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Abstract.
Background: Although individualized models using demographic, MRI, and biological markers have recently been applied in
mild cognitive impairment (MCI), a similar study is lacking for patients with early Alzheimer’s disease (AD) with biomarker
evidence of abnormal amyloid in the brain.
Objective: We aimed to develop prognostic models for individualized prediction of cognitive change in early AD.
Methods: A total of 421 individuals with early AD (MCI or mild dementia due to AD) having biomarker evidence of
abnormal amyloid in the brain were included in the current study. The primary cognitive outcome was the slope of change
in Alzheimer’s Disease Assessment Scale-cognitive subscale-13 (ADAS-Cog-13) over a period of up to 5 years.
Results: A model combining demographics, baseline cognition, neurodegenerative markers, and CSF AD biomarkers pro-
vided the best predictive performance, achieving an overfitting-corrected R2 of 0.59 (bootstrapping validation). A nomogram
was created to enable clinicians or trialists to easily and visually estimate the individualized magnitude of cognitive change
in the context of patient characteristics. Simulated clinical trials suggested that the inclusion of our nomogram into the
enrichment strategy would lead to a substantial reduction of sample size in a trial of early AD.
Conclusions: Our findings may be of great clinical relevance to identify individuals with early AD who are likely to experience
fast cognitive deterioration in clinical practice and in clinical trials.
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INTRODUCTION

Alzheimer’s disease (AD) imposes an immense
economic and clinical burden on patients, their fam-
ilies, and health care systems.1 Development of
disease-modifying therapies and symptomatic agents
has been hindered by the multifactorial nature of AD
and disease heterogeneity.2−4 There are considerable
variations in the rates of cognitive decline in patients
with early AD [mild cognitive impairment (MCI) or
mild dementia due to AD] who have evidence of ele-
vated amyloid burden in the brain, even though the
aim of the study is to create a relatively homoge-
neous group at baseline.5 A consequence is that the
inclusion of patients with low likelihood of decline
reduces the statistical power of a clinical trial.6 Suc-
cessful clinical trials of early AD would benefit from
strategies to enrich for participants who are more
likely to experience cognitive deterioration.7 There-
fore, mathematical models that can accurately predict
cognitive outcomes at the individual patient level
are of utmost importance for improving the patient
prognostic counselling, stratification of patients for
clinical trials, and timing of initiation of symptomatic
or disease-modifying therapies.

Many studies have aimed to identify prognos-
tic factors linked with cognitive decline in older
adults, both in those with unimpaired and impaired
cognition.8−10 Nonetheless, there is a scarcity of
prediction models capable of forecasting cognitive
outcomes at an individual patient level. Recently,
individualized models incorporating demographic
data, MRI findings, and biological markers have
emerged in MCI.11−13 A similar study is lacking
for patients with early AD with biomarker evidence
of abnormal amyloid in the brain (MCI due to AD
and mild AD dementia), a critical disease stage that
a recent breakthrough has targeted.14 Furthermore,
estimating the exact trajectory and extent of cogni-
tive change, represented by numerical values of rate
of decline or ‘slopes’, may be more advantageous for
clinical application than predicting categorical transi-
tions in cognitive stages (for example, the progression
from MCI to dementia), which can be challenging for
clinicians to interpret and for patients to comprehend
accurately. A simple instrument that helps clinicians
or trialists quickly and accurately identify patients
with early AD likely to experience faster cognitive
decline and provides an estimate of the magnitude of
cognitive change could lead to more precise and more
targeted surveillance strategies and possibly to better
stratification of patients for future trials.

We therefore studied the usefulness of a variety
of commonly used markers (demographic, cogni-
tive, neurodegenerative, and in vivo CSF markers)
for predicting longitudinal cognitive decline in indi-
viduals from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) who met inclusion criteria simi-
lar to those used in a clinical trial of early AD.14

We aimed to construct prediction models based on
neurodegenerative and CSF markers for patients with
early AD, taking into account individual characteris-
tics to obtain personalized slopes of cognitive change.
We integrated the findings into a nomogram that can
enable easy and manual estimation of predicted val-
ues and can be useful in clinical practice and future
trials. We further investigated the extent to which the
nomogram could reduce the required sample sizes for
theoretical clinical trials in an early AD population.

MATERIAL AND METHODS

Participants

Data used in this study were obtained from
the ADNI database (http://adni.loni.usc.edu). The
ADNI study is a multicenter longitudinal study
that aims to examine whether clinical, neuropsycho-
logical, biological, and neuroimaging makers can
be integrated to track disease progression on the
AD continuum.15 For the current study, data were
extracted from the ADNI-1, ADNI-GO, ADNI-2,
and ADNI-3 phases. We selected those participants
who were diagnosed with MCI or mild AD demen-
tia at baseline, had at least two ADAS-Cog-13
assessments within 5 years (including a baseline
assessment), had elevated amyloid burden as mea-
sured by PET imaging (specific procedures and cutoff
scores described below). Participants with MCI had
memory complaints, objective memory impairment
as evidenced by the Logical Memory II subscale
(delayed paragraph recall) from the Wechsler Mem-
ory Scale-revised, Mini-Mental State Examination
(MMSE)16 scores ≥ 24, global Clinical Dementia
Rating (CDR)17 scores of 0.5, essentially preserved
activities of daily living, and no presence of AD or
dementia. Participants with mild AD dementia were
diagnosed based on the National Institute of Neu-
rological and Communicative Disorders and Stroke
and the Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA)18 criteria for prob-
able AD and had MMSE scores ranging from 20 to
26 (inclusive) and global CDR scores of 0.5 or 1. In
the current study, we used the inclusion criteria that
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Fig. 1. Flowchart of the sample selection procedure. MCI, mild
cognitive impairment; AD, Alzheimer’s disease; ADAS-Cog-13,
13-item version of the Alzheimer’s Disease Assessment Scale-
cognitive subscale; APOE, Apolipoprotein E; AV45, Florbetapir;
PiB, Pittsburgh compound B; PET, positron emission tomography.

were similar to those applied in a recent clinical trial
targeting patients with early AD (MCI and mild AD
dementia with elevated amyloid in the brain).14 Fig-
ure 1 demonstrates the sample selection procedure.
The ADNI study was approved by an ethical review
board and all subjects provided written informed con-
sent at each participating study site.

Cognitive outcome

The primary cognitive outcome was the 13-item
version of the Alzheimer’s Disease Assessment
Scale-cognitive subscale (ADAS-Cog-13)19 because
it has been commonly used for tracking clinical
progression and evaluating treatment effects in AD
clinical trials. The ADAS-Cog-13 score used for
the current study was comprised of 13 subtests
that mainly capture episodic memory, language, and
praxis domains. The comprehensive 13 subtests of
ADAS-Cog-13 included word recall (0-10), com-
mands (0-5), constructional praxis (0-5), delayed
word recall (0-10), object and finger naming (0-5),
ideational praxis (0-5), orientation (0-8), word recog-
nition (0-12), remembering test instructions (0-5),

spoken language ability (0-5), word-finding difficulty
(0-5), comprehension (0-5), and digit cancellation (0-
5). Adding the scores of all 13 subtests results in a
total score ranging from 0 to 85, with higher scores
indicating more impaired cognition. To estimate indi-
vidual ADAS-Cog-13 slopes in the current study, we
included participants with a baseline ADAS-Cog-13
assessment and at least one follow-up ADAS-Cog-13
assessment within the next 5 years (specific statistical
procedure described below).

Biological markers

Amyloid burden in the brain was measured by
Pittsburgh compound B (PiB) or Florbetapir AV-45
PET imaging (summary data were extracted from
the ADNI Laboratory of Neuroimaging database:
ida.loni.usc.edu). Amyloid positivity was deter-
mined according to standardized uptake values ratio
(SUVR) of average uptake in four cerebral regions
(cingulate, frontal, temporal, and parietal cortices)
normalized to the uptake of cerebellum, using pre-
viously established cutoff scores (>1.47 for PiB and
>1.10 for Florbetapir-PET).20 The FDG-PET SUVR
was calculated based on the average of the temporal,
angular, and bilateral cingulate regions.21 Hippocam-
pal volume was extracted from MRI scans and was
normalized using the intracranial volume (ICV) to
adjust sex difference in head size. Adjusted hip-
pocampal volume (aHV) was calculated based on
the following equation: aHV = hippocampal volume
(mm3)/ICV (mm3) × 103. Levels of CSF A�1-42
(A�42) and phosphorylated tau (p-tau) were exam-
ined in CSF samples by the Elecsys �-amyloid
(1-42) CSF and the Elecsys phospho-tau (181P) CSF
immunoassays at the Department of Pathology and
Laboratory Medicine, Perelman School of Medicine,
University of Pennsylvania, USA. These methods
were described in detail in a previous study.22 Of note,
in the current analysis, we capped the values of indi-
viduals with CSF A�42 > 1700 pg/ml to 1700 pg/ml,
as these results exceeded the upper technical limit
(n = 8). The APOE4 genotype was categorized into
three groups based on the number of copies of the
APOE4 allele (0, 1, and 2). Demographic informa-
tion included participant age at baseline, sex, and
education in years.

Statistical analysis

All statistical work was performed using R version
4.1.2 (R Foundation for Statistical Computing).23
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Statistical significance was set at two-tailed
p < 0.05.

First, for statistical description, continuous vari-
ables were summarized as mean (standard deviation)
and categorical variables as number of observations
(percentage). Number of missing values in biological
markers was reported.

Second, we derived participant-specific ADAS-
Cog-13 slopes using a linear mixed-effects model
(using the lme4 R package24) with ADAS-Cog-13
scores (at least two timepoints) as the outcome and
time (years since baseline) as the independent vari-
able. The model included random intercepts and
slopes.

Third, these participant-specific slopes were sub-
sequently treated as outcomes in a set of multivariable
linear regression models with a combination of
demographic variables and biological markers as pre-
dictors. Specifically, four linear regression models
were constructed: the base model included partic-
ipant age at baseline, sex, education in years, and
APOE4 genotype as predictors; the cognition model
expanded upon the base model by adding the baseline
ADAS-Cog-13 score; the neurodegeneration model
additionally included FDG-PET and aHV; the CSF
model additionally included CSF A�42 and p-tau.
To allow for non-linear associations between predic-
tors and the outcome, restricted cubic splines with 3
knots (using the rms R package) were applied to base-
line ADAS-Cog-13, FDG-PET, aHV, CSF A�42, and
p-tau. To maximize the available data used for con-
structing the linear models, missing values in several
predictors (aHV, FDG-PET, CSF A�42, and p-tau)
were handled using simple imputation, where the
missing values were replaced with the median values
of their respective variables. Models were compared
using R2 and Akaike Information Criterion (AIC).25

The likelihood ratio test was performed to assess the
statistical significance of the four nested models.

Fourth, for model calibration, we used bootstrap-
ping with 10,000 repetitions to obtain overfitting-
corrected estimates of the predicted versus observed
ADAS-Cog-13 slopes within the context of the
best-fitting CSF model identified during the model
development stage as stated above. The smooth non-
parametric calibration estimator (loess) was applied.
For model validation, we employed bootstrapping
with 10,000 repetitions to validate the best-fitting
CSF model and to examine whether it was overfit-
ting the data. The optimism in a variety of measures
of model predictive accuracy, including R2, mean
squared error (MSE), the g-index, and the intercept

and slope of an overall calibration, was estimated
using the resampling technique. To predict the
ADAS-Cog-13 slopes of individual patients, we con-
structed a nomogram that allows for manual and
visual calculation of the predicted slopes on the basis
of clinical and biological characteristics.

Fifth, simulations of hypothetical clinical trials
were performed using the longpower R package,
and sample size estimations for linear mixed-effects
models were based on the equation due to Diggle.26

Clinical trials were simulated with 1 : 1 allocation of
placebo and treatment groups, assuming a statisti-
cal power of 80%, a significant level of 0.05, a 20%
treatment effect on the rate of cognitive change over
time, a trial duration of 18 months, and cognitive
assessment every 3 months (a total of 7 cognitive
assessments). The bootstrap with 500 repetitions was
employed to generate 500 simulations. The compar-
ison was made between the sample size required to
detect cognitive change when applying an inclusion
parameter and the sample size when including all
available participants.

Finally, secondary analyses were performed with
(1) Clinical Dementia Rating-Sum of Boxes (CDR-
SB)27 as the cognitive outcome rather than ADAS-
Cog-13, and (2) MMSE as the cognitive outcome.

RESULTS

Study population characteristics

Baseline characteristics of the study population are
shown in Table 1. Of the 421 patients with early AD,
183 (43%) were female, and 134 (32%), 209 (50%),
and 78 (19%) had 0, 1, and 2 APOE4 alleles, respec-
tively. The mean (SD) age was 73 (7) years, the mean
(SD) education in years was 16 (3), and the mean (SD)
follow-up duration was 2.55 (1.55) years. Data were
missing for 43 patients for aHV, 8 for FDG-PET, 74
for CSF A�42, and 74 for CSF p-tau. Baseline char-
acteristics of the CDR-SB and MMSE cohorts are
provided in Supplementary Tables 1 and 2.

Slopes of cognitive decline in early AD

The histogram in Fig. 2A shows the distribu-
tion of participant-specific ADAS-Cog-13 slopes in
patients with early AD and illustrates that slopes vary
substantially, ranging from –1.557 to 15.36 points
annually (average change per year: +3.34 points;
95% CIs based on the Wald method: 2.93 to 3.75;
p < 0.001). The quartiles of ADAS-Cog-13 slopes
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Table 1
Characteristics of the study sample

Characteristic N = 421

Age, y 73 (7)
Education, y 16 (3)
Sex

Male 238 (57%)
Female 183 (43%)

Numbers of APOE4 allele
0 134 (32%)
1 209 (50%)
2 78 (19%)

Follow-up durations, y 2.55 (1.55)
Baseline ADAS-Cog-13 21 (10)
AHV 4.34 (0.75)

Missing, n 43
FDG-PET 1.15 (0.17)

Missing, n 8
CSF A�42, pg/ml 726 (282)

Missing, n 74
CSF p-tau, pg/ml 35 (16)

Missing, n 74
Slopes of change in ADAS-Cog-13 3.3 (3.1)

Continuous variables and categorical variables are presented
as Mean (SD) and n (%), respectively. APOE, Apolipoprotein
E; ADAS-Cog-13, 13-item version of the Alzheimer’s Disease
Assessment Scale-cognitive subscale; aHV, adjusted hippocampal
volume; FDG-PET, fluorodeoxyglucose-positron emission tomog-
raphy; CSF, cerebrospinal fluid; A�42, amyloid-�1-42; p-tau,
phosphorylated tau.

were 1.1 (Q1), 2.8 (Q2), and 5.2 (Q3), respectively
(Fig. 2A). For illustrative purposes, individuals were
divided into seven groups with approximately equal
sample size based on slopes, and Fig. 2B demon-
strates the mean cognitive change of individuals with
different slopes. Participant-specific slopes on the
CDR-SB ranged from –0.38 to 5.84 points annually
(average change per year: +1.1 points; 95% CIs: 0.97
to 1.24; p < 0.001) (Supplementary Figure 1), and par-
ticipant slopes on the MMSE ranged from –9.1 to 0.59
points annually (average change per year: –1.6 points;
95% CIs: –1.8 to –1.4; p < 0.001) (Supplementary
Figure 2).

Modeling longitudinal cognitive decline in early
AD

We constructed a set of multivariable linear regres-
sion models to predict ADAS-Cog-13 slopes in
patients with early AD. The predictors included
in each model (base model, cognition model, neu-
rodegeneration model, and CSF model) and their
corresponding regression coefficients [95% CIs] are
shown in Table 2. The cognition model that addi-
tionally included baseline ADAS-Cog-13 score as a
predictor (R2 = 0.542; AIC = 1840.9) fit the data sig-

Fig. 2. Participant-specific slopes on the ADAS-Cog-13. Panel A depicts the distribution of participant-specific ADAS-Cog-13 slopes in
patients with early AD. The vertical gray dashed line represents a slope of 0, and the three vertical orange solid lines represent the quartiles
(25% = 1.1, 50% = 2.8, and 75% = 5.2) of ADAS-Cog-13 slopes. Panel B demonstrates the mean cognitive change in participants with
different slopes in the next 5 years since baseline. Participants were classified into seven groups with approximately equal numbers of
observations based on slopes. The mean cognitive change of participants with slopes ranging from –1.56 (inclusive) to 0.129 (inclusive),
0.129 to 1.23 (inclusive), 1.23 to 2.16 (inclusive), 2.16 to 3.33 (inclusive), 3.33 to 4.85 (inclusive), 4.85 to 6.66 (inclusive), 6.66 to 15.5
(inclusive) are represented by the gray, golden, purple, pink, green, orange, and blue solid lines, respectively. The shaded areas represent the
95% confidence intervals for the regression lines at the group level. ADAS-Cog-13, 13-item version of the Alzheimer’s Disease Assessment
Scale-cognitive subscale; AD, Alzheimer’s disease.
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Table 2
Summary of regression models

Base model Cognition model Neurodegeneration model CSF model

Intercept 3.707 [–0.353, 7.766] 1.018 [–1.857, 3.893] 9.020 [4.272, 13.769] 9.333 [4.503, 14.163]
p value: 0.073 p value: 0.487 p value: <0.001 p value: <0.001

Age 0.002 [–0.041, 0.046] –0.032 [–0.063, –0.002] –0.028 [–0.059, 0.002] –0.031 [–0.062, –0.001]
p value: 0.922 p value: 0.038 p value: 0.071 p value: 0.042

Education –0.070 [–0.183, 0.043] 0.010 [–0.068, 0.088] –0.018 [–0.092, 0.056] –0.015 [–0.088, 0.058]
p value: 0.222 p value: 0.799 p value: 0.638 p value: 0.686

Presence of 1 APOE4 allele 0.710 [0.034, 1.386] 0.292 [–0.175, 0.759] 0.290 [–0.150, 0.729] 0.116 [–0.328, 0.560]
p value: 0.040 p value: 0.219 p value: 0.196 p value: 0.608

Presence of 2 APOE4 alleles 1.295 [0.398, 2.192] 0.686 [0.063, 1.310] 0.557 [–0.029, 1.143] 0.175 [–0.437, 0.787]
p value: 0.005 p value: 0.031 p value: 0.062 p value: 0.574

Female sex –0.005 [–0.627, 0.618] 0.131 [–0.298, 0.561] 0.270 [–0.137, 0.676] 0.162 [–0.250, 0.573]
p value: 0.989 p value: 0.548 p value: 0.193 p value: 0.440

ADAS-Cog-13 0.176 [0.118, 0.234] 0.086 [0.024, 0.147] 0.062 [0.001, 0.124]
p value: <0.001 p value: 0.007 p value: 0.047

ADAS-Cog-13’ 0.075 [0.004, 0.147] 0.107 [0.036, 0.179] 0.121 [0.050, 0.192]
p value: 0.040 p value: 0.003 p value: <0.001

FDG-PET –6.133 [–8.893, –3.372] –6.084 [–8.806, –3.363]
p value: <0.001 p value: <0.001

FDG-PET’ 1.296 [–1.688, 4.280] 1.881 [–1.079, 4.841]
p value: 0.394 p value: 0.212

aHV 0.254 [–0.390, 0.898] 0.170 [–0.476, 0.816]
p value: 0.438 p value: 0.605

aHV’ –0.747 [–1.485, –0.009] –0.638 [–1.375, 0.100]
p value: 0.047 p value: 0.090

CSF A�42 –0.001 [–0.003, 0.001]
p value: 0.239

CSF A�42’ 0.000 [–0.002, 0.003]
p value: 0.771

CSF p-tau 0.054 [0.013, 0.095]
p value: 0.010

CSF p-tau’ –0.042 [–0.095, 0.011]
p value: 0.121

Number of Observations 421 421 421 421
R2 0.025 0.542 0.602 0.618
AIC 2154.8 1840.9 1789.7 1780.3

This table presents the results of four linear regression models: the base model included participant age at baseline, sex, education in years,
and APOE4 genotype as predictors; the cognition model expanded upon the base model by adding the baseline ADAS-Cog-13 score;
the neurodegeneration model additionally included FDG-PET and aHV; the CSF model additionally included CSF A�42 and p-tau. The
proportion of variance explained by these models, quantified as R-squared values, are respectively 0.025, 0.542, 0.602, and 0.618. Meanwhile,
the Akaike Information Criteria (AIC) for these models are reported as 2154.8, 1840.9, 1789.7, and 1780.3, respectively. Effect sizes are
presented as unstandardized �s [95% CIs]. Two tailed t-tests on regression coefficients were used throughout. APOE, Apolipoprotein E;
ADAS-Cog-13 : 13-item version of the Alzheimer’s Disease Assessment Scale-cognitive subscale; aHV: Adjusted hippocampal volume;
FDG-PET: Fluorodeoxyglucose-Positron Emission Tomography; CSF: Cerebrospinal fluid; A�42, amyloid-�1-42; p-tau: Phosphorylated
tau; AIC: Akaike Information Criterion.

nificantly better than the base model that included
age, sex, education, and APOE4 status (R2 = 0.025;
AIC = 2154.8; model comparison between the base
model and cognition model: p < 0.001 based on
the likelihood ratio test). In terms of R2, the
base model only captured 2.5% of the variability
in the ADAS-Cog-13 slopes, while adding base-
line ADAS-Cog-13 information to the base model
explained an additional 51.7% of the total variabil-
ity in the ADAS-Cog-13 slopes. Subsequently, we
constructed the neurodegeneration model to assess
whether adding variables representing neurodegener-

ation (aHV and FDG-PET) to the cognition model can
improve model performance. The neurodegeneration
model (R2 = 0.602; AIC = 1789.7) demonstrated a
significantly better fit to the data compared to the
cognition model (p < 0.001 based on the likelihood
ratio test). This means that the neurodegenerative
markers explained an additional 6% of the total vari-
ability in the ADAS-Cog-13 slopes after accounting
for age, sex, education, APOE4 status, and base-
line ADAS-Cog-13 score. Finally, to test whether
adding CSF AD biological markers (A�42 and p-
tau) can further improve prediction of ADAS-Cog-13
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change compared to the neurodegeneration model,
we constructed the CSF model, which combines
demographic, cognitive, neurodegenerative, and CSF
AD biological variables. The CSF model (R2 = 0.618;
AIC = 1780.3) showed a significantly better fit to the
data than the neurodegeneration model (p = 0.002
based on the likelihood ratio test) and explained
an additional 1.6% of the total variability in the
ADAS-Cog-13 slopes after accounting for predictors
included in the neurodegeneration model. Hence, the
CSF model was chosen as the best-fitting model for
prediction of ADAS-Cog-13 slopes based on the R2,
AIC, and likelihood ratio test.

We next examined the partial effects of predic-
tors in the CSF model (Fig. 3). For demographic
variables, the Wald tests suggested that ADAS-
Cog-13 slopes were significantly associated with
participant age at baseline (F statistics = 4.18,
p = 0.042; Fig. 3A), but not with education (F
statistics = 0.16, p = 0.69; Fig. 3B), sex (F statis-
tics = 0.6, p = 0.44; Fig. 3C), or APOE4 status (F
statistics = 0.19, p = 0.82; Fig. 3D). To relax the lin-
earity assumption of linear models, restricted cubic
splines with 3 knots were applied to several pre-
dictors, including baseline ADAS-Cog-13 score,
FDG-PET, aHV, CSF A�42, and p-tau. The associa-
tions between slopes of cognitive change and baseline
ADAS-Cog-13 score (p for overall < 0.001; p for non-
linearity<0.001), FDG-PET (p for overall < 0.001; p
for non-linearity = 0.212), aHV (p for overall = 0.041;
p for non-linearity = 0.09), CSF A�42 (p for over-
all = 0.06; p for non-linearity = 0.77), and p-tau (p
for overall = 0.0017; p for non-linearity = 0.121) are
presented in Fig. 3E-I. Subsequently, the chi-square
statistic minus the degrees of freedom (χ2 – df) was
used as a measure for predictor importance (higher
values represent greater importance).28 As shown
in Fig. 3J, baseline ADAS-Cog-13 score was the
strongest predictor for the model, followed by FDG-
PET and CSF p-tau. Finally, level plots based on
the CSF model were created to facilitate easy and
visual calculation of predicted ADAS-Cog-13 slopes
according to the top 5 important predictors (baseline
ADAS-Cog-13, FDG-PET, CSF p-tau, aHV, and CSF
A�42) (Fig. 4).

Subsequently, we repeated the analyses with CDR-
SB and MMSE slopes as the cognitive outcomes. For
the CSR-SB cohort, the model summary is listed in
Supplementary Table 3, and the neurodegeneration
model (R2 = 0.544; AIC = 1031.9) was selected as the
best-fitting model according to the likelihood ratio
test (p = 0.177 based on the comparison between the

neurodegeneration and CSF model). Next, the partial
effects of predictors in the neurodegeneration model
were investigated (Supplementary Figure 3), and pre-
dictor importance was examined based on χ2 – df
(Supplementary Figure 4). For the MMSE cohort,
summary of regression models is shown in Supple-
mentary Table 4, and the CSF model (R2 = 0.603;
AIC = 1311.5) was chosen as the best-fitting model
according to the likelihood ratio test (p = 0.012 based
on the comparison between the neurodegeneration
and CSF model). Next, the partial effects of predictors
in the CSF model were investigated (Supplementary
Figure 5), and predictor importance was examined
based on χ2 – df (Supplementary Figure 6).

Calibration, validation, and nomogram

Model calibration (or reliability) performance
(based on the best-fitting model) was evaluated by a
10,000-iteration bootstrap overfitting-corrected cali-
bration curve (Fig. 5A). Based on visual inspection,
the excellent calibration is illustrated by the close
alignment of the calibration curve with the 45◦ line
(Fig. 5A). The calibration errors were quantified
using several metrics, including mean absolute error
(0.072), mean squared error (MSE, 0.0081), and the
0.9 quantile of absolute error (0.134). Internal model
validation was assessed by a 10,000-iteration boot-
strap approach. Estimates of the optimism in several
metrics of model performance, including R2, MSE,
the g-index, and the intercept and slope of an overall
calibration, were obtained. The optimism-corrected
measures of model performance are summarized in
Fig. 5B. For instance, the estimated R2 across the
10,000 training samples was 0.6322, while the aver-
age R2 was 0.6017 in the testing samples, resulting
in an optimism of 0.03057. To obtain the optimism-
corrected R2, we subtracted the estimated optimism
(0.03057) from the original R2 (0.6179) obtained
using our original data (n = 421), resulting in a cor-
rected R2 value of 0.587. Finally, a nomogram was
created to facilitate easy and visual calculation of the
individualized slopes of cognitive change (Fig. 5C).
Using an example for our nomogram, a 75-year-old
female patient with early AD who has 15 years of edu-
cation, one APOE4 allele, an ADAS-Cog-13 score of
25, with an aHV of 3 and FDG SUVRs of 1.0, and
with CSF A�42 of 400 pg/ml and CSF p-tau of 30
pg/ml has a predicted slope of 4.7 points per year
(for the calculation process, please refer to Supple-
mentary Figure 7).
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Fig. 3. (Continued)
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Subsequently, we repeated the analyses with CDR-
SB and MMSE slopes as the cognitive outcomes.
For the CDR-SB cohort, calibration performance
based on the best-fitting model (the neurode-
generation model) was assessed by a bootstrap
overfitting-corrected calibration curve (Supplemen-
tary Figure 8). The calibration errors were quantified
using several metrics, including mean absolute error
(0.03), mean squared error (0.0014), and the 0.9
quantile of absolute error (0.07). Supplementary
Table 5 illustrates the optimism-corrected mea-
sures of model performance in relation to internal
model validation. A nomogram was created to man-
ually calculate the individualized CDR-SB slopes
(Supplementary Figure 9). For the MMSE cohort,
calibration performance based on the best-fitting
model (the CSF model) was examined by a bootstrap
overfitting-corrected calibration curve (Supplemen-
tary Figure 10). The calibration errors were quantified
using several metrics, including mean absolute error
(0.049), mean squared error (0.004), and the 0.9 quan-
tile of absolute error (0.11). Supplementary Table 6
illustrates the optimism-corrected measures of model
performance in relation to internal model validation.
A nomogram was created to manually calculate the
individualized MMSE slopes (Supplementary Fig-
ure 11).

Clinical trials simulations

We investigated whether utilizing the nomogram
for participant screening would lead to the reduction
of the required sample size of hypothetical clinical
trials. In clinical trial simulations using ADAS-Cog-
13 slopes as the cognitive outcome with inclusion
of all study participants (no restrictions applied), the
required sample sizes were 1447.29 (i.e., approxi-
mately 724 participants in the treatment group and
724 participants in the placebo group; 95% CIs:

1294.1 to 1667.0; Fig. 6). When including the great-
est 3 quantiles (Q2-Q4) of predicted ADAS-Cog-13
slopes using the nomogram, the required sample sizes
were reduced to 1043.4 (95% CIs: 907.1 to 1200.6;
Fig. 6). When including the greatest 2 quantiles (Q3-
Q4) of predicted ADAS-Cog-13 slopes, the required
sample sizes were reduced to 727.1 (95% CIs: 597 to
873.7; Fig. 6).

DISCUSSION

In this study, we investigated the variations in
the rates of decline over 5 years among individuals
with early AD based on commonly used cognitive
outcome measures in AD clinical trials. We found
that individual slopes of cognitive change (ADAS-
Cog-13, CDR-SB, and MMSE) differed substantially
among individuals with early AD, despite applying
inclusion criteria similar to those of a typical early
AD trial in order to create a relatively homogeneous
clinical group. Subsequently, we constructed prog-
nostic models to estimate individualized slopes of
cognitive change among patients with early AD based
on patient characteristics and continuous marker val-
ues. These models were internally validated based
on the bootstrap technique and showed strong model
performance and calibration. We translated these
biomarker-based prognostic models into nomograms,
enabling a straightforward and manual calculation of
personalized slopes of cognitive change. Simulated
clinical trials illustrated great reductions in required
sample sizes when enriching for individuals with
early AD using higher predicted slopes based on the
nomogram. This novel and practical instrument might
improve clinical care and cognitive monitoring and
could make clinical trials for early AD more precise
and cost-effective.

The finding that individuals with early AD who
have biomarker evidence of abnormal amyloid

Fig. 3. Associations of predictors with the ADAS-Cog-13 slopes in the CSF model and ranking of importance of predictors. The panels A-I
show the partial effects of predictors in the CSF model. The partial effect of a predictor was examined when holding all other variables constant
[median age = 73.9 years; median education = 16 years; APOE4 genotype = 1; gender = male; baseline median ADAS-Cog-13 = 20; median
FDG SUVRs = 1.158; median aHV = 4.28; median CSF A� = 685.7 pg/ml; median p-tau = 31.45 pg/ml]. For instance, panel F illustrates the
partial effect of FDG SUVRs on the ADAS-Cog-13 slopes, assuming that all other variables in the model remain constant ([median age = 73.9
years; median education = 16 years; APOE4 = 1 (range, 0–2 APOE4 alleles); gender = male; baseline median ADAS-Cog-13 = 20; median
aHV = 4.28; median CSF A� = 685.7 pg/ml; median p-tau = 31.45 pg/ml]). For the categorical predictors (gender and APOE4 genotype),
solid dots represent means of predicted slopes and error bars represent their corresponding 95% confidence intervals. For the continuous
predictors, solid lines represent estimated mean regression lines and shaded regions represent their 95% confidence intervals. In this model,
we employed restricted cubic spline transformations with 3 knots to relax the linearity assumption of the linear model. Specifically, we applied
these transformations to the baseline ADAS-Cog-13 score, aHV, FDG-PET, CSF A�42, and p-tau variables. Knots were placed at the quantiles
(0.1, 0.5, and 0.9) of the respective predictors. Panel J shows the ranking of predictor importance based on χ2 – df. APOE, Apolipoprotein
E; ADAS-Cog-13, 13-item version of the Alzheimer’s Disease Assessment Scale-cognitive subscale; aHV, adjusted hippocampal volume;
FDG-PET, fluorodeoxyglucose-positron emission tomography; CSF, cerebrospinal fluid; A�42, amyloid-�1-42; p-tau, phosphorylated tau.
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Fig. 4. Level plots for the prediction of ADAS-Cog-13 slopes. Predicted ADAS-Cog-13 slopes can be visually calculated based on base-
line ADAS-Cog-13 score in combination with FDG-PET (A), aHV (B), CSF A�42 (C), and p-tau (D). The model from which the level
plots are based on was adjusted for other predictors [median age = 73.9 years; median education = 16 years; APOE4 genotype = 1; gen-
der = male; baseline median ADAS-Cog-13 = 20; median FDG SUVRs = 1.158; median aHV = 4.28; median CSF A� = 685.7 pg/ml; median
p-tau = 31.45 pg/ml]. For example, the level plot in panel A is based on the model that was adjusted for several other predictors [median
age = 73.9 years; median education = 16 years; APOE4 genotype = 1; gender = male; median aHV = 4.28; median CSF A� = 685.7 pg/ml;
median p-tau = 31.45 pg/ml]. APOE, Apolipoprotein E; ADAS-Cog-13, 13-item version of the Alzheimer’s Disease Assessment Scale-
cognitive subscale; aHV, adjusted hippocampal volume; FDG-PET, fluorodeoxyglucose-positron emission tomography; CSF, cerebrospinal
fluid; A�42, amyloid-�1-42; p-tau, phosphorylated tau.

demonstrated substantial heterogeneity in terms of
the rates of cognitive progression aligns with previous
studies showing that individuals have highly variable
times to progress from MCI to dementia as well as
distinct magnitudes of cognitive decline.4,5,29 The
variability in how individuals experience cognitive
decline presents a hurdle for discerning therapeu-
tic impacts through cognitive endpoints.30 In the
context of AD clinical trials, enrolling participants
with negligible or no anticipated cognitive deterio-
ration over the course of the study could diminish
the decline observed in the placebo arm, thereby
complicating efforts to distinguish treatment effects
from placebo responses.31 On the other hand, the
diverse patterns of cognitive decline can yield sub-
stantial discrepancies in cognitive assessment results
between the placebo group and the treatment group,

where these differences may stem not from the ther-
apy itself but from the inherent inconsistency in
the extent of decline among individual patients.5

The average individual patient slopes of cognitive
change among patients with early AD from our study
were +3.3 points (SD = 3.1; range = –1.557 to 15.36
points) on the ADAS-Cog-13, +1.1 points (SD = 1.17;
range = –0.38 to 5.84 points) on the CDR-SB, and
–1.6 points (SD = 1.72; range = –9.1 to 0.59) on the
MMSE. These results further suggested that current
inclusion criteria for early AD trials are not optimal,
highlighting the need for a more refined recruitment
strategy. To the best of our knowledge, this is the
first study to provide a useful instrument enabling
an easy and manual estimation of individualized
cognitive slopes of widely used cognitive outcome
measures in AD trials among patients with early AD
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Fig. 5. Model calibration, internal validation, and nomogram. Panel A shows a bootstrap overfitting-corrected calibration curve. Panel B shows
various metrics of model performance based on resampling technique with 10,000 iterations. Panel C displays a nomogram for prediction
of ADAS-Cog-13 slopes based on 9 predictors in the model. ADAS-Cog-13, 13-item version of the Alzheimer’s Disease Assessment Scale-
cognitive subscale; MSE, mean squared error; g, the g-index; APOE, Apolipoprotein E; aHV, adjusted hippocampal volume; FDG-PET,
fluorodeoxyglucose-positron emission tomography; CSF, cerebrospinal fluid; A�42, amyloid-�1-42; p-tau, phosphorylated tau.

who have biomarker evidence of elevated amyloid
in the brain, taking into account individual patient
characteristics.

The model with both baseline cognitive informa-
tion, neurodegenerative markers, and CSF measures
provided the best predictive performance, which indi-
cates the complementary nature of these biomarkers
and aligns with findings in previous studies.32−34

When examining the contribution of individual pre-
dictors (Fig. 3J), baseline cognitive information was
identified to be the strongest determinant of sub-
sequent cognitive decline, which is consistent with
previous findings.35 The powerful effect of base-

line cognitive performance on the slopes of cognitive
decline among patients with early AD may be
explained by that baseline cognition serves as a
snapshot that reflects the dynamics of the interac-
tion between the patient’s initial cognitive abilities,
brain reserve, and underlying neuropathophysiolog-
ical changes. An individual with better cognition
at baseline might be more likely to experience a
slower downward cognitive trajectory compared to an
individual with worse initial cognition, even though
both of them have elevated levels of amyloid depo-
sition in the brain. That is, the initial higher level
of cognition may indicate greater cognitive reserve
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Fig. 6. Clinical trials simulations using predicted ADAS-Cog-13 slopes based on the nomogram for inclusion. This figure illustrates the
reduction in required sample sizes resulting from using the nomogram for inclusion enrichment in hypothetical clinical trials aimed at slowing
cognitive decline measured by ADAS-Cog-13 in patients with early AD. These clinical trial simulations had statistical power of 80% at
�; = 0.05 using the R package “longpower”, assuming a 20% treatment effect on slopes of cognitive change over time, an 1 : 1 allocation of
treatment, a trial duration of 18 months, and cognitive assessments every 3 months (at month 0, 3, 6, 9, 12, 15, and 18). Required samples
sizes were estimated from 500 bootstrapped trials over all 421 patients with early AD. The reference model (No restrictions; representing
no enrichment) included all participants in the quartile (Q) 1 through Q4 of the predicted ADAS-Cog-13 slopes based on the nomogram. In
the first enrichment model (Q2-Q4), only participants in the Q2 through Q4 were included. In the second enrichment model (Q3-Q4), only
participants in the Q3 through Q4 were included. The quartile limits of the predicted ADAS-Cog-13 slopes were –1.66 (inclusive) to 1.61
for quartile 1, 1.61 (inclusive) to 2.97 for quartile 2, 2.97 (inclusive) to 4.66 for quartile 3, and 4.66 to 12.18 for quartile 4. ADAS-Cog-13,
13-item version of the Alzheimer’s Disease Assessment Scale-cognitive subscale; Q, quartile.

that confers an advantage enabling to counterbalance
neuropathophysiological changes by, for instance,
adopting alternative cognitive strategies or engaging
alternative brain networks.36,37 With the progression
of the disease (i.e., cognitive worsening, and neu-
ropathophysiological advancing) and exhaustion of
compensatory mechanisms, individuals with worse
cognition at baseline might experience a steeper
cognitive decline because of more advanced neu-
ropathophysiological changes at that point.38,39 In
support of this notion, our findings in Figs. 3E and
5C showed a non-linear association between base-
line ADAS-Cog-13 and the magnitude of future
cognitive decline. Specifically, when baseline ADAS-
Cog-13 scores are below approximately 15 points,
the relationship between the two variables remains
relatively flat. However, as baseline ADAS-Cog-13
scores exceed approximately 15 points, the rela-
tionship exhibits a more pronounced steepening
(Figs. 3E; 5C also shows that baseline ADAS-Cog-
13 scores above 15 points have larger effects on the
total points in the nomogram). In terms of other
modalities, hypometabolism on FDG-PET that is
supposed to reflect neuronal and synaptic dysfunc-
tion performed better than aHV based on MRI and
CSF biomarkers in predicting slopes of cognitive
decline, which is consistent with previous findings.40

The modest effect of CSF biomarkers, especially
A�42, was somehow expected. Several former stud-
ies illustrated that amyloid deposition reaches a
plateau and then becomes static when overt cognitive
symptoms are worsening among patients with mild
dementia.41 Statistically speaking, the floor effect
(CSF A�42 were skewed towards lower ranges of
values since all study participants with early AD
had abnormal amyloid in the brain) may also con-
tribute to the attenuation of the association between
the two.

The simulation of clinical trials of early AD
individuals showed that the use of the nomogram
as an enrichment strategy significantly reduced the
required sample sizes. This finding is promising
because current clinical trials are increasingly shift-
ing to earlier stages of AD.42 To conduct clinical trials
in a cost-effective manner, it is crucial to enhance our
ability to efficiently identify individuals most likely
to experience a steeper downward cognitive trajec-
tory. We did not include individuals in the greatest 4th
quantile of predicted ADAS-Cog-13 slopes as a stan-
dalone group for enrichment due to the concern that
individuals experiencing more pronounced declines
in cognition may potentially have advanced underly-
ing conditions, leading to reduced efficacy of certain
treatments.



X. Wang et al. / Individualized Prediction of Cognitive Decline in Early AD 1313

Several limitations should be kept in mind when
interpreting the findings of our study. The mean
(SD) follow-up duration was 2.55 (1.55) years, which
was relatively short and variable among our study
sample. We included individuals who underwent at
least two timepoints of cognitive assessments over
a period of up to 5 years. However, our study did
not have sufficient power to estimate precise 5-
year slopes of cognitive decline. In addition, the
lack of external validation using an independent
sample limits the generalizability of our models to
new settings and populations, though internal valida-
tion using bootstrapping was performed to partially
address this issue. Substantial variabilities across
different methods and cohorts in terms of volumet-
ric MRI measurements, PET imaging techniques,
and CSF concentrations prohibit us from conduct-
ing an external validation, since the generalizability
of our models is reliant on the utilization of identi-
cal methods. In the future study, we aim to validate
our models using an independent sample once the
standardization of different methods becomes avail-
able for these measures, similar to the case where
measurements from different A� tracers, includ-
ing florbetaben, florbetapir, and flutemetamol, were
normalized into the Centiloid scale.43 Finally, our
model did not include CSF A�40 measurements and
the CSF A�42/A�40 ratio. These markers should
be included in future studies due to the fact that
CSF A�42/A�40 ratio is more closely related with
amyloid deposition in the brain than CSF A�42
alone.

Our study provides a straightforward and useful
statistical instrument that allows clinicians to esti-
mate the magnitude of cognitive decline in patients
with early AD, contributing to an improvement in
the interpretation of biomarker results and potentially
providing more targeted and precise patient man-
agement strategies. It can also inform the selection
of an enriched population for early AD clini-
cal trials and significantly reduce required sample
sizes.

AUTHOR CONTRIBUTIONS

Xiwu Wang (Investigation; Methodology; Visual-
ization; Writing – original draft); Teng Ye (Formal
analysis; Investigation; Methodology; Visualization;
Writing – original draft); Ziye Huang (Formal
analysis; Investigation; Methodology; Visualization);
Wenjun Zhou (Conceptualization; Data curation;

Formal analysis; Investigation; Methodology; Project
administration; Supervision; Validation; Writing –
review & editing); Jie Zhang, Ph.D., M.D. (Con-
ceptualization; Data curation; Formal analysis;
Investigation; Methodology; Project administration;
Supervision; Validation; Visualization; Writing –
review & editing).

ACKNOWLEDGMENTS

Data collection and sharing for this project was
funded by the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) (National Institutes of Health
Grant U01 AG024904) and DOD ADNI (Department
of Defense award number W81XWH-12-2-0012).
ADNI is funded by the National Institute on Aging,
the National Institute of Biomedical Imaging and
Bioengineering, and through generous contributions
from the following: AbbVie, Alzheimer’s Asso-
ciation; Alzheimer’s Drug Discovery Foundation;
Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-
Myers Squibb Company; CereSpir, Inc.; Cogstate;
Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and
Company; EuroImmun; F. Hoffmann-La Roche Ltd
and its affiliated company Genentech, Inc.; Fujire-
bio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer
Immunotherapy Research & Development, LLC.;
Johnson & Johnson Pharmaceutical Research &
Development LLC.; Lumosity; Lundbeck; Merck
& Co., Inc.; Meso Scale Diagnostics, LLC.; Neu-
roRx Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal
Imaging; Servier; Takeda Pharmaceutical Company;
and Transition Therapeutics. The Canadian Institutes
of Health Research is providing funds to support
ADNI clinical sites in Canada. Private sector con-
tributions are facilitated by the Foundation for the
National Institutes of Health (http://www.fnih.org).
The grantee organization is the Northern Califor-
nia Institute for Research and Education, and the
study is coordinated by the Alzheimer’s Therapeutic
Research Institute at the University of Southern Cali-
fornia. ADNI data are disseminated by the Laboratory
for Neuro Imaging at the University of Southern Cal-
ifornia.

FUNDING

This work did not receive any grant from funding
agencies in the public, commercial, or not-for-profit
sectors.



1314 X. Wang et al. / Individualized Prediction of Cognitive Decline in Early AD

CONFLICT OF INTEREST

Jie Zhang serves as the Founder of Hangzhou
Shansier Medical Technologies Co., Ltd., and holds
shares in the company, which is dedicated to slow-
ing down or halting cognitive decline in Alzheimer’s
Disease. Wenjun Zhou is employed by Hangzhou
Shansier Medical Technologies Co., Ltd. and holds
shares in the company. The other authors declare that
they have no conflict of interest.

DATA AVAILABILITY

Data used in the present study has been made pub-
licly available by the ADNI in the Laboratory of
Neuro Imaging (LONI) database.

SUPPLEMENTARY MATERIAL

The supplementary material is available in the
electronic version of this article: https://dx.doi.org/
10.3233/ADR-240049.

REFERENCES

1. 2023 Alzheimer’s disease facts and figures. Alzheimers
Dement 2023; 19: 1598–1695.

2. Cummings J, Feldman HH and Scheltens P. The “rights”
of precision drug development for Alzheimer’s disease.
Alzheimers Res Ther 2019; 11: 76.

3. Dong A, Toledo JB, Honnorat N, et al. Heterogeneity of neu-
roanatomical patterns in prodromal Alzheimer’s disease:
links to cognition, progression and biomarkers. Brain 2017;
140: 735–747.

4. Wang X, Ye T, Zhou W, et al. Uncovering heterogeneous
cognitive trajectories in mild cognitive impairment: a data-
driven approach. Alzheimers Res Ther 2023; 15: 57.

5. Jutten RJ, Sikkes SAM, Van der Flier WM, et al. Find-
ing treatment effects in Alzheimer trials in the face of
disease progression heterogeneity. Neurology 2021; 96:
e2673–e2684.

6. Cummings JL. Lessons learned from Alzheimer disease:
clinical trials with negative outcomes. Clin Transl Sci 2017;
11: 147–152.

7. Wolz R, Schwarz AJ, Gray KR, et al. Enrichment of clini-
cal trials in MCI due to AD using markers of amyloid and
neurodegeneration. Neurology 2016; 87: 1235–1241.

8. Garcia MJ, Leadley R, Ross J, et al. Prognostic and pre-
dictive factors in early Alzheimer’s disease: a systematic
review. J Alzheimers Dis Rep 2024; 8: 203–240.

9. Tam A, Laurent C, Gauthier S, et al. Prediction of cognitive
decline for enrichment of Alzheimer’s disease clinical trials.
J Prev Alzheimers Dis 2022; 9: 400–409.

10. Kwon HS, Kim JY, Koh SH, et al. Predicting cognitive stage
transition using p-tau181, Centiloid, and other measures.
Alzheimers Dement 2023; 19: 4641–4650.

11. van Maurik IS, Zwan MD, Tijms BM, et al. Interpreting
biomarker results in individual patients with mild cognitive

impairment in the Alzheimer’s Biomarkers in Daily Practice
(ABIDE) Project. JAMA Neurol 2017; 74: 1481–1491.

12. van Maurik IS, Vos SJ, Bos I, et al. Biomarker-based prog-
nosis for people with mild cognitive impairment (ABIDE):
a modelling study. Lancet Neurol 2019; 18: 1034–1044.

13. Cullen NC, Leuzy A, Palmqvist S, et al. Individualized prog-
nosis of cognitive decline and dementia in mild cognitive
impairment based on plasma biomarker combinations. Nat
Aging 2021; 1: 114–123.

14. van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in
early Alzheimer’s disease. N Engl J Med 2023; 388: 9–21.

15. Veitch DP, Weiner MW, Aisen PS, et al. Understanding
disease progression and improving Alzheimer’s disease
clinical trials: Recent highlights from the Alzheimer’s Dis-
ease Neuroimaging Initiative. Alzheimers Dement 2019; 15:
106–152.

16. Folstein MF, Folstein SE and McHugh PR. “Mini-mental
state”. A practical method for grading the cognitive state of
patients for the clinician. J Psychiatr Res 1975; 12: 189–198.

17. Morris JC. The Clinical Dementia Rating (CDR): cur-
rent version and scoring rules. Neurology 1993; 43:
2412–2414.

18. McKhann G, Drachman D, Folstein M, et al. Clinical
diagnosis of Alzheimer’s disease: report of the NINCDS-
ADRDA Work Group under the auspices of Department
of Health and Human Services Task Force on Alzheimer’s
Disease. Neurology 1984; 34: 939–944.

19. Rosen WG, Mohs RC and Davis KL. A new rating scale
for Alzheimer’s disease. Am J Psychiatry 1984; 141 11:
1356–1364.

20. Landau SM, Breault C, Joshi AD, et al. Amyloid-� imaging
with Pittsburgh Compound B and florbetapir: comparing
radiotracers and quantification methods. J Nucl Med 2013;
54: 70–77.

21. Landau SM, Harvey D, Madison CM, et al. Associations
between cognitive, functional, and FDG-PET measures
of decline in AD and MCI. Neurobiol Aging 2011; 32:
1207–1218.

22. Bittner T, Zetterberg H, Teunissen CE, et al. Technical
performance of a novel, fully automated electrochemilumi-
nescence immunoassay for the quantitation of �-amyloid
(1–42) in human cerebrospinal fluid. Alzheimers Dement
2016; 12: 517–526.

23. R Core Team. R: A language and environment for statistical
computing. Vienna: R Foundation for Statistical Computing.

24. Bates DM, Machler M, Bolker BM, et al. Fitting linear
mixed-effects models using lme4. J Stat Softw 2014; 67:
1–48.

25. Akaike H. A new look at the statistical model identification.
IEEE Trans Automat Contr 1974; 19: 716–723.

26. Diggle P. Analysis of Longitudinal Data. OUP Oxford,
2002.

27. Williams MM, Storandt M, Roe CM, et al. Progression
of Alzheimer’s disease as measured by Clinical Dementia
Rating Sum of Boxes scores. Alzheimers Dement 2013; 9:
S39–S44.

28. Harrell FE. Regression modeling strategies: with applica-
tions to linear models, logistic regression, and survival
analysis. Springer, 2001.

29. Kim YJ, Cho SK, Kim HJ, et al. Data-driven prognostic
features of cognitive trajectories in patients with amnestic
mild cognitive impairments. Alzheimers Res Ther 2019; 11:
10.

30. Duara R and Barker W. Heterogeneity in Alzheimer’s
disease diagnosis and progression rates: implications

https://dx.doi.org/10.3233/ADR-240049
https://dx.doi.org/10.3233/ADR-240049


X. Wang et al. / Individualized Prediction of Cognitive Decline in Early AD 1315

for therapeutic trials. Neurotherapeutics 2022; 19:
8–25.

31. Edmonds EC, Ard MC, Edland SD, et al. Unmasking the
benefits of donepezil via psychometrically precise identifi-
cation of mild cognitive impairment: A secondary analysis
of the ADCS vitamin E and donepezil in MCI study.
Alzheimers Dement (N Y) 2018; 4: 11–18.

32. Davatzikos C, Bhatt P, Shaw LM, et al. Prediction of MCI
to AD conversion, via MRI, CSF biomarkers, and pattern
classification. Neurobiol Aging 2011; 32: 2322.e19–27.

33. Vos SJB, Rossum IAv, Burns L, et al. Test sequence of CSF
and MRI biomarkers for prediction of AD in subjects with
MCI. Neurobiol Aging 2012; 33: 2272–2281.

34. Walhovd KB, Fjell AM, Brewer JB, et al. Combining MR
imaging, positron-emission tomography, and CSF biomark-
ers in the diagnosis and prognosis of Alzheimer disease. Am
J Neuroradiol 2010; 31: 347–354.

35. Schaeverbeke JM, Gabel S, Meersmans K, et al. Baseline
cognition is the best predictor of 4-year cognitive change in
cognitively intact older adults. Alzheimers Res Ther 2021;
13: 75.

36. Stern Y. What is cognitive reserve? Theory and research
application of the reserve concept. J Int Neuropsychol Soc
2002; 8: 448–460.

37. Stern Y, Zarahn E, Hilton J, et al. Exploring the neural basis
of cognitive reserve. J Clin Exp Neuropsychol 2003; 25:
691–701.

38. Hall CB, Derby CA, LeValley AJ, et al. Education delays
accelerated decline on a memory test in persons who develop
dementia. Neurology 2007; 69: 1657–1664.

39. Stern Y, Albert S, Tang MX, et al. Rate of memory decline
in AD is related to education and occupation: cognitive
reserve? Neurology 1999; 53: 1942–1947.

40. Caminiti SP, Ballarini T, Sala A, et al. FDG-PET and CSF
biomarker accuracy in prediction of conversion to different
dementias in a large multicentre MCI cohort. Neuroimage
Clin 2018; 18: 167–177.

41. Jack CR, Knopman DS, Jagust WJ, et al. Tracking patho-
physiological processes in Alzheimer’s disease: an updated
hypothetical model of dynamic biomarkers. Lancet Neurol
2013; 12: 207–216.

42. van der Flier WM and Tijms BM. Treatments for AD:
towards the right target at the right time. Nat Rev Neurol
2023; 19: 581–582.

43. Klunk WE, Koeppe RA, Price JC, et al. The Centiloid
Project: standardizing quantitative amyloid plaque estima-
tion by PET. Alzheimers Dement 2015; 11: 1–15.e11-14.


