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Abstract.
Background: Sleep disturbances frequently affect Alzheimer’s disease (AD), with up to 65% patients reporting sleep-related
issues that may manifest up to a decade before AD symptoms.
Objective: To construct a nomogram that synthesizes sleep quality and cognitive performance for predicting cognitive
impairment (CI) conversion outcomes.
Methods: Using scores from three well-established sleep assessment tools, Pittsburg Sleep Quality Index, REM Sleep
Behavior Disorder Screening Questionnaire, and Epworth Sleepiness Scale, we created the Sleep Composite Index (SCI),
providing a comprehensive snapshot of an individual’s sleep status. Initially, a CI conversion prediction model was formed
via COX regression, fine-tuned by bidirectional elimination. Subsequently, an optimized prediction model through COX
regression, depicted as a nomogram, offering predictions for CI development in 5, 8, and 12 years among cognitively
unimpaired (CU) individuals.
Results: After excluding CI patients at baseline, our study included 816 participants with complete baseline and follow-up
data. The CU group had a mean age of 66.1 ± 6.7 years, with 36.37% males, while the CI group had an average age of
70.3 ± 9.0 years, with 39.20% males. The final model incorporated glial fibrillary acidic protein, Verbal Fluency Test and
SCI, and an AUC of 0.8773 (0.792–0.963).
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Conclusions: In conclusion, the sleep-cognition nomogram we developed could successfully predict the risk of converting
to CI in elderly participants and could potentially guide the design of interventions for rehabilitation and/or cognitive
enhancement to improve the living quality for healthy older adults, detect at-risk individuals, and even slow down the
progression of AD.
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INTRODUCTION

Alzheimer’s disease (AD), as the leading cause
of dementia, is so far one of the most fatal, costly,
and burdensome issues to the healthcare system [1].
Generally, preventive interventions following early
identification of at-risk individuals for AD may pro-
vide an opportunity to delay or avoid the onset of
severe cognitive impairment [2]. Studies with mod-
erate to high levels of evidence have shown that sleep
disorders are associated with a higher risk of all-cause
dementia or cognitive impairment [3]. In turn, sleep
disorders and related abnormalities are common in
patients with AD, as around 65% of patients with AD
reported having at least one sleep-related disorder [4]:
they often experience alterations in sleep architecture
and sleep-wake cycle which result in sleep distur-
bances such as elevated sleepiness during daytime,
sundowning (agitation during nighttime), and insom-
nia [5]. Moreover, compared to their normal healthy
peers, patients with AD have more disruptions in
night-time sleep [6]. A bidirectional interaction has
been demonstrated between sleep disturbances and
crucial pathophysiological biomarkers of AD such
as amyloid-� (A�) concentration, A� plague forma-
tion, and phosphorylated tau protein (p-tau) tangle
formation [7, 8]. Nevertheless, these previous studies
utilized positron emission tomography (PET) scan or
cerebrospinal fluid (CSF) extraction, both of which
have inherent limitations of high cost and low acces-
sibility.

In comparison, blood-based AD pathophysiologi-
cal biomarkers have lower operation costs and higher
accessibility [9]. Previous studies have demonstrated
the diagnostic predictability of plasma biomarkers
on AD pathological progression including A�42/40,
p-tau, and neurofilament light (NfL) [10, 11], yet
very few of them included plasma biomarkers and
other measurements such as cognitive performance.
Excitingly, in the 2023 AAIC, a new biomarker cat-
egorification was introduced for staging and AD
prognosis: biomarkers of inflammatory/immune pro-
cesses (I), currently only reflected by fluid, e.g.,
plasma or CSF glial fibrillary acidic protein (GFAP)

[12]. In the present study, we aim to integrate data on
plasma biomarkers (including A�, p-tau, NfL, and
GFAP), cognitive function performance, and overall
sleep quality in predicting AD pathological progres-
sion. To further evaluate the overall sleep quality, we
hereby proposed a composite indicator named Sleep
Composite Index (SCI). The goal of SCI was to cap-
ture the comprehensive sleep disturbances in both
nighttime rest and daytime sleepiness in patients with
AD.

To construct a statistical prediction model, a nomo-
gram has been widely accepted as a reliable tool for
its ability to quantify the risk of clinical outcomes [13,
14]. By combining a patient’s profile and the statis-
tic model, a nomogram can provide individualized
assessment and prediction. In conjunction with its
user-friendly graphical presentation, the nomogram
could be used during clinical encounters for disease
prognosis, thus aiding in clinical decision-making
[14]. Based on a Chinese multicenter cohort study, the
present study aims to construct a nomogram that syn-
thesizes sleep quality and cognitive performance, and
plasma biomarkers for predicting cognitive impair-
ment (CI) conversion outcomes.

MATERIALS AND METHODS

Study population

The study was part of the Sino Longitudi-
nal Study on Cognitive Decline (SILCODE), an
ongoing prospective cohort study [15], which cen-
ters on Xuanwu Hospital in cooperation with
an alliance of 94 hospitals from 50 cities
in China. Specific inclusion/exclusion criteria
can be found at https://www.clinicaltrials.gov/ct2/
show/study/NCT03370744). From a total of 2,763
patients, clinical information, neuropsychological
assessments, blood samples, and imaging data were
collected between January 2010 and December 2022.
Both the baseline assessment and the first follow-up
assessment were performed at Xuanwu Hospital, and
the follow-up interval for each patient was one year.
The study was approved by the Ethics Committee of

https://www.clinicaltrials.gov/ct2/show/study/NCT03370744
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Fig. 1. The flow chart of this study.

Xuanwu Hospital of Capital Medical University and
conducted in accordance with ethical standards. All
participants provided written informed consent and
authorized the publication of their clinical details.
SILCODE is listed on the ClinicalTrials.gov registry
(SILCODE: NCT03370744). A study flowchart is
presented in Fig. 1.

Data collection

Demographical data were collected including age,
sex, number of years of education, as well as
clinical data of history of hypertension, diabetes,
hyperlipidemia, and coronary heart disease. General
cognitive performance was measured by the Mini-
Mental State Examination (MMSE) and the Chinese
version of the Montreal Basis for Cognitive Assess-
ment (MoCA-BC) [16]. To measure impairment in
specific cognitive domains, performance in other neu-
ropsychological measurements was also collected:
30-minute delayed free recall in Auditory Verbal
Learning Test (AVLT) and AVLT recognition task
[17], Verbal Fluency Test (VFT-animal) [18], sections
A and B in the Shape Trail Test (STT-A and STT-B)
[19]. Scores in Pittsburg Sleep Quality Index (PSQI),
REM Sleep Behavior Disorder Screening Question-
naire (RBDSQ), and Epworth Sleepiness Scale (ESS)
were collected to evaluate sleep quality, sleep dis-
turbances, REM sleep behavior disorder (RBD), and
daytime drowsiness.

In SILCODE, the Single Molecule array (Simoa)
p-tau181 Advantage Kit was used to measure
P-tau181 concentration, and the Simoa Human Neu-
rology 4-Plex E (N4PE) assay (Quanterix) was used

to measure A�40, A�42, NfL, and GFAP concentra-
tions. All measurements for the five analytes were
above the detection limit, and the intra-assay varia-
tion coefficient was less than 10%. The data was then
matched to phenotype information.

Constructing the Sleep Composite Index

We carefully selected three measurements that are
clinically and academically widely used as compo-
nents for SCI, namely PSQI [20], RBDSQ [21], and
ESS [22]. Based on scores in the PSQI, RBDSQ, and
ESS, a multivariate logistic regression analysis was
used to build the SCI as a composite indicator reflect-
ing an individual’s overall sleep situation. In detail,
SCI was supposed to measure the quality of night-
time sleep, REM (sleep behavioral disruptions, and
tendencies of daytime sleepiness.

Variable selection and the sleep-cognition model
construction

Our predictive model was developed using R
software (version 4.1.2). Results obtained by the
COX regression and variables considered mean-
ingful in previous studies were used to build the
initial prediction model which was then optimized
using bidirectional elimination. Based on the results,
optimal predictors were selected to build the pre-
dictive model using COX regression (adjusted for
age, education, and sex) to predict five-, eight-, and
twelve-year event-free conversion probabilities [23],
which would be presented in the form of a nomogram.
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Model performance and clinical utility

We assessed the model performance through two
separate characteristics: discrimination and calibra-
tion. The discriminative ability of the model denotes
its effectiveness in differentiating converters from
non-converters and was assessed by the area under the
estimated ROC curve (AUC) [24]. Model calibration
refers to the level of agreement between model pre-
dictions and observed outcomes. Akaike information
criterion (AIC) [25] and Bayesian information crite-
rion (BIC) [26] were used in model selection and to
assess the model’s calibration: a lower AIC or/and
BIC value indicates proper calibration. Further, we
used the calibration curve and Hosmer-Lemeshow
test to evaluate the agreement between the predicted
and observed outcomes, and for a well-calibrated
model, we expected the predicted outcomes to fall
on the 45-degree bisector in the calibration plot [27].
Finally, we used the Decision Curve Analysis (DCA)
to quantify the net benefit to patients at different
threshold probabilities, thereby evaluating the clin-
ical utility of the model [28]. p > 0.05 was considered
calibrated.

Statistical analysis

Data normality was verified by the Shapiro–Wilk
test. Continuous variables were presented as the
mean ± standard deviation (for normally distributed
data) or median [interquartile range, IQR] (for non-
normally distributed data) and as the frequency
[percentage] (for categorical variables). Differences
between groups were examined using Student’s t-
test or Mann–Whitney test for continuous data, and
Chi-square test or Fisher’s exact test for categori-
cal data. Statistical analyses were performed using
R software (version 3.4.3) and statistical significance
was defined as a two-tailed p-value<0.05.

RESULTS

Clinical and demographic characterization

Table 1 displays the demographic and clinical data
of the participants. Except for CI individuals at base-
line, a total of 816 participants with baseline and
follow-up visits were included in the present study,
and randomly divided into a training cohort and a

Table 1
Demographic and clinical characteristics

Variables Whole population (n = 816) Training cohort (n = 573) Validation cohort (n = 243) p

Age 67.14 ± 7.61 67.12 ± 7.58 67.21 ± 7.68 0.856
Gender (Male), n (%) 303(37.08) 215(37.52) 88(36.27) 0.605
Education 12.05 ± 4.10 11.91 ± 4.06 12.35 ± 4.19 0.099
MMSE 26.96 ± 3.83 27.04 ± 3.74 26.78 ± 4.01 0.317
AVLT-N5 6.45 ± 2.90 6.38 ± 2.88 6.63 ± 2.94 0.299
AVLT-N7 21.49 ± 3.05 21.44 ± 3.20 21.62 ± 2.66 0.480
STT-A 73.14 ± 56.42 72.91 ± 58.19 73.71 ± 51.87 0.870
STT-B 161.16 ± 85.42 160.33 ± 84.30 163.22 ± 88.31 0.695
VFT 18.72 ± 5.37 18.61 ± 5.24 18.98 ± 5.68 0.420
BNT 25.06 ± 3.67 25.05 ± 3.83 25.06 ± 3.26 0.974
GDS 2.65 ± 2.46 2.72 ± 2.44 2.50 ± 2.52 0.298
MoCA 24.78 ± 2.14 24.73 ± 4.17 24.88 ± 4.07 0.659
PSQI 5.10 ± 3.48 5.11 ± 3.45 5.07 ± 3.58 0.895
RBDSQ 1.47 ± 1.85 1.47 ± 1.89 1.47 ± 1.75 0.983
ESS 6.83 ± 4.81 6.97 ± 4.78 6.51 ± 4.88 0.256
SCI –4.13 ± 1.69 –4.13 ± 1.10 –4.15 ± 0.99 0.796
A�42 6.14 ± 1.69 6.13 ± 1.68 6.16 ± 1.72 0.879
A�40 109.79 ± 94.44 111.60 ± 102.38 106.01 ± 75.44 0.596
A�42/40 0.06 ± 0.04 0.06 ± 0.02 0.06 ± 0.07 0.209
p-tau181 2.55 ± 5.14 2.34 ± 1.22 2.99 ± 2.31 0.266
NfL 17.91 ± 11.21 18.00 ± 12.11 17.71 ± 9.10 0.823
GFAP 125.90 ± 75.12 128.25 ± 76.63 120.94 ± 71.91 0.389
Follow-up (y) 4.73 ± 2.95 4.78 ± 2.94 4.60 ± 2.96 0.428

MMSE, Mini-Mental State Examination test; AVLT-N5, Auditory Verbal Learning Test-Huashan version long-delayed free recall (20 min);
AVLT-N7, AVLT-Huashan version long-delayed recognition (20 min); STT-A, Shape Trail Test A; STT-B, Shape Trail Test B; VFT, Verbal
Fluency Test (animal); BNT, Boston Naming Test; GDS, Geriatric Depression Scale; MoCA-B, Montreal Cognitive Assessment Scale;
PSQI, Pittsburg Sleep Quality Index; RBDSQ, REM Sleep Behavior Disorder Screening Questionnaire; ESS, Epworth Sleepiness Scale;
SCI, Sleep Composite Index; NfL, neurofilament light chain; GFAP, glial fibrillary acidic protein.
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Fig. 2. The nomogram shows the calculation of the final probability of the adverse outcome (CU converting to CI) in 5, 8, and 12 years. A
total point needs to be firstly determined based on the value of individual predictors using the nomogram: a vertical line was drawn from each
predictor’s line to the “points” line to obtain an individual predictor point, all of which were then summed up to the aforementioned total
point. Then, another vertical line was drawn from the “total points” lines to the bottom three risk lines, getting the probability of converting
to CI in 5, 8, and 12 years, respectively.

validation cohort by a ratio of 7 : 3. In the Whole pop-
ulation, Training cohort, and Validation cohort, the
ages of the patients were 67.14 ± 7.61, 67.12 ± 7.58,
and 67.21 ± 7.68 years old, respectively. The pro-
portion of males was 37.08%, 37.52%, and 36.27%,
respectively. There were also no significant differ-
ences between the Training cohort and Validation
cohort on cognitive performance-related scales or
sleep scales (p > 0.05). The overall follow-up time
was 4.73 ± 2.95. The training and validation cohorts
were comparable in terms of demographic and clini-
cal characteristics (p > 0.05).

Constructing Sleep Composite Index

To comprehensively measure individual’s overall
sleep quality from perspectives of nocturnal sleep
quality and daytime drowsiness, we carefully selected
three measurements that are clinically and academ-
ically widely used as components for SCI, namely
PSQI, RBDSQ, and ESS, which respectively evaluate
sleep quality, sleep disturbances, RBD, and daytime
drowsiness. A multivariate logistic regression anal-
ysis was applied to build the SCI as a composite

indicator reflecting an individual’s overall sleep sit-
uation. In detail, SCI was supposed to measure the
quality of nighttime sleep, REM, sleep behavioral dis-
ruptions, and tendencies of daytime sleepiness. The
formula for calculating the SCI is shown below: Sleep
Composite Index = –3.914221 + PSQI * 0.0555522 +
RBDSQ*0.7287495 + ESS * 0.0660809.

Variable selection and the sleep-cognition model
construction

After calculating the SCI score, we used the
median as the threshold to include the SCI as a
dichotomous variable in the following steps. Then,
we used bidirectional elimination to refine the model
and selected the most optimal predictors: GFAP, VFT,
and SCI. Finally, with a COX regression, the opti-
mal model was constructed incorporating the said
three significant variables to predict five-, eight-, and
twelve-year event-free CI conversion probabilities.
At the same time, three factors were identified as
important independent risk factors for CI conver-
sion: GFAP (HR = 1.018, 95%CI: 1.006 to 1.031,
p = 0.020), VFT (HR = 0.862, 95%CI: 0.758 to 0.981,
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Fig. 3. A, B) ROC curves using the nomogram to predict CI transitions at 5, 8, and 12 years for the training and validation sets, respectively. C, D) Decision curve analyses using nomograms
to predict CI transitions in the training and validation cohorts at 5, 8, and 12 years, respectively. The graph plotted the net benefit against threshold probability. The gray line represents the
treatment-for-all scenario in which all patients would transform to CI, and the thin black line represents treatment-for-none scenario in which no patient transforms to CI. The net benefit was
calculated by subtracting the proportion of all false-positive patients from the proportion of true positives, weighted by the loss brought by no treatment to CI and unnecessary treatment.
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Fig. 4. Calibration plot of the optimal model in training (A) and validation (B) cohort. The actual observed rate of conversion is shown on the y-axis, and the nomogram-predicted probability of
conversion is shown on the x-axis.
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Table 2
Assessing predicting ability among different models

Training cohorts Validation cohort
Model ROC 95% CI ROC 95% CI

Sleep index + GFAP + VFT1 0.877 0.792–0.963 0.937 0.855–0.999
Sleep index + GFAP + STT-A2 0.809 0.652–0.966 0.831 0.652–0.902
GFAP + VFT 0.805 0.683–0.926 0.911 0.810–0.921
sleep index 0.678 0.544–0.812 0.638 0.537–0.789
A�42/40 0.615 0.444–0.786 0.508 0.319–0.984
Ptau181 0.643 0.446–0.840 0.728 0.525–0.932
Gfap 0.708 0.526–0.890 0.534 0.313–0.839
Nfl 0.708 0.510–0.907 0.697 0.444–0.917
1The model optimized by bidirectional elimination.; 2The model selected by COX regression.

p = 0.024), and sleep (HR = 4.372, 95%CI: 1.057 to
18.080, p = 0.042).

The optimal model is presented in a nomogram
(Fig. 2). In the nomogram, the points scale ranges
from 0 to 100, and the corresponding point of each
predictor can be obtained by projecting its own value
to the point scale, all of which then sum up as the
total points. By drawing a vertical line from the total
points scale to the bottom three risk lines, the risk of
converting to CI in 5, 8, and 12 years can be estimated.
For the only categorical variable SCI, 0 indicates a
decent overall sleep quality and 1 indicated a poor
overall sleep quality, corresponding to the points of
44 and 75 on the points scale, respectively. Figure 2
shows the calculation for one randomized participant,
and with a total point at 207, the risk of converting to
CI for this patient in 5, 8, and 12 years was estimated
to be at 41.1%, 75.4%, and 86.2%, respectively.

Model performance and clinical utility

In optimal model (GFAP + VFT + SCI), the AIC,
BIC, and AUC were 70.367, 82.515, and 0.8773
(0.792–0.963) respectively, with the AIC being at
75.114, BIC being at 87.262, and AUC being at 0.809
(0.652–0.966). For reference, we also analyzed the
predicting ability of models incorporating four com-
mon biomarkers (A�42/40, P-tau181, GFAP, and Nfl)
and SCI (Table 2). The ROC curves for training and
validation model (GFAP + VFT + SCI) predicting the
CI conversion in 5, 8, and 12 years are displayed in
Fig. 3A and 3B, where the results of AUC for all three
are excellent, suggesting a great performance of the
said model at distinguishing between the at-risk and
non-risk individuals. The DCA of the nomogram sug-
gested that it produced a significant net benefit at most
threshold probabilities in the training cohort, espe-
cially between 0∼70% (12 years) (Fig. 3C), with a
similar performance in the validation cohort, between

0∼60% (12 years) (Fig. 3D). Finally, in the calibra-
tion analysis, the observed and predicted conversion
were well calibrated with the use of nomograms in
both the training and validation cohorts (Fig. 4A, B).

DISCUSSION

The present study developed a nomogram for pre-
dicting the risk of CI conversion in the Chinese
population. Compared to using a single predictor that
has limited prediction ability and may be subject to
other factors, a nomogram incorporating various pre-
dictors enables individualized prediction and aids in
the clinical decision-making process, ultimately pro-
moting personalized treatment and generating greater
net benefits for patients. To the best of our knowledge,
the present study is the first to develop a nomogram
integrating sleep quality, cognition performance, and
plasma biomarkers as composite indicators in pre-
dicting an individual’s future risk of CI conversion.
Compared to a traditional multivariate logistic regres-
sion analysis method, the present study applied the
COX regression for variable selection and bidi-
rectional elimination for further optimization. The
ultimate goal of a nomogram is to help clinicians and
patients estimate an individual’s need for additional
interventions. Therefore, to demonstrate its clinical
utility, a DCA was used to assess whether decision-
making using the nomogram would improve patient
prognosis. Our results showed that, when using the
nomogram to predict the conversion risk in 12 years,
the threshold probability was 0–70%, meaning that
all patients could benefit from it at varying lev-
els. Implementing interventions within this threshold
could bring more benefits over intervention for all or
intervention for none. Therefore, patients with high
nomogram pretest results should undergo preclinical
monitoring for AD as soon as possible.
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In our study, we opted for a composite Sleep
Composite Index (SCI) score instead of utilizing the
individual variables PSQI, RBDSQ, and ESS for sev-
eral reasons. The composite SCI offers a more holistic
evaluation, considering multiple factors simultane-
ously and providing a comprehensive assessment
of the patient’s condition. This approach minimizes
the potential for multicollinearity among variables,
enhancing the accuracy and reliability of statistical
models. By consolidating the variables into a single
score, we address this concern and further support the
robustness of our analysis. While the computational
cost of using three variables may not be significantly
higher, practical considerations, such as the complex-
ity and time involved in collecting and managing
multiple variables in real-world settings, favor the use
of a composite score. Streamlining the assessment
process, a single composite score reduces the bur-
den on data collection and management. Although
it is technically feasible to train a prediction Cox
model using the three variables directly, our objec-
tive is to develop a more practical risk assessment tool
for clinical use. Condensing multiple variables into a
single score enhances the usability and accessibility
of our method. Notably, the three variables (PSQI,
RBDSQ, and ESS) independently predicted the tran-
sition to dementia, focusing on reactive sleep, sleep
quality, sleep disturbance, RBD, and daytime sleepi-
ness. However, these indicators contribute differently
to dementia transformation. The comprehensive coef-
ficient obtained by combining the three indicators
allows us to explore the weighted influence of the
SCI on dementia transformation. This approach rec-
ognizes that some individuals, despite experiencing
insomnia or poor nighttime sleep quality, may offset
the adverse impact on dementia transformation by
supplementing daytime sleep.

Previous studies have shown that sleep disorders
are associated with the development of cognitive dys-
function even before the clinical onset of dementia.
A community-based study discovered the association
between delayed and reduced sleep-wake cycles and
the likelihood of developing dementia [29]. Similarly,
at 1-year follow-up, age-related sleep fragmenta-
tion was found to be associated with a 5.6-fold
increased risk of developing dementia [30]. In our
optimal model, SCI was calculated using scores from
PSQI, RBDSQ, and ESS, all of which are consid-
ered important measurements in past research on
AD. A total PSQI score larger than 5 is considered
poor sleep quality, which was found to be associated
with increased cerebrospinal fluid t-tau at baseline

[30]. Specifically, a shorter sleep duration was asso-
ciated with higher concentrations of cerebrospinal
fluid p-tau and t-tau biomarkers, and on average,
merely 1 h of sleep deprivation was associated with
the accumulation of pathological tau protein [30].
Although this statistically significant association was
only observed in one sleep duration group (6–7 h), it
remained present in the analysis using dichotomous
sleep durations (>7 h versus < 7 h) [30]. However,
some studies came up with different evidence: no
significant correlation was found between total PSQI
score and plasma biomarker concentrations, and there
was no significant difference in plasma biomarker
concentrations between good (PSQI total score ≤ 5)
and poor (PSQI total score > 6) sleep quality [31].
In the research of AD and RBDSQ, a previous study
found that smaller pineal parenchymal volume in AD
patients is associated with increased symptoms of
RBD (assessed by RBDSQ) [32]. An in vitro study
on rat pineal glands has confirmed that A� peptides
directly inhibit pineal melatonin synthesis and impair
the melatonergic system, leading to a neuroinflamma-
tory response within the gland [33]. Consequently,
reduced melatonin production due to pineal atrophy
caused by damages from A� may also indirectly
increase the risk for RBD or exacerbate RBD symp-
toms in AD patients by decreasing the protection of
the cholinergic system against A� toxicity [34]. Mov-
ing on to ESS, a longitudinal cohort study showed
that sleepiness is associated with doubling the risk of
developing dementia [30], suggesting that daytime
sleepiness is also a predisposing factor for demen-
tia. A study using ESS showed that higher levels
of daytime sleepiness were associated with greater
impairments of functional status, which was not only
associated with impaired cognitive functioning but
also with impaired functioning in patients with AD
[35].

Another component in our optimal model is VFT,
a common measurement used to assess cognitive
performance. The results of a study by Gustavson
et al. [36] showed that semantic fluency (animals
and fruits) independently predicts the progression to
amnestic mild cognitive impairment in cognitively
normal males, suggesting that study aiming to iden-
tify at-risk individuals for mild cognitive impairment
(and later dementia) may consider utilizing the pre-
dictive power of verbal fluency tests.

Compared to CSF biomarkers, blood-based
biomarkers are minimally invasive, safe, less
costly, and more available. Importantly, blood-based
biomarkers may be useful for evaluating an indi-
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vidual’s eligibility for treatment and monitoring
the effectiveness of AD treatment [37]. Our results
showed that plasma GFAP was not only a significant
predictor in the nomogram but also an independent
risk factor for CI conversion. Similarly, in a study
exploring the effects of acute sleep deprivation on
diurnal plasma dynamics of central nervous system
biomarkers in young men, researchers observed a
significant 12.1% decrease in plasma GFAP from
evening to morning (p < 0.001) [38]. In addition to
GFAP, according to our results, the difference in
plasma A�42/40 and plasma pTau-181 concentra-
tions between Converters and non-converters was
marginally significant. Also, plasma NfL concen-
tration was significantly higher in Converters than
non-Converters, once again suggesting the possi-
bility that sleep deprivation may lead to neuraxial
damage. Previous studies have shown that A� clear-
ance in the brain parenchyma is highly dependent on
the glymphatic system regulated by the sleep-wake
cycle: compared to awake mice, A� was cleared twice
as fast in sleeping mice [39]. Additionally, a study
of eight males aged 30–60 years found that sched-
uled sleep deprivation resulted in an approximately
42% increase in cerebrospinal fluid concentrations
of A�30, A�38, and A�40 [40]. However, another
study found no change in plasma A�42/40 ratios after
1 night of sleep deprivation in a healthy population
[41]. Similarly, in the present study, no significant dif-
ference in plasma A� concentrations between groups
was found in our long-term follow-ups. Considering
previous studies, there is a lack of evidence indicating
peripheral A� peptides change in response to sleep
deprivation, suggesting that measurements of periph-
eral A� biomarkers may be less accurate in reflecting
changes in the central nervous system due to sleep
deprivation. In another study, plasma concentrations
of T-tau, GFAP, and NfL increased during the day and
T-tau decreased significantly at night, suggesting the
clearance during sleep, possibly through lymphatic
fluid or CSF, although different changes in the said
biomarkers were observed in other cohorts [31]. The
above evidence suggests that certain AD biomark-
ers exhibit diurnal variation that may be independent
of sleep, providing theoretical support to use SCI
to reflect the combination of daytime and nighttime
conditions.

The findings of the present study have to be seen
in light of some limitations. First, participants were
not screened for obstructive sleep apnea, a disease
that was found to be associated with brain A� depo-
sition [42]. Second, the present study constructed the

nomogram based on a longitudinal study with a rel-
atively small sample size, so further validation using
a larger sample is needed.

In conclusion, the nomogram integrating sleep
quality and cognitive performance could successfully
predict the risk of converting to CI in elderly partic-
ipants. Notably, our optimal model suggests that the
risk of converting to CI would be greatly increased in
CU individuals with poor sleep quality. As a result,
research in sleep may guide the interventions for reha-
bilitation and/or cognitive enhancement to improve
the living quality of healthy older adults, detect at-
risk individuals, and even slow down the progression
to CI.
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