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Abstract.
Background: Although disturbed sleep is frequent in patients with mild cognitive impairment (MCI) and dementia due to
Alzheimer’s disease (AD), the association between sleep and tau pathology is unclear.
Objective: This case series focused on measuring the sleep-wake rhythm over 7 days through actigraphy in patients diagnosed
with MCI due to AD. Further, the association between sleep-wake cycle and tau deposition measured through positron emission
tomography (PET) was explored.
Methods: This case series included 6 MCI due to AD patients (2 women and 4 men, mean age 73.17 ± 5.53 years), who
completed neuropsychological testing, 7-day actigraphy, and tau PET imaging with radiolabeled compounds aimed to estimate
the density and distribution of aggregated tau neurofibrillary tangles in the brain.
Results: The case series indicated that patients with MCI due to AD who exhibited greater tau deposition in the frontal,
parietal, and limbic regions, as well as in the precuneus and olfactory regions, also showed increased sleep fragmentation, as
measured through actigraphy.
Conclusion: The findings from this case series suggest a potential link between tau deposition in key brain regions associated
with AD and both sleep fragmentation and sleep-wake cycle dysregulation in a small sample of patients with MCI due to
AD. These preliminary results warrant further investigation in larger, more comprehensive studies to confirm and expand
upon these findings.
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INTRODUCTION

Several studies suggest a bidirectional associ-
ation between sleep-wake cycle impairment and
Alzheimer’s disease (AD).1–4 AD pathology can
affect sleep by damaging the sleep-wake cycle reg-
ulating brain areas, but sleep disturbances and sleep
quality reduction can represent a risk factor for AD
neurodegeneration.5 Numerous studies identified the
alteration of the sleep-wake cycle in individuals
with AD from the early stages of the disease, with
some evidence also drawn in studies including indi-
viduals with subjective cognitive impairment.6–10

Subjects presenting biomarkers consistent with AD
pathology can show higher sleep fragmentation and
poorer sleep efficiency when compared with cogni-
tively normal older adults.11–13 The prevalence of
sleep disturbances in individuals with mild cogni-
tive impairment (MCI) is high,14 and can increase
the risk of transition from MCI to dementia.15 While
past seminal studies have analyzed sleep differ-
ences between patients with AD and normal adults
showing that AD pathology may cause sleep dis-
ruption, a new perspective and field of research
have recently emerged suggesting that sleep quality
reduction may trigger AD neuropathology. Preclin-
ical studies documented that sleep deprivation or
sleep impairment can represent potential risk factors
for brain amyloid plaque deposition.16,17 Moreover,
poor sleep quality in cognitively normal humans
is associated with the pathological modification of
cerebrospinal-fluid (CSF) amyloid-� (A�) peptide
levels18 or with cerebral amyloid pathological depo-
sition measured by positron emission tomography
(PET) imaging with [11C]-Pittsburgh compound B
(PET-PIB).19 Although the association between sleep
impairment and amyloid burden is well-documented,
fewer studies have examined the relation between
sleep quality and tau burden. Tau-targeted PET trac-
ers, such as flortaucipir (18F-AV-1451, also known
as 18F-T807), enabled the investigation of the pro-
gression of tau pathology in relation to age, and in
predicting the development of cognitive impairment
due to AD. Sleep impairment was also associated
with tau pathology, and the use of tracers for iden-
tifying the deposition of the neurofibrillary tangles
of tau pathology in relation to sleep impairment
can expand the knowledge about the risk for tau
pathology following sleep-wake cycle dysregulation.
Recent studies documented an association between
sleep deprivation and sleep fragmentation and altered
brain dynamics of tau proteins. For instance, mouse

model studies have documented an increase in tau lev-
els of approximately 90% during normal wakefulness
compared to sleep and around 100% following sleep
deprivation in the interstitial-fluid near the hippocam-
pal areas. Moreover, human studies have shown that
CSF tau protein levels can increase by more than 50%
during sleep deprivation.20 Although this evidence,
the association between objectively measured sleep-
wake cycle and tau deposition in subjects with MCI
due to AD still needs to be further investigated. In the
current case series, sleep and the sleep-wake cycle
were assessed using actigraphy, which has the poten-
tial for a standard, continuous, long-term monitoring
of the sleep quality and the sleep-wake cycle in an
ecologic and non-intrusive manner. Actigraphy can
be performed instead of the polysomnography for the
investigation of the sleep-wake cycle and for obtain-
ing information about sleep quality on consecutive
days and in the home setting. Furthermore, actigraphy
provides more comprehensive and nuanced informa-
tion about alterations in circadian sleep-wake cycle
profiles.21–23 Hence, this case series aimed to assess
the dysregulation of the sleep-wake cycle, measured
through actigraphy, and tau deposition as evaluated
by a PET scan in patients with MCI due to AD.

METHODS

Participants

Participants were six subjects with MCI due to AD,
diagnosed as current diagnostic criteria suggested by
the literature.24,25

Those patients were not admitted to perform a
lumbar puncture for the quantification of the CSF
biomarkers of AD, since they already performed PET
examination for investigating both amyloid and tau
pathology. During a telephone screening, patients
provided demographic information and health his-
tory, as well as completed the 15-item Geriatric
Depression Scale (GDS).26,27 In this case series, par-
ticipants with a prior diagnosis of sleep apnea, a his-
tory of clinical stroke or dementia, and use of a sleep-
ing aid, benzodiazepine, or drugs acting on the CNS
(such as cholinergic medications) were excluded. In
addition, MCI participants were excluded if they had
a current psychiatric disorder or a Clinical Demen-
tia Rating (CDR) Scale ≥ 1.28,29 During an in-person
sleep medicine visit, patients completed a series of
neuropsychological tests, a medical history form, and
the Pittsburgh Sleep Quality Index (PSQI)30,31 and
Epworth Sleepiness Scale (ESS).32,33
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This case series was declared to the Local Eth-
ical Committee and participants provided written
informed consent for allowing the publication of data.

Neuropsychological testing

Participants completed a battery of neuropsycho-
logical tests, including the CDR,28 the Alzheimer’s
Disease Assessment Scale–Cognitive Subscale
(ADAS-Cog14)34 and the Repeatable Battery for
the Assessment of Neuropsychological Status
(RBANS).35 These tests were administered by a
psychometrist under the supervision of a board-
certified neuropsychologist who confirmed the
diagnosis of MCI and included the Mini-Mental
State Examination.36

Actigraphy

Each participant wore an actigraph (MotionWatch
8, CamNTech) for seven consecutive days and nights
on their non-dominant wrist. Participants were asked
to press an event marker button on the actigraph when
going to bed and as soon as they got out of bed in the
morning. Moreover, participants were asked to keep
a written log of sleep-wake times.

Sleep data was derived from the night following
the visit and for six consecutive nights in the patient’s
home. Epoch length was determined at 30 seconds,
using the zero-crossing mode. The following sleep
parameters were calculated for every day and night
and averaged through the week: time in bed (TIB),
total elapsed time between ‘Lights Out’ and ‘Got
Up’ times; total sleep time (TST), total time spent
in sleep according to the epoch-by-epoch wake/sleep
categorization excluding sleep latency and wake peri-
ods between fell asleep/got up times; sleep efficiency
(SE), defined as the ratio between TST and TIB; sleep
latency (SL), the time between ‘Lights Out’ and ‘Fell
Asleep’; central phase measure (CPM), the midpoint
between ‘Fell Asleep’ and ‘Got Up’, expressed as the
number of minutes past midnight; actual wake time
(AWT), defined as the duration expressed in minutes
of “wake periods” between ‘Fell Asleep’ and ‘Got
Up’ times; sleep fragmentation index (FI) defined as
the sum of the ‘Mobile Time (%)’ and the ‘Immobile
Bouts <=1 min (%)’ and is an indicator of the degree
of fragmentation of the sleep period.

Sleep and wake characteristics were separately
monitored, and non-parametric circadian rhythm
activity (NPCRA) was analyzed with CamNTech
MotionWare 1.2.26. The following NPCRA param-

eters were collected: inter-daily stability (IS),
quantifying the degree of regularity in the activity-
rest pattern, with higher values corresponding to
higher synchronization; intra-daily variability (IV),
quantifying the degree of fragmentation of activity-
rest periods, with higher values representing a very
fragmented rest-activity rhythm; least 5 (L5) average
activity, providing the average activity level for the
sequence of the least five active hours; most 10 (M10)
average activity, providing the average activity level
for the sequence of the highest ten active hours; rela-
tive amplitude (RA), calculated by dividing the L5 to
M10 and representing the synchronization with the
average 24-h cycle, where higher values represent a
better-synchronized rest-activity rhythm.37,38 These
parameters were obtained through the traditional
analysis of circadian rhythms that fit physiologi-
cal indicators to a Cosine waveform shape (Cosinor
analysis).39

Tau imaging

Brain PET scans using tau imaging agents were
obtained from all patients included in this case series.
The scans were performed less than three months
before the clinical and actigraphic evaluation at our
center. Flortaucipir radiotracer was used for all the
historical brain PET scan with a GE MI PET/CT scan-
ner. 370 MBq of radiopharmaceutical was used for
all the case studies with an interval from injection
to acquisition of 80(±5) minutes. Raw Digital Imag-
ing and COmmunications in Medicine (DICOM) files
were then converted into the appropriate analysis for-
mat using MRIcro software.40 Spatial reprocessing
has been performed using Statistical Parametric Map-
ping (SPM12)41 implemented on Matlab r2022b.42

For iconography presented in Fig. 1, the Coregister
module was used for the estimation and reslicing of
PET data. While the analyzed format for each PET
was used as a source image, a magnetic resonance
imaging (MRI) T1 was used as a reference image. In
order to maximize or minimize some objective func-
tion, the parameter normalized mutual information
was selected. The average distance between sampled
points was 4- and 2-mm. Tolerance was set to achieve
the ideal accuracy for each parameter with iterations
stopping when differences between successive esti-
mates less than the required tolerance were achieved.
Gaussian smoothing was applied. Images were then
interpolated by using a 4th-degree B-spline. No wrap-
ping or mask was used.
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Fig. 1. Exemplification case 2. Co-registered PET imaging (bottom) with a template MRI (top) showing a significant increase of tau burden
in the parietal (a, blue asterisk) and temporal (b, blue asterisk) cortex presented in axial view. A detail of the parietal cortex showing the
right praecuneus burden is provided in (c, blue asterisk).

Cortical tau burden, as detectable by PET scans,
was analyzed following the methodology reported in
another similar study from our group in this field.43

PET scans were analyzed using SPM12, which had
been installed in Matlab r2022b.44 An estimate and
write normalization procedure was applied. To reduce
biases caused by smooth, spatially variable artefacts
that alter the image’s intensity and obstruct automated
image processing, a bias regularization of 0.0001 was
implemented. The FWHM of the Gaussian smooth-
ness of bias was set at a 60-mm cut-off to stop the
algorithm from attempting to mimic the intensity
variance caused by different tissue types. TPM.nii,
the tissue probability map implemented in SPM12,
was used. Mutual information affine registration was
employed with European brains, the ICBM space
template, to approach alignment.45 The tissue proba-
bility maps were registered using mutual information
affine registration.46 The following 1 × 5 arrays were
used to set the warping regularization: 0, 0.001, 0.5,
0.05, and 0.2. The sampling distance, which encodes
the approximate distance between sampled points
when estimating the model parameters, was set at 3,
and smoothness was set at 5 mm to deal with func-
tional anatomical variability that is not compensated
by spatial normalization and improves the signal-
to-noise ratio. An 8-mm isotropic Gaussian filter
was used to reduce the signal-to-noise ratio and blur

the individual fluctuations, particularly gyral varia-
tions. The following post-processing instruments and
parameters were applied before regression analysis:
global normalization, which uses proportional scal-
ing to raise images to a global value of 50; masking
threshold, which helps find voxels with an accept-
able signal and was set to 0.8; statistical parametric
maps were transformed into a normal distribution
tool; SPM coordinates were corrected to match
the Talairach coordinates, a subroutine that was
implemented by Matthew Brett (https://imaging.mrc-
cbu.cam.ac.uk/imaging/MniTalairach). WFU Pickat-
las tool implemented in SPM 12 was used in order to
export the cluster of interest using aal atlas.47 The
pons was considered as the reference region for nor-
malizing PET data.

Statistical analysis

Data analysis was performed with the statisti-
cal program SPSS for Windows version 25.0.48

Descriptive statistics were computed to characterize
the sample in terms of demographic and clini-
cal, as well as sleep-wake cycle. Data are reported
as mean ± standard deviation. Categorical data are
reported as counts and percentages. Correlations
between the extrapolated counts in selected areas
of PET and actigraphy data were performed using

https://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
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Kendalls’ tau b correlation test. Due to the sample
size and the multiple comparisons, the False Discov-
ery Rate (FDR) correction method was employed to
adjust for multiple comparisons and control for type
I family-wise errors.

RESULTS

Six patients with MCI due to AD, with a mean
age of 73.17 (SD = 5.53) y.o., 4 men and 2 women,
were included in this case series. The mean years of
education of the group were 11.83 (SD = 4.42). The
mean MMSE score was 21.50 (SD = 2.59), with a
range between 18 and 24, and all patients had a CDR
score of 0.5. In Table 1, the description of the patients
included in the case series is present.

In the tau imaging PET analysis (Table 2), a sig-
nificant increase in tau burden was documented in
the parietal and temporal cortex, as well as in the
precuneus (case 2 study imaging in Fig. 1). Further-
more, a mild burden of tau pathology was shown in
the right temporal lobe, as well as a mild uptake in the
left temporal lobe (case 6 study imaging in Fig. 2).

The actigraphic sleep-wake rhythm data are
presented in Table 3. Actigraphy revealed that partic-
ipants with MCI presented low sleep efficiency and
high sleep fragmentation.

Regarding subjective data (Table 3), the mean
score of the ESS was 9.50 (SD = 3.89, range
between 6 and 17). Specifically, only one patient
(16.7%) reported excessive daytime sleepiness (case
1, ESS > 10), while 3 patients (50%, cases 2, 3, 5)
had an ESS score of 9. In terms of sleep quality, the
mean score of the PSQI was 4.00 (SD = 1.54), with
1 patient (16.7%, case 1) reporting a PSQI score > 5
and 2 patients (33.3%, cases 3 and 6) with a score
equal to 5, which indicates poor sleep quality.

No significant correlations were found between
subjective sleep quality, excessive daytime sleepi-
ness, actigraphy and tau imaging, after adjusting for
multiple comparisons (Supplementary Table 1).

DISCUSSION

This case series preliminary showed that the sleep-
wake cycle dysregulation paired to the cerebral tau
deposition, measured through PET, in a small sam-
ple of MCI patients. In this group of MCI patients,
it was hypothesized that sleep impairment or sub-
jective sleep quality (PSQI-determined), might be
associated with tau deposition in critical brain areas
for AD pathology, since the tau burden in the olfac-
tory tract, limbic lobe, temporal lobe and entorhinal
cortex, parietal lobe, frontal lobe, and the precuneus

Table 1
Patients’ demographic and clinical characteristics

Mean Standard deviation Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Sex Female Female Male Male Male Male
Age 73.17 5.53 72 76 64 71 80 76
Educational level (y) 11.83 4.42 17 8 8 8 17 13
MMSE 21.50 2.59 24 24 18 21 19 23

Table 2
PET tau binding in crucial areas for Alzheimer’s disease

Mean Standard deviation Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Frontal 0.88 0.45 0.0026 1.2533 1.0774 0.9024 0.9263 1.1202
Parietal 0.89 0.46 0.0030 1.2547 1.0614 0.9065 0.9314 1.2040
Temporal 0.83 0.66 0.0030 1.4374 1.1450 0.0012 1.0346 1.3729
Occipital 0.77 0.60 0.0025 1.2954 1.1652 0.0011 0.9592 1.1786
Precuneus 0.97 0.50 0.0031 1.3133 1.1321 0.9845 1.0354 1.3514
Grey matter 0.91 0.46 0.0026 1.2841 1.1084 0.9642 0.9234 1.1613
Limbic lobe 0.92 0.47 0.0027 1.2002 0.9699 0.9789 1.1198 1.2709
Medulla 1.14 0.42 1.9979 0.9259 0.9718 0.9921 0.9650 0.9789
Midbrain 0.86 0.42 0.0021 1.0750 1.0282 1.0079 1.0350 1.0211
Olfactory left 1.28 0.56 2.4162 1.0615 1.0315 0.9441 1.0909 1.1276
Olfactory right 1.08 0.80 2.4799 0.8507 1.0556 0.0010 0.9821 1.1373
BA 28 0.86 0.69 0.0029 1.2195 1.3870 0.0012 1.0239 1.5531
Hippocampus left 0.69 0.76 0.0027 1.4623 0.0013 0.0011 1.2795 1.3919
Hippocampus right 0.87 0.69 0.0027 1.4654 1.2075 0.0011 1.1278 1.4262
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Fig. 2. Exemplification case 6. Template MRI in (a) and co-registered PET tau imaging in (b) show a mild burden of tau protein in the right
temporal lobe (blue cross). To note that a very mild uptake, slightly superior to the background, is detectable in the left temporal lobe as well
(b, white asterisk).

Table 3
Subjective and objective sleep data

Mean Standard deviation Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Subjective data
PSQI 4.00 1.55 6 3 5 2 3 5
ESS 9.50 3.89 17 9 9 7 9 6

Actigraphic data
Time in bed (min) 468.00 97.34 308 585 452 494 542 427
Total sleep time (min) 360.33 89.36 261 472 359 447 363 260
Actual wake time (min) 86.00 46.57 33 98 78 40 158 109
Sleep efficiency (%) 77.32 11.21 85.0 80.7 79.7 90.6 67.0 60.9
Sleep latency 16.50 18.25 8 6 13 5 14 53
Sleep fragmentation index 45.75 18.82 27.6 54.3 38.8 30.5 44.6 78.7
Central phase measure (min) 193.48 68.17 220.5 135.1 126.6 185 313.4 180.3
L5 2,803.50 1,627.43 5,066 2,234 1,688 679 4,227 2,927
M10 27,697.00 8,243.84 27,571 15,624 36,469 20,312 31,672 34,534
Relative amplitude (RA) 0.82 0.10 0.690 0.750 0.912 0.935 0.765 0.844
Inter-daily stability (IS) 0.46 0.07 0.357 0.439 0.491 0.566 0.405 0.479
Intra-daily variability (IV) 0.50 0.29 0.744 0.827 0.289 0.702 0.343 0.121

PSQI, Pittsburgh Sleep Quality Index; ESS, Epworth Sleepiness Scale; L5, Average activity level for the sequence of the least 5-active hours;
M10, Average activity level for the sequence of the highest 10-active hours.

was associated not only with sleep fragmentation
and sleep efficiency reduction, but also with the lack
of regularity of the sleep-wake cycle.49,50 However,
given the small sample of patients included in this
preliminary observation, the correlations were not
significant after adjusting for multiple comparisons.

All the MCI patients included in this case series
underwent a clinical interview to detect subjective
sleep complaints and daytime sleepiness, as well as
actigraphy to monitor sleep-wake cycle dysregula-
tion. Specifically, MCI patients showed a low sleep
efficiency and sleep fragmentation, and sleep-wake
rhythm desynchronization. These findings are con-
sistent with the results reported by Guarnieri and
colleagues, who compared MCI patients to subjects
with normal cognition.51 Additionally, in the present
case series, low IS and high L5 were more evident
in patients with tau pathology accumulation in the

olfactory tracts, which is an early feature during the
AD process.52

Although this observation provides new informa-
tion about sleep impairment and circadian rhythms
dysregulation in MCI patients and its potential asso-
ciation with the cerebral burden of tau pathology, the
mechanisms at the basis of these findings can be only
hypothesized. We are aware that our findings remain
yet preliminary, however, it is conceivable that sleep
fragmentation and sleep-wake cycle desynchroniza-
tion may increase tau deposition in the precuneus,
limbic lobe, frontal and parietal regions among
MCI participants. Night-time hyperarousal and sleep-
wake cycle dysregulation may underlie the increased
tau deposition in these crucial brain areas, as sleep
impairment could contribute to cortical tau accumula-
tion, potentially accelerating the transition from MCI
to dementia stage in the AD process.20 It is impor-
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tant to note that this observation is based on a case
series analysis, and consequently, it remains unclear
whether sleep disturbances may contribute to tau
pathology or are a result of it. Considering the previ-
ous literature showing that tau neurofibrillary tangles
may deposit in the sleep-wake regulating areas of
the brainstem, it can be hypothesized that sleep-
wake disturbances in tauopathies may depend on tau
deposition.53 Similarly, in the study of Lucey and
colleagues that included both cognitively normal and
mildly impaired older adults, non-rapid eye move-
ment slow wave activity also decreased when amyloid
and tau brain pathology increase.54 These findings
complement past studies documenting that both sleep
impairment and sleep-wake cycle dysregulation may
represent a risk for developing AD pathology,8,51

suggesting that sleep impairment, sleep-wake cycle
misalignment, and daytime napping55 may be tar-
geted for reducing the burden of AD pathology from
the early stage of the disease.

To our knowledge, there is a paucity of studies
examining the relationship between tau pathology
and subjective sleep quality.56,57 Our findings are
consistent with this previous evidence linking the
subjective sleep disturbances and the reduced sleep
efficiency (measured in the present study through the
PSQI) to the brain tau deposition,56,57 particularly in
the olfactory tract and entorhinal cortex. The concur-
rent evidence of tau protein accumulation in the latter
area and the sleep-wake cycle dysregulation may
further reflect the link between sleep and memory,
considering that tau pathology in the entorhinal cor-
tex can lead to synaptic failure in the hippocampus.58

Finally, this case series documented that MCI patients
with low TIB present a more evident tau accumula-
tion in the olfactory tract. Although this finding is
challenging to discuss, it may suggest that tau pathol-
ogy can potentially disrupt the sleep-wake cycle by
increasing arousal, thus lowering the TIB and possi-
bly increasing nocturnal behavioral problems.

The present case series has several limitations that
need to be addressed. Given that this case series
included only six subjects, the statistical power was
insufficient to perform a robust analysis, and the
correlations identified lost the significance when
adjusted for multiple comparisons. More compre-
hensive analyses with a larger sample size would be
necessary to increase statistical power and allow for
adjustment for potential confounding factors, such as
age. Despite the preliminary nature of the analyses
and the inclusion of few MCI due to AD patients,
the need for further investigation in larger studies

emerged since MCI patients showing a more severe
sleep-wake cycle dysregulation seem to be those
showing a greater tau deposition in several brain
areas.

Considering this case series and previous prospec-
tive studies demonstrating that, among individuals
with normal cognition at baseline, sleep and cir-
cadian rhythm measures were associated with an
increased likelihood of progression to MCI or AD
dementia,59–61 one may hypothesize that future
therapeutic strategies targeting sleep-wake cycle dys-
regulation could reduce the patient’s and caregiver’s
burden, and perhaps slow the progression of the
disease. Moreover, although daytime napping was
not analyzed in this study due to limited occur-
rence, future research should consider this factor as
it can significantly impact circadian rhythm. Given
the nature of a case series, in the present observation
a normal cognitive group compared to MCI patients
was not included. Nonetheless, normative actigraphy
data62 suggest that the median sleep duration for indi-
viduals aged 60 years and older is approximately 6.5
to 6.8 h, which is higher than the duration observed
in the patients evaluated in our study. Nonetheless,
this preliminary observation suggests the inclusion
of actigraphy, a gold standard method for investigat-
ing the sleep-wake cycle, in future studies on patients
with cognitive impairment to explore the impact of
sleep-wake cycle dysregulation on the burden of AD
pathology.

In conclusion, the present results reinforce the
hypothesized association between tau pathology and
sleep-wake cycle desynchronization in the early
stages of AD. These findings should be prompt fol-
lowed by prospective studies with larger samples to
confirm these exploratory and preliminary observa-
tion.
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