
Journal of Alzheimer’s Disease 26 (2011) 395–405
DOI 10.3233/JAD-2011-0044
IOS Press

395

Combinatorial Markers of Mild Cognitive
Impairment Conversion to Alzheimer’s
Disease - Cytokines and MRI Measures
Together Predict Disease Progression

Simon J. Furneya, Deborah Kronenbergb, Andrew Simmonsa, Andreas Günterta, Richard J. Dobsona,
Petroula Proitsia, Lars Olof Wahlundc, Iwona Kloszewskad, Patrizia Mecoccie, Hilkka Soininenf ,
Magda Tsolakig, Bruno Vellash, Christian Spengeri and Simon Lovestonea,∗
aKing’s College London, Institute of Psychiatry and National Institute of Health Research (NIHR) Biomedical
Research Centre for Mental Health, London, UK
bNational Institute for Health Research (NIHR), Biomedical Research Centre Guy’s and St. Thomas’
NHS Foundation Trust and King’s College London, London, UK
cDepartment of Neurobiology, Care Sciences and Society, Section of Clinical Geriatrics,
Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
dDepartment of Old Age Psychiatry & Psychotic Disorders, Medical University of Lodz, Lodz, Poland
eSection of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine,
University of Perugia, Perugia, Italy
f Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
gThird Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
hDepartment of Internal and Geriatrics Medicine, Hôpitaux de Toulouse, Toulouse, France
iDepartment of Clinical Science, Intervention and Technology, Karolinska, Institutet, Stockholm, Sweden

Abstract. Progression of people presenting with Mild Cognitive Impairment (MCI) to dementia is not certain and it is not
possible for clinicians to predict which people are most likely to convert. The inability of clinicians to predict progression
limits the use of MCI as a syndrome for treatment in prevention trials and, as more people present with this syndrome in
memory clinics, and as earlier diagnosis is a major goal of health services, this presents an important clinical problem. Some
data suggest that CSF biomarkers and functional imaging using PET might act as markers to facilitate prediction of conversion.
However, both techniques are costly and not universally available. The objective of our study was to investigate the potential
added benefit of combining biomarkers that are more easily obtained in routine clinical practice to predict conversion from MCI
to Alzheimer’s disease. To explore this we combined automated regional analysis of structural MRI with analysis of plasma
cytokines and chemokines and compared these to measures of APOE genotype and clinical assessment to assess which best
predict progression. In a total of 205 people with MCI, 77 of whom subsequently converted to Alzheimer’s disease, we find
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biochemical markers of inflammation to be better predictors of conversion than APOE genotype or clinical measures (Area
under the curve (AUC) 0.65, 0.62, 0.59 respectively). In a subset of subjects who also had MRI scans the combination of serum
markers of inflammation and MRI automated imaging analysis provided the best predictor of conversion (AUC 0.78). These
results show that the combination of imaging and cytokine biomarkers provides an improvement in prediction of MCI to AD
conversion compared to either datatype alone, APOE genotype or clinical data and an accuracy of prediction that would have
clinical utility.
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INTRODUCTION

The challenge of the neurodegenerative diseases is
daunting; it is estimated that the global prevalence of
dementia will rise from 24.3 million cases in 2005 to
81.1 million cases in 2040 [1]. Alzheimer’s disease
(AD) is the commonest form of dementia [2]. Ris-
ing to the challenge posed by this health burden, there
are many potential disease modification therapies in
development with approximately 10 compounds for
AD in phase III and more than 50 in phase II [3].
There is a consensus that disease modification therapy
is most likely to be efficacious very early in the dis-
ease process and because of this there is an increasing
drive towards very early identification and diagnosis.
Given the inherent difficulty of very early, and even
prodromal, diagnosis, biomarkers are likely to play
an important role. They are incorporated into the pro-
posed revision of diagnostic criteria [4] for AD and
have been increasingly examined for their potential to
predict which people with mild cognitive impairment
(MCI) are most likely to progress to full dementia [5].
This is important as only a minority with MCI progress
to full dementia in the time frame of a typical clinical
trial. A recent meta-analysis showed an annual conver-
sion rate of 8.1% and a cumulative proportion of 33.6%
for MCI conversion to AD [6] and in a previous system-
atic review we found study-related variables including
recruitment strategy to be the most important factors
predicting conversion [7].

The primary focus in the search for biomarkers for
AD to date has been on neuroimaging, and on A�
and tau proteins in cerebrospinal fluid (CSF) [8, 9].
Various studies using structural MRI have identified
brain regions within the medial temporal lobe, par-
ticularly the hippocampus and entorhinal cortex, as
potential biomarkers of conversion from MCI to AD
[10–14]. In addition molecular imaging using amyloid
PET ligands also report efficacy as markers predic-
tive of conversion [15]. CSF is an excellent fluid
for biomarker discovery in neurodegeneration as it is

in direct contact with the extracellular space of the
brain and is therefore supposed to reflect biochemical
changes occurring in the brain [16]. Recently Shaw et
al. showed in the US Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) study that the t-tau/A�1–42 ratio
discriminated between those who will remain MCI
subjects and those who will convert to AD within one
year follow-up [17]. In addition it has been reported
that MCI subjects with abnormal results on both FDG-
PET and episodic memory were more likely to convert
to AD [18]. However, structural MRI is not sufficiently
predictive of conversion [14, 19], PET imaging is a
highly specialised approach available in relatively few
centres, and lumbar puncture for CSF, although non-
traumatic and without side effects in the majority of
patients, necessitates a high level of skill and a hospi-
tal setting. A blood-based biomarker would be hugely
advantageous especially in large-scale population and
community based studies of elderly frail people.

Previously we and others have demonstrated using
proteomics that blood-based biomarkers were feasi-
ble and reproducible in independent studies [20–22].
However, the most impressive evidence for a specific
and sensitive marker of MCI conversion to date comes
from a study reporting that 18 signalling proteins in
blood plasma could be used to predict conversion from
MCI to AD 2–6 years later with an accuracy of 91%
[23]. However these results have not yet been indepen-
dently replicated. Recently, O’Bryant et al. developed
a serum protein-based classifier for the prediction of
AD patients and controls [24].

For the most part, these studies have concentrated on
single modality biomarkers although there are theoret-
ical reasons and increasing data from combinatorial
studies to think that combining biomarkers might have
added benefits [25–28]. Some studies have combined
imaging with clinical variables to try to increase predic-
tive power, with mixed results. One such study found
no added benefit of combining structural MRI data
with clinical measures [12] whereas another devel-
oped a predictor including three clinical predictors
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(SRT immediate recall, FAQ and UPSIT) as well as
two imaging markers (hippocampal and entorhinal cor-
tex volume) [29]. Davatzikos et al. recently integrated
MRI and CSF biomarkers and noted improved predic-
tive accuracy compared to either individual data type
[9] and Ewers et al. investigated the accuracy of MRI
and CSF biomarkers and neuropsychological tests for
predicting the conversion from MCI to Alzheimer’s
disease [30].

However no study, to our knowledge, has inves-
tigated the potential added benefit of combining
biomarkers that are readily obtained in routine clini-
cal practice. To explore this we combined automated
regional analysis of structural MRI with analysis
of serum cytokines and APOE genotype to assess
if the combination of data types improved predic-
tion of progression in a small cohort of participants
from the AddNeuroMed study, a European ADNI-like
biomarker study [31]. In addition, we have examined
the predictive accuracy of a cytokine panel in a larger
dataset, which includes the AddNeuroMed cohort.

MATERIALS AND METHODS

Subjects

The study population used in this report was derived
from the AddNeuroMed study, a European multi-
centre study, aiming to identify biomarkers for AD [31]
and the Alzheimer Research Trust–funded cohort at
King’s College London (KCL-ART) [32]. The partici-
pating AddNeuroMed clinical centres were in Kuopio,
Perugia, Lodz, Thessaloniki, Toulouse and London.
Subjects were patients who attended local memory
clinics and received a diagnosis of MCI. Diagnosis of
dementia was made according to NINCDS-ADRDA
criteria and DSM IV, amnestic MCI diagnosis was
based on CDR (CDR = 0.5), MMSE (MMSE ≥ 24)
and amnestic cognitive impariment according to word
list learning recall task of the CERAD (<1.5 SD of
population mean adjusted for gender, age and level
of education).The follow-up period was one year. At
baseline and follow-up information was obtained on
demographic characteristics, medical history, current
health status, medication use and family history. In
addition to the clinical data, blood and urine samples
were obtained and participants underwent a neuropsy-
chological assessment.

In the KCL-ART cohort, per MCI converter case we
randomly sampled two MCI non-converters matched
on gender and age. In the AddNeuroMed cohort, per

MCI converter case we randomly sampled one MCI
non-converter matched on gender and year of base-
line assessment, sampled in five-year age categories.
For the integration of cytokine levels with imaging
measures, data from AddNeuroMed subjects who had
undergone successful baseline structural MRI imag-
ing, and whose APOE status and cytokine levels
were determined were used (cytokine-imaging cohort;
n = 48).

Assessment of the patient samples was conducted in
a randomized fashion. Demographics can be found in
Table 1.

Samples

At baseline and follow-up blood samples were
drawn by veni-puncture and collected into EDTA glass
tubes, after a minimum of 2 h fasting prior to draw.
After coagulation for 30 minutes serum was obtained
by centrifugation for 8 min at 3,000 g at 4◦C. Samples
were aliquoted and frozen at −80◦C until further use.

Cytokine multiplex analysis

Serum samples were analyzed for 36 cytokines and
chemokines (supplementary table 1) using a commer-
cially available Cytokine Human 30-plex panel and a
customized 6-plex (Biosource International). Samples
were measured at baseline and follow-up in duplicate
and according to the manufacturer’s recommenda-
tions. The samples were measured in a randomized
and blinded fashion using the antibody bead mix in
duplicate with a biotinylated detection antibody fol-
lowed by streptavidin-phycoerythrin. The plate was
read using the Luminex platform (BioRad), and data
were collected for 100 beads per cytokine from each
well. Cytokine concentrations were calculated using
Bio-Plex Manager 5.0 software with a five parame-
ter curve-fitting algorithm applied for standard curve
calculations.

Neuroimaging

Data acquisition
Data acquisition took place using six different 1.5T

MR systems (four General Electric, one Siemens and
one Picker). At each site a quadrature birdcage coil
was used for RF transmission and reception. Data
acquisition was designed to be compatible with the
Alzheimer Disease Neuroimaging Initiative (ADNI)
[33]. The imaging protocol included a high resolution
sagittal 3D T1-weighted MPRAGE volume (voxel size
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Table 1
Demographics of MCI converter and non-converter cytokine cohort and cytokine and imaging cohort, including mean APOE ε4 dosage and
p-values of difference between Non-Converters (MCI-N) and Converters (MCI-C). (MMSE, Mini Mental State Exam, Maximum score = 30)

Cytokine MCI-N Cytokine MCI-C p-value Cytokine/imaging Cytokine/imaging p-value
(n = 128) (n = 77) MCI-N (n = 26) MCI-C (n = 22)

Age 80.4 77.5 0.003 74.1 73.4 0.68
Female % 55 59 0.77 58 41 0.38
MMSE 27.1 26.2 0.006 27.1 26.6 0.39
APOE ε4 dosage 0.31 0.54 0.009 0.35 0.77 0.02

1.1 × 1.1 × 1.2 mm3) and axial proton density / T2-
weighted fast spin echo images. Full brain and skull
coverage was required for both of the latter datasets and
detailed quality control carried out on all MR images
[34, 35]. All MR images received a clinical read by
an on-site radiologist in order to exclude any subjects
with non-AD related pathologies.

Image analysis

A highly automated structural MRI image process-
ing pipeline developed by Fischl et al and producing
both regional cortical thickness measures and regional
volume measures was utilized for data analysis
[36–38]. Cortical reconstruction and volumetric seg-
mentation included removal of non-brain tissue using
a hybrid watershed/surface deformation procedure,
automated Talairach transformation, segmentation of
the subcortical white matter and deep gray matter vol-
umetric structures (including hippocampus, amygdala,
caudate, putamen, ventricles) intensity normalization,
tessellation of the gray matter white matter boundary,
automated topology correction, and surface deforma-
tion following intensity gradients to optimally place the
gray/white and gray/cerebrospinal fluid borders at the
location where the greatest shift in intensity defines
the transition to the other tissue class. Surface infla-
tion was followed by registration to a spherical atlas
which utilized individual cortical folding patterns to
match cortical geometry across subjects and parcella-
tion of the cerebral cortex into units based on gyral and
sulcal structure. All volumes were normalized by the
subjects’ intracranial volume.

The regional cortical thickness was measured from
34 areas and the regional cortical volume was measured
bilaterally from 24 areas (supplementary Table 2).

ApoE genotyping

The APOE haplotype was determined using two
allelic discrimination assays (rs7412 and rs429358)
based on fluorogenic 5’ nuclease activity, the Taq

polymerase single nucleotide polymorphism geno-
typing assay (TaqMan, Applied Biosystems Inc.,
www.appliedbiosystems.com).

Statistical analysis

As an initial step unsuccessful cytokine readings
with less than 50 bead counts were excluded from the
analysis.

Observations with more than 50% missing values
and/or outliers were consequently excluded from fur-
ther analysis. Outliers were any data values which lay
more than 1.5 times the interquartile range (IQR) below
the first Quartile (Q25) or above the third Quartile
(Q75).

Machine-learning approach

Datasets
The total sample size with cytokine data (AddNeu-

roMed + KCL-ART] was 205 (MCI-N = 128, MCI-
C = 77). This cohort was divided into an approximate
two thirds -one third stratified training set – test set
where the training set sample size was 136 (MCI-
N = 85, MCI-C = 51) and the test set size was 69
(MCI-N = 43, MCI-C = 26). Using the training set only
we created 5 different datasets containing: (1) APOE
ε4 dosage, (2) Age, Gender and MMSE score (Clinical
data), (3) Cytokine data, (4) A subset of 7 cytokines in
common with the panel of 18 identified by Ray et al.
[23] (EGF, G-CSF, GDNF, IL-1�, IL-3, MCP-3 AND
TNF-�; see supplementary table 1 for details), and (5)
Cytokine, APOE ε4 dosage and Clinical data. Missing
values were replaced using global class means.

The number of subjects with both imaging and
cytokine data was 48 (MCI-N = 26, MCI-C = 22). This
cohort was divided into an approximate two-thirds-one
third stratified training set – test set where the training
set sample size was 31 (MCI-N = 17, MCI-C = 14) and
the test set size was 17 (MCI-N = 9, MCI-C = 8). Using
the training set only we created 8 different datasets
containing: (1) APOE ε4 dosage, (2) Age, Gender and
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Table 2
Classification area under the ROC curve for the training and test datasets for entire cohort (best training set

classifier in bold)

Training SVM Training SVM Training SVM Test
(all data) (10 attributes) (5 attributes)

Cytokine, clinical 0.69 0.67 0.67 0.61
+ APOEε4

Cytokine 0.64 0.63 0.62 0.65
Cytokine subset 0.66 N/A N/A 0.60
Clinical 0.72 N/A N/A 0.59
APOEε4 dosage 0.59 N/A N/A 0.62

MMSE score (Clinical data), (3) Cytokine data, (4)
Imaging data, (5) Cytokine and Clinical data, (6) Imag-
ing and Clinical data, (7) Imaging and Cytokine, and
(8) Imaging, Cytokine, APOE ε4 dosage, and Clinical
data.

Classification
Feature selection and class prediction by machine-

learning was conducted using Weka [39]. To address
the class imbalance between the two classes with
cytokine data (MCI-N = 128, MCI-C = 77), a cost-
sensitive approach was employed (weka.classifiers.
meta.CostSensitiveClassifier) using a cost matrix of
the ratios of the two classes. The class imbalance in
the dataset with both cytokine and imaging data was
relatively minor (MCI-N = 26, MCI-C = 22) and there-
fore a cost-sensitive classifier was not used. Three
different approaches were assessed using a ten-fold
cross validation on the training data with 100 itera-
tions : (1) A Support Vector Machine (SVM - the SMO
algorithm in Weka) using default settings (Polykernel
kernel) and all the data variables, (2) a within-
loop feature selection using the best 10 attributes
for classification with an SVM (weka.classifiers.meta.
AttributeSelectedClassifier). The feature selection
phase was conducted using the SVMAttributeE-
val (weka.attributeSelection.SVMAttributeEval) and
Ranker (weka.attributeSelection.Ranker) algorithms,
and (3) a within-loop feature selection using the best 5
attributes for classification with an SVM. Approaches
(2) and (3), which incorporate feature selection, were
not conducted for the datasets comprising APOE ε4
dosage only or the Clinical data only.

The effect of the SVM complexity parameter (C)
was investigated by setting C = 0.01, 0.1, 1 (the default
value) and 10 and the C value resulting in the highest
AUC in the training set was used in evaluating the
test set.

For each dataset, the machine learning approach
resulting in the highest area under the ROC curve

(AUC) after the ten-fold cross validation was applied
to the relevant test dataset. To obtain proper probability
estimates, the option that fits logistic regression mod-
els (-M) to the outputs of the support vector machine
was used. An accuracy (ACC), sensitivity (SN), speci-
ficity (SP), positive predictive value (PPV), negative
predictive value (NPV) and area under the curve were
calculated for each test set.

RESULTS

Cytokine dataset

We successfully measured 35 cytokines for anal-
ysis in a total of 205 subjects. Only one cytokine
- RANTES – showed evidence of technical failure
and was excluded from all analyses. In addition IL-
17 and IL-1B were excluded from the multivariate
analysis because of the high proportion of missing
values (>50%). Baseline cytokine levels of three MCI
non-converter subjects, were excluded from the analy-
sis, because of overall highly elevated cytokine levels
(i.e. more than 60% of all cytokines measured showed
apparently arbitrarily high levels) or because more than
50% of all cytokine measures were missing.

Multivariate analysis

A machine-learning approach (Support Vector
Machines) to class prediction was used to identify a
set of combined analytes that might discriminate bet-
ween converters and non-converters. Support Vector
Machines (SVMs) are used extensively in compu-
tational biology as they have been shown to predict
binary outcomes with high accuracy and possess the
ability to model diverse and high-dimensional data
[40].

The total number of subjects with cytokine data was
205 (MCI-N = 128, MCI-C = 77). The feature selection
stage did not improve the accuracies of any of the clas-
sifiers and therefore the model built with all of the data
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for each of the training datasets was applied to the rel-
evant test dataset (Table 2). The AUCs (Figure 1) from
the test datasets were 0.62 (APOE ε4 dosage), 0.60
(Cytokine subset), 0.61 (Cytokine data, Clinical data
and APOE ε4 dosage), 0.59 (Clinical data) and 0.65
(Cytokine data).

Cytokine and imaging dataset

We then sought to assess whether combining struc-
tural MRI data with the cytokine data would improve
classification accuracy. MRI brain scans of a subset of
the subjects were processed and the regional cortical
thickness was measured from 34 areas and the regional
cortical volume was measured bilaterally from 24 areas
(see Methods for details).

Cyt-Clin
Cyt
Cyt7

Clin
APOE

Fig. 1. Entire cytokine cohort receiver operating characteristic
(ROC) curves of most accurate training classifiers applied to the
test datasets. Cyt-Clin = Cytokine and Clinical data, Cyt = Cytokine
data, Clin = Clinical data, Cyt7 = subset of 7 cytokines in common
with the panel of 18 identified by Ray et al. , and APOE = APOE ε4
dosage.

The number of subjects with both imaging and
cytokine data was 48 (MCI-N = 26, MCI-C = 22). Fea-
ture selection improved the training set prediction
accuracy for the Cytokine dataset and the combined
Cytokine and Clinical dataset. The other datasets
showed greatest accuracy when including all data
(Table 3). The most accurate model for each training
dataset was then applied to the relevant test dataset.

In this smaller dataset, the cytokine data by them-
selves do not classify the test subjects particularly
well (AUC = 0.60). In fact, in this cohort APOE ε4
dosage alone (AUC0.74) is a better predictor of con-
version than the cytokine or imaging data (Table 3).
The combination of the cytokine and imaging data is
the most accurate classifier (AUC = 0.78) showing a
modest improvement over APOE ε4 dosage.

The imaging or cytokine data alone predict the test
subjects with AUCs = 0.68 and 0.60, respectively. The
sensitivity, specificity, positive and negative predictive
values of each classifier is shown in supplementary
table 3.

DISCUSSION

This study focused, for the first time, on combinato-
rial biomarkers using readily available techniques in
order to identify a marker set predictive of conver-
sion from MCI to dementia within the time frame of a
typical disease modification trial. Alone, cytokine lev-
els showed some predictive value for MCI conversion
while imaging data showed a modest predictive accu-
racy. However, the predictive model using combined
cytokine levels and imaging measures outperformed
either individual classifier (Table 3 and Figure 2). The
cytokine classifier exhibits low sensitivity and a higher
specificity (supplementary table 3) whereas the con-
verse is true of the imaging classifier. When the two
data-types are combined the classification accuracy is
improved (Table 3 and supplementary table 3).

Table 3
Classification area under the ROC curve for the training and test datasets for cohort with cytokine and

imaging data (n = 48; best training set classifier in bold)

Training SVM Training SVM Training SVM Test
(all data) (10 attributes) (5 attributes)

Cytokine + imaging + 0.60 0.50 0.50 0.74
clinical + APOEε4 dosage

Cytokine + imaging 0.56 0.51 0.54 0.78
Cytokine + clinical 0.49 0.50 0.50 0.53
Imaging + clinical 0.63 0.54 0.52 0.67
Cytokine 0.48 0.50 0.50 0.60
Imaging 0.62 0.52 0.54 0.68
Clinical 0.50 N/A N/A 0.50
APOEε4 dosage 0.59 N/A N/A 0.74
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All
Cyt-lmag
Cyt-Clin
Imag-Clin
Cyt
Imag
Clin
APOE

Fig. 2. Cytokine and imaging cohort receiver operating charac-
teristic (ROC) curves of most accurate training classifiers applied
to the test datasets. All = Cytokine, Imaging, Clinical data and
APOE ε4 dosage, Cyt-Imag = Cytokine and Imaging data, Cyt-
Clin = Cytokine and Clinical data, Imag-Clin = Imaging and Clinical
data, Cyt = Cytokine data, Imag = Imaging data, Clin = Clinical data,
and APOE = APOE ε4 dosage.

Considering that the potential disease modifying
therapies are non-hazardous and aim to focus on an
early stage of the disease the ideal predictive model
would have a high negative predictive value and a
high specificity. From a clinical point of view our here
introduced model combining imaging and cytokine
measures is favorable above combined imaging mea-
sures alone, which have been a point of primary interest
in the literature so far.

Previous studies have looked at a number of
brain regions (e.g. volumes of hippocampus, entorhi-
nal cortex, ventricles, and whole brain) as potential
biomarkers of conversion from MCI to AD [10, 29,
41]. Devanand et al. integrated the baseline pre-
dictors cognitive test performance, informant report
of functional impairment, APOE genotype, olfactory
identification deficit, and magnetic resonance imag-
ing (MRI) hippocampal and entorhinal cortex volumes
[29]. Ultimately, they used five variables in a pre-
dictor: Pfeffer Functional Activities Questionnaire
(FAQ; informant report of functioning), University of
Pennsylvania Smell Identification Test (UPSIT; olfac-
tory identification), Selective Reminding Test (SRT)
immediate recall (verbal memory), MRI hippocampal
volume, and MRI entorhinal cortex volume. A recent
imaging study, also based upon the AddNeuroMed
patient cohort, has analyzed regional MRI volumes and

thicknesses as predictors of conversion from mild cog-
nitive impairment to AD [14]. Analysis of the expanded
patient cohort of 103 subjects (22 converters at year
one follow up) showed that the bilateral hippocam-
pus and amygdala, and right caudate baseline volumes
were significantly smaller in MCI to AD converters
compared to stable MCI subjects.

We analyzed a subset of 7 of the 18 signaling pro-
teins for MCI conversion identified by an earlier study
[23] (see Materials & Methods for details). We trained
an SVM using these 7 cytokines and applied the model
to a test set resulting in an AUC of 0.60. Our find-
ings suggest that the inflammatory markers identified
by Ray et al. may show some differential expression
in people with established AD, and we are able to
show some prognostic value of these markers for the
more demanding, but more clinically important task of
predicting MCI conversion.

Some of the cytokines we have examined have
been previously implicated in AD as potential mark-
ers. Reports describing IL-1� levels in serum of
AD patients have been conflicting with some groups
describing an increase in IL-1� serum levels in AD
patients compared to controls [42, 43], but others find-
ing no change [44]. A meta analysis also found a
genetic association of a IL-1� polymorphism and AD
[45-47]. It has been hypothesized that proinflamma-
tory cytokines, such as IL-1� are activating a cascade
of neurotoxic changes in the brain, that are related
with the development of neuritic plaques and neurofib-
rillary tangles characteristics in AD [48]. VEGF is
associated with neuroprotection and regeneration in
the brain. It co-localizes with plaques in AD brain
[49] and some studies report an increase in VEGF lev-
els in serum and CSF [50, 51], whereas others find a
decrease in serum [52] and no change in CSF [53]. In
the cytokine/imaging cohort the classifier using APOE
ε4 dosage alone performs better than most other clas-
sifiers. It is not surprising that APOE performs well
as it is clear that the ε4 allele is associated with AD
and has previously been associated with the time to
progression from MCI to AD [54]. In addition, in this
smaller dataset the mean APOEε4 dosage per convert-
ing patient is much greater than in converters in the
entire cohort (0.77 compared to 0.54 – Table 1).

There are limitations to our study. Most obviously,
the sample size of the cytokine and imaging cohort
is relatively small (n = 48), which meant constructing
a predictive model with a training set of 31 subjects.
When applying our predictors to the set of 17 subjects,
although the combination of cytokines outperforms
APOEε4 dosage, the increase in performance is mod-
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est. It is noteworthy that adding clinical information
(including basic cognitive tests, diagnosis and medical
history but not very detailed neuropsychometry) adds
nothing to the predictive power. This emphasises that
the clinical assessment of MCI alone does not predict
conversion.

As such, our predictor would need to be applied
to a larger dataset to independently assess its accu-
racy. Nonetheless, we show preliminary evidence that
a combined set of imaging and cytokine measures pro-
vides a small improvement in prediction of MCI to AD
conversion than either cytokine or imaging data alone.
It remains to be seen whether the accuracy reported
here may be improved still further by the addition of
other biomarkers or by alternative MRI analytical rou-
tines. As the prediction in this case was over only one
year after test these data hold out the promise of a com-
binatorial biomarker for use in both clinical practice
and, perhaps more pressingly, for patient stratifica-

tion and enrichment in trials of disease modification
agents.
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Supplementary Table 1
Proteins measured with luminex 30- and 6-plex (HGNC, HUGO Gene Nomenclature Committee)

Cytokine Official full name (HGCN) Gene symbol (HGNC)

BDNF Brain-derived neurotrophic factor BDNF
DR5 Tumor necrosis factor receptor superfamily, member 10b TNFRSF10B
EGF Epidermal growth factor EGF
Eotaxin Chemokine (C-C motif) ligand 11 CCL11
FGF Fibroblast growth factor 2 (basic) FGF2
G-CSF Colony stimulating factor 3 (granulocyte) CSF3
GDNF Glial cell derived neurotrophic factor GDNF
GM-CSF Colony stimulating factor 2 (granulocyte-macrophage) CSF2
HGF Hepatocyte growth factor
IFN-� Interferon, alpha 1 IFNA1
IFN-� Interferon, gamma IFNG
IL-1� Interleukin 1, alpha IL1A
IL-1� Interleukin 1, beta IL1B
IL-1RA Interleukin 1 receptor, type I IL1R1
IL-2 Interleukin 2 IL2
IL-2R Interleukin 2 receptor, alpha IL2RA
IL-3 Interleukin 3 IL3
IL-4 Interleukin 4 IL4
IL-5 Interleukin 5 IL5
IL-6 Interleukin 6 IL6
IL-7 Interleukin 7 IL7
IL-8 Interleukin 8 IL8
IL-10 Interleukin 10 IL10
IL-12 Interleukin 12 IL12
IL-13 Interleukin 13 IL13
IL-15 Interleukin 15 IL15
IL-17 Interleukin 17 IL17
IP-10 Chemokine (C-X-C motif) ligand 10 CXCL10
MCP-1 Chemokine (C-C motif) ligand 2 CCL2
MCP-3 Chemokine (C-C motif) ligand 7 CCL7
MIG Chemokine (C-X-C motif) ligand 9 CXCL9
MIP-1� Chemokine (C-C motif) ligand 3 CCL3
MIP-1� Chemokine (C-C motif) ligand 4 CCL4
RANTES Chemokine (C-C motif) ligand 5 CCL5
TNF-� Tumor necrosis factor TNF
VEGF Vascular growth factor A VEGFA
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Supplementary Table 2
MRI regional cortical thickness from 34 areas and the regional cor-

tical volume measured bilaterally from 24 areas

Volumes Cortical thicknesses

3rd Ventricle Banks of STS
4th Ventricle caudal anterior cingulate
5th Ventricle caudal middle frontal
Brain Seg Vol corpus callosum
Brain Stem cuneus
CC Anterior entorhinal
CC Central frontal pole
CC Mid Anterior fusiform
CC Mid Posterior inferior parietal
CC Posterior inferior temporal
CSF isthmus cingulate
Left Accumbensarea lateral occipital
Left Amygdala lateral orbito frontal
Left Caudate lingual
Left Cerebellum Cortex medial orbitofrontal
Left Cerebellum White Matter middle temporal
Left Cerebral Cortex para central
Volumes Cortical thicknesses
Left Cerebral White Matter para hippocampal
Left choroid plexus pars opercularis
Left Hippocampus pars orbitalis
Left Inf Lat Vent pars triangularis
Left Lateral Ventricle pericalcarine
Left non WM hypointensities post central
Left Pallidum posterior cingulate
Left Putamen precentral
Left Thalamus Proper precuneus
Left Ventral DC rostral anterior cingulate
Left vessel rostral middle frontal
Left WM hypointensities superior frontal
Optic Chiasm superior parietal
Right Accumbensarea superior temporal
Right Amygdala supra marginal
Right Caudate temporal pole
Right Cerebellum Cortex transverse temporal
Right Cerebellum White Matter
Volumes Cortical thicknesses
Right Cerebral Cortex
Right Cerebral White Matter
Right Hippocampus
Right Inf Lat Vent
Right Lateral Ventricle
Right non WM hypointensities
Right non WM hypointensities
Right Pallidum
Right Putamen
Right Thalamus Proper
Right Ventral DC
Right vessel
Right WMhypointensities

Supplementary Table 3
Sensitivity (SN), specificity (SP), positive predictive value (PPV),
negative predictive value (NPV) and Accuracy (ACC) for the

cytokine and imaging cohort classifiers

SN SP PPV NPV ACC

Cytokine + imaging + 0.75 0.67 0.67 0.75 0.71
clinical +
APOE�4 dosage

Cytokine + imaging 0.75 0.78 0.75 0.78 0.76
Cytokine + clinical 0.38 0.78 0.60 0.59 0.59
Imaging + clinical 0.63 0.67 0.63 0.67 0.65
Cytokine 0.50 0.78 0.67 0.64 0.65
Imaging 0.88 0.44 0.58 0.80 0.65
Clinical 0.25 0.67 0.40 0.50 0.47
APOE�4 dosage 0.75 0.67 0.67 0.75 0.71
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