; they showed a lower MMSE
score after 6 months that suggested a 13% decline in
cognitive performance [8]. The other half of the pa-
tients for whose GSSG decreased with vitamin E treat-
ment did not significantly change their original MMSE
score. Unfortunately, the study was not large enough to
detect a decline in MMSE for treatment with placebo.
Also provocative from this report was a strong negative
correlation between GSSG and MMSE, but most of the
effect was due to 4 of 19 AD patients with a 5–10%
drop in GSSG in response to vitamin E.

Given a robust rise in oxidized macromolecules with
aging and AD, and the assumption that oxidation is
causing symptoms, why is the antioxidant vitamin E
ineffective? The findings by Lloret and colleagues in-
dicate that vitamin E does not, in fact, lower plasma
oxidative stress for half of the AD patients. To under-
stand this result, we need to consider the broader scope
of how antioxidants might reduce the load of macro-
molecular ROS damage. Is it reasonable to expect that
a lipid-soluble antioxidant would protect against oxida-
tion of aqueous phase nucleic acids and proteins? The
lipophilic vitamin E partitions into membranes where
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it is available to receive an unpaired electron (“oxyrad-
ical”) from an oxidized conjugated lipid. But if the
oxidized vitamin E is not removed, it will either ac-
cumulate or pass the electron on to another lipid and
further damage the membrane. Oxidized vitamin E can
be recycled by passing the extra electron to a water sol-
uble electron acceptor such as ascorbate (vitamin C),
urea, pyruvate, NADH, cysteine, or GSH. As elegantly
described by Dean Jones (Emory University), whether
an antioxidant is recycled depends on the redox po-
tential in the local cellular environment [9], just as pH
depends on local buffers. Thus, the half of the AD pa-
tients in Lloret’s study who showed lower plasma ratio
of GSH to GSSG in response to vitamin E could have
an oxidized plasma redox potential that energetically
blocks removal of oxyradical damage. Unfortunate-
ly, the actual redox potential, E(mV)= −264 − 30log
([GSH]2/[GSSG]) [9], was not computed to facilitate
comparisons to the literature. A rough calculation of
Lloret’s 15% increase in GSSG would produce a +4
mV shift toward oxidation of plasma GSH/GSSG. It is
not certain that this change in potential energy can ac-
count for the claimed 15% decline in MMSE (4 points)
in the non-responders. Healthy, young adults have
a mean plasma glutathione redox potential of −137
mV that begins at age 50 to trend toward a more oxi-
dized−120 mV by age 85 [10]. Similar to other reports
from Jose Vina’s group, Jones finds an increasingly ox-
idized plasma redox potential to correlate with frailty,
diabetes, hypertension, and cancer [11].

In a larger context, several possibilities arise from
these considerations as to why vitamin E therapy is
ineffective for some or outright detrimental for oth-
ers: 1) wrong dose; 2) wrong timing; 3) unbalanced
monotherapy; and 4) wrong target.

1) Wrong dose. The dose-response meta-analysis of
Miller and colleagues [5] suggests that doses of vitamin
E above 400 IU/day may increase mortality. Can we
identify those patients with poor response profiles? The
work of Lloret et al. [8] suggests that dose may need
to be adjusted at least for some individuals to obtain a
less oxidized redox potential in plasma.

2) Wrong timing. In cases of clinical AD or possi-
bly even MCI, synapses may be lost and neurons may
develop neurofibrillary tangles at a faster rate than they
can be replaced. Peterson et al. [7] also failed to im-
prove cognition with vitamin E treatment of patients
with MCI. At these stages of the disease, no trial has
succeeded in reversing the disease process. This fact
alone could explain the failure of vitamin E timing to
improve cognitive scores in the study by Lloret et al.

3) Unbalanced monotherapy. As discussed above,
vitamin C or other water soluble electron acceptors may
be needed in conjunction with vitamin E to facilitate
systemic removal of ROS. For these reasons, a current
PREADVISE trial is evaluating treatment of AD with
vitamin E and selenium, the trace metal required for
glutathione peroxidase. Epidemiological studies sug-
gest an AD protective effect for use of vitamin E togeth-
er with vitamin C, while either alone is not significantly
protective [12]. However, since numerous trials of this
combination and other antioxidants have failed to show
efficacy in prevention of various diseases [4], even this
approach may be inadequate. Lloret et al. [8] recom-
mend use of phytoestrogens or Ginkgo biloba extract
to stimulate antioxidant defenses, but the new results of
a large trial failed to show efficacy of Ginkgo in reduc-
ing the incidence of AD or the rate of conversion from
MCI [13]. While dietary vitamin E fed to healthy rats
caused increases in brain vitamin E, no corresponding
increase was seen in brain glutathione levels [14]. Also,
feeding senescence-accelerated mice vitamins A + C,
L-carnitine and lipoic acid produced no brain changes
in glutathione, while feeding vitamins E, C, and 13
additional bioflavenoids, polyphenols, and carotenoids
produced large increases in brain glutathione togeth-
er with a marked reductive shift [15]. Complex mix-
tures of natural antioxidants including flavonoids and
polyphenols found in fruits and berries have shown ef-
ficacy in animal models of aging [16] and AD [17,18].
Such a palatable, multimodal approach deserves more
attention for prevention and treatment trials of AD.

4) Wrong target. Given ROS damage, but the failure
of simple antioxidants to reverse damage, perhaps we
need to consider whether we are aiming at the right tar-
get. A) The target of ROS damage may be detrimental
when ROS signaling is essential to function. ROS sig-
naling is required for processes as diverse as transcrip-
tion factor activation [19,20], insulin signaling [21],
endothelial function [22], and the long-term potentia-
tion model of memory [23]. Hundreds of enzymes with
redox-active cysteines (SH groups), including numer-
ous cell surface receptors may require a certain redox
potential for activity [24]. B) The target of ROS damage
may distract us from the larger issue of redox control.
We recently reported an oxidized redox potential in ag-
ing rat brain as well as neurons isolated and regenerated
from aging brain [25] that could contribute to a larg-
er effect on mitoenergetic failure [26–28]. Therefore,
maintaining the glutathione intracellular redox buffer
and the extracellular cysteine buffer at physiologically
youthful redox potentials around −75 mV [10] may
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slow aging and prevent the metabolic redox damage
that occurs in AD [29]. C) The target of ROS damage
may result in different responses dependent on a variety
of co-morbidities. Instead of swamping one arm of bi-
ological systems with antioxidants for all subjects, we
may need a dose-response targeted reductive shift in the
metabolically oxidized redox potential seen in many
aging individuals. We also need a better understanding
of the cause of this metabolic shift.

Thus, vitamin E therapy has not convincingly failed
yet, nor has it succeeded. Future trials are needed in
light of the above and other considerations, with a spe-
cial focus on individual monitoring of redox potential
as introduced by Lloret et al. [8] to avoid toxicity and
assess biomarkers of efficacy.
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